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The steel-making process in a Basic Oxygen Furnace (BOF) must meet a combination of target
values such as the final melt temperature and upper limits of the carbon and phosphorus content
of the final melt with minimum material loss. An optimal blow end time (cut-off point), where
these targets are met, often relies on the experience and skill of the operators who control the
process, using both collected sensor readings and an implicit understanding of how the process
develops. If the precision of hitting the optimal cut-off point can be improved, this immediately
increases productivity as well as material and energy efficiency, thus decreasing environmental
impact and cost. We examine the usage of standard machine learning models to predict the
end-point targets using a full production dataset. Various causes of prediction uncertainty are
explored and isolated using a combination of raw data and engineered features. In this study, we
reach robust temperature, carbon, and phosphorus prediction hit rates of 88, 92, and 89 pct,
respectively, using a large production dataset.
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I. INTRODUCTION

THE Basic Oxygen Furnace (BOF) process for the
decarburization of hot metal in primary steel making is
very complex from a process control perspective since it
takes place at very high temperatures and includes
turbulent multi-phase mass flow and chemical reactions.
The fundamental process is that solid steel scrap and hot
metal are charged into a BOF converter vessel, forming
a production batch (heat). To reduce the carbon content
through oxidization, oxygen is blown onto the heat by
supersonic injection through a vertical lance. Fluxes
such as lime and calcined dolomite are added to form a
slag and remove impurities. During the blow, an
operator fine-tunes the chemical reactions and the
energy and mass balances by additions such as ore,
coke or ferrosilicon, and by adjusting the position of the
oxygen lance relative to a predefined movement pattern.
During heat design and during the oxygen blow period,
operators are usually assisted by some computer-based
process guidance system. Such systems typically propose
process parameters and operator actions for every heat

execution, and are based on physical principles such as
calculations of mass and energy balances and thermo-
dynamic calculations.
A complex interaction between various influential

factors determines the final outcome of the BOF
process. The outcome is measured in terms of a number
of target values such as the temperature, carbon content,
and phosphorus content of the final melt and metallic
losses to the slag. The process (the blow) takes about 20
minutes, and it is desirable to predict the optimal
duration of individual blows by predicting the cut-off
point. The evolution of critical parameters during the
process is shown schematically in Figure 1. If the process
is ended too early, targets are not reached and the
process must be re-started, causing a decrease in
productivity and high cost. If the process is ended too
late, the temperature becomes too high and the metallic
losses to the slag become large, which significantly
increases the environmental impact and cost. Since the
BOF process is the world’s most commonly used process
for ore-based steel production, tools to improve cut-off
prediction could significantly contribute to a more
sustainable and efficient global steel production. BOF
cut-off prediction has resulted in many studies attempt-
ing to model the BOF process, by using advanced
simulations (e.g., mass and energy flows in the vessel)
and by approaches based on modeling the process from
process data. The literature contains several machine
learning (ML)-based approaches to predict target tem-
perature (T), carbon content (pct C), and phosphorus
content (pct P) with 80 to 100 pct prediction accuracy.
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However, many of these studies make use of limited
datasets or a limited number of ML approaches so the
accuracy and robustness of these can, therefore, be
questioned (refer to Table IV). To the best of our
knowledge, there is no investigation published that
compares a large set of commonly used ML algorithms
with a full-size production dataset.

It is difficult to monitor and collect data in the
vessel during a blow due to the high temperatures,
aggressive chemical environment, and the violent
motion of the mass, which quickly consumes most
sensory equipment. In many cases, the only well-
defined measurement available consists of the final
temperature and an analysis of a melt sample for the
final element composition of the heat. These measure-
ments are collected at the end of the process. For
some BOF converters, an additional measurement of
the same parameters may be taken in the form of
pre-final melt samples using a sub-lance at an esti-
mated point of approximately 90 pct of the blow time.
The element composition of the melt sample is
determined by a lab analysis which usually takes
several minutes. Consequently, acting on the final
measurements can only result in re-blows if targets are
not met, while the time to act based on the 90 pct
measurement is very limited.

To investigate and expand on existing published
work, we evaluate target predictéhms with fullé our
work includes key engineered features based on the
collected data that use well-known thermodynamic
principles, chosen in collaboration with domain experts.
Standard ML models are able to capture the complex
behavior of the BOF process with high prediction
accuracy using a real, full-size production dataset with
a large set of features and high variability in the data.
For further prediction accuracy improvements, it is
likely that additional data sources and even more
expressive ML models must be used, such as level 1
time-series process data and ML algorithms for sequen-
tial models, and we intend to explore them in subsequent
work.

Moreover, in this paper, we raise the question as to
whether the actual BOF process, i.e., the events taking
place inside the vessel, can be modeled using data
collected about the entire production unit including the
BOF converter. The BOF process is partly automated,
partly manually controlled, and typically the production
results are within specification. Problems during the
blow are often, but not always, manually mitigated
during the process, e.g., resulting in a strong correlation
between features that lack a causal relation. Therefore,
we claim that the trained prediction model captures the
behavior of the observable data about the production
unit, and that a trained model based on such data does
not model the actual BOF process itself, but rather
models the entire production unit’s behavior. The
observed data are a consequence of a mix of the BOF
process itself and current process control. Thus, the
trained model includes the dynamics of the BOF
converter, the dynamics of the current control and
prediction systems in place, and also the dynamics of the
actions of the operators acting on their estimations of
the current process state. This has a consequence when
evaluating an analysis of which features influence the
predictions of the trained model, since these features are
actually influential predictors of the production unit’s
behavior rather than the behavior of the actual BOF.

II. RELATED WORK IN MACHINE-LEARN-
ING-BASED PREDICTION MODELS

A sizable body of work has been produced in recent
years where authors use different machine learning
approaches to capture the relation between process
parameters (features in data) and their targets, such as a
prediction of the BOF target for a more accurate process
cut-off time point. Some ML approaches are more
frequently used than others and several publications
claim to have achieved very high prediction accuracy.
Most existing work predicts only one target—usually
the end temperature. There is a preference for inter-
pretable approaches with the aim being to explain the
process, which is why several methods are based on
first-principles[1] and simulations.[2]

The existing related studies differ from each other in
several aspects: the size and fidelity of the dataset, the
robustness and expressiveness of the chosen ML algo-
rithm, the variability and size of the data used, the target
error range, the number of direct and calculated features
used, and finally how the result is validated. These are
factors that affect the findings of the studies. The
complex ML algorithms, for example, overfit easily
small datasets. It is also easier to achieve high prediction
accuracy with a simple ML algorithm when using a
small dataset that has little variability. Furthermore, a
small dataset may not represent the actual data distri-
bution of a long production period very well, making
limited approaches unsuitable for actual production
models. In this paper, we compare and contrast a
number of comparable related studies that make use of a
large dataset or use many features.

Fig. 1—Element composition during the BOF converter process
(SSAB).
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There are three main types of ML approaches used in
related studies: Case-based reasoning (CBR), Support
Vector Machines (SVM), and Artificial Neural Net-
works (ANN). In CBR, instances are grouped by their
behavior as expressed by the data. The assumption is
that instances that have similar recorded features behave
similarly, and are therefore put in the same behavioral
group. They are expected to behave the same way during
the process, resulting in a similar outcome. The goal of
using CBR is to get a comprehensibly small set of
behavioral groups representing different types of heats.
These groups can then act as blueprints for how to
interpret and control future heats.[3–7] The drawback of
a CBR-based approach is that the discovered groups
only correspond to a rough estimate of the behavior of
such types of heats. It is therefore impossible to study
any granular behavior differences and, thus, impossible
to gain any deep understanding of the process. Still,
under this limitation, CBR has been proven to be a
useful method when it comes to predicting the outcome
of a BOF or other similar processes. Wang et al.,[3] for
example, used four different CBR methods and three
other ML methods with a dataset of 460 heats from an
Argon Oxygen Decarburization (AOD) converter. With
one of these CBR approaches and 12 chosen features,
Wang et al.[3] managed to predict the outcome temper-
ature within ± 15 �C from the measured temperature.
The AOD process is somewhat similar to BOF, but it is
not the same since the oxygen is injected into the liquid
steel below the bath surface level. This is why the
prediction accuracy between the two processes cannot
be directly compared. Another use of CBR is presented
by Feng et al.[4] that combined CBR with ANN to
model the Ruhrstahl Heraeus (RH) vacuum degasser
using 2500 training heats with nine features. Feng
et al.[4] reported that 95 pct of all predictions are less
than ± 10 �C from the measured value and that it can be
beneficial for the accuracy to combine several methods
such as CBR and ANNs. The RH process is different
from BOF in many aspects. Their ML methodologies
may be compared, but the targets are different from the
RH process.

SVM, and more specifically support vector machines
for regression (SVR), can effectively capture nonlinear
relationships in data, and SVMs are therefore used for
nonlinear classification and regression. The effectiveness
of an SVM typically depends on the kernel function
used, where a common choice is the Radial Basis
Function (RBF) kernel. SVMs are sometimes used in
combination with other techniques to improve predic-
tion accuracy further. Related studies that use models
based on SVMs have good prediction results, but it is
difficult to generalize the findings from most of the
studies due to the small size of datasets used.[8–11] An
exception is found in Schlüter et al.[12] who used an
SVM approach with a large dataset of 1400 heats with
50 to 60 features predicting four targets: temperature
(T), carbon (pct C) and phosphorus (pct P) content, and
the iron content of the slag. The SVM model is claimed
to outperform traditional metallurgical models. How-
ever, the study lacks detail so their work cannot be
replicated. Gao et al.[13] used an improved twin support

vector regression approach for T and pct C prediction,
using 300 selected samples. They achieved hit rates of 96
and 94 pct within the error bound ± 15 �C and ± 0.005
pct for temperature and carbon content, respectively.
The original data contain 2000 heats, so most heats were
disqualified and removed. This pruning of the data may
bias the final result and hence the high predictive power
could be subject to some doubt.
There are many variants of using ANNs for the

modeling of the BOF process.[4,8,9,14–25] For all of these,
only between 6 and 18 features are used, and the number
of used samples varies from 17 to 2500 with a majority
at the lower end. The prediction accuracy typically
reaches around 90 pct, but the data used are typically
selectively chosen, and it is therefore likely that the
result is biased in a positive direction. The target
temperature range varies between ± 10 �C, but a
prediction is typically denoted as correct if it is within
± 15 �C of the measured target. A majority of the papers
do not report the ANN configurations used in the
reported experiments, such as the number of layers and
neurons, which makes replication of the experiments
difficult. Some authors also pre-process the data in
addition to filtering. He et al.,[25] for example, applied
principal component analysis (PCA) to the initial data
to reduce the number of features and to get uncorrelated
features. By reducing the original dataset of 18 interre-
lated features to only seven components and then
applying an ANN, He et al.[25] achieved a phosphorus
(pct P) predictive accuracy of 93.33 pct, with an error
tolerance of ± 0.005 pct.
There are several combination methods, besides the

ones mentioned above, which have been used for
predictions of the BOF process. In He et al.,[25]

multiple linear regression was used. There are also
some studies that consider combinations or modifica-
tions of the techniques described above.[9,17,22,23] In
Wang et al.,[18] the authors applied weighted K-means
clustering and a group method of data handling
(GMDH), combined with a separate ANN for each
cluster. Each cluster is hence treated separately. Using
this method, Wang et al.[18] reported a pct P prediction
accuracy of 96.40 pct, with an error tolerance of ±
0.006 pct. Yuan et al.[26] combined principal compo-
nents regression (PCR) with multiple support vector
machine (MSVM) and least square support vector
machine (LS-SVM) for Electric Arc Furnace (EAF)
temperature, carbon, and phosphorus targets. With 82
heats and 10 features, this approach achieves 93 pct
accuracy, but this study used only simulated data. Han
et al.[27] used a radial basis function neural network
(RBF-NN) model, combined with a particle swarm
optimization algorithm and independent component
analysis, to predict BOF end-point temperature and
carbon content based on only 60 observations. The
authors claim the hit rate to be 100 pct when the range
of the temperature error is ± 15 �C and 92 pct when the
range of carbon content error is ± 0.05 pct. In Laha
et al.,[21] random forest (RF), ANN, dynamic evolving
neuro-fuzzy inference system (DENFIS), and support
vector regression (SVR) were compared for BOF
end-point prediction based on 54 heat samples and 10

1634—VOLUME 51B, AUGUST 2020 METALLURGICAL AND MATERIALS TRANSACTIONS B



features. SVR showed the best performance, with a
mean value for R2 at 0.821138 over 50 trials, and used
less CPU time than ANN and DENFIS.

In summary, we found a few comparable studies that
claim to predict the targets well for a BOF process. In
Table IV, we summarize a comparison of their
approaches and configurations as a prequel to a
comparison with our experiments and results.

III. PROBLEM

Due to the harsh conditions in the vessel, the complex
BOF process cannot be easily measured by sensors
during the process execution. In particular, the high
temperature is challenging since most sensors are
destroyed by the heat. In some earlier studies, indirect
sensor readings are used to mitigate this. With the lack
of direct time-series-based data, it is advantageous to
simulate the process, or to let ML algorithms predict the
targets based on the data that are actually available. In
fact, the aim of this article is to reduce the target
prediction uncertainty compared with the current pro-
cess control. In addition, augmenting the available data
with data generated or calculated by experts allows the
ML model prediction to make use of expert knowledge.
This paper aims to compare ML-based prediction
models that have been previously shown to be effective,
but now using a complete production dataset, without
any reduction in variance originating from less well-con-
trolled process variables. We examine the expression
capability of such standard ML algorithms for these
data and investigate the information content for com-
binations of partitions of the dataset. The aim is to see
how standard ML algorithms can make use of such rich
information content.

Most of the existing work for predicting temperature,
carbon, and phosphorus contents claims high prediction
accuracy. However, the models used are often based and
evaluated on data which are collected during a short
time frame, so there is a low variance among the heats
(data samples). Such approaches cannot feasibly be
generalized and applied in a production environment
since samples are much more diverse in a full production
setting. Therefore, we use a large dataset comprising
three years of production data. Moreover, since most of
the existing studies only cover a few algorithms and
typically use a limited dataset with less variation (refer
to Table IV), it is difficult to compare existing studies to
find usable real-world approaches. Therefore, it is
necessary to compare a large set of commonly used
ML approaches using full data, and then conclude how
a valid and useful production approach should be
designed. This will also establish a baseline for our
future work where we aim to apply a time-series-based
approach.

Furthermore, we examine the addition of expert-
based engineered features based on these collected data
with standard ML algorithms. One promise of deep
neural networks is that there is no need for feature

engineering by experts and that algorithms can discern
useful features automatically from raw data.[28] In
contrast, there are also previous BOF target prediction
approaches that rely on engineered features to improve
prediction accuracy, or use methods that choose a
smaller subset of features.[3,21,22,25] Therefore, we also
evaluate the effect of using expert-based features for
each of the ML approaches we have chosen to compare.
In the next sections, we describe the dataset and ML

algorithms we used and then the two experiments. Our
results show how different ML algorithms work on a
real-world steel manufacturing dataset using signifi-
cantly more features and heats than existing studies.
Moreover, we verify whether engineered features, that
is, the usage of a simplified thermodynamic approach,
would achieve an improvement compared to the
straightforward use of the collected data.

IV. METHOD

A. Data Overview

The dataset consists of production data from an
industrial BOF converter for steel production operated
by the SSAB group in Sweden. The data were collected
between 2014 and 2017 and contains data for around 20
to 30 heats of continuous production per day, resulting
in a dataset of 17,000 heats with 33 parameters
describing each heat, with one value stored per param-
eter and per heat. These 33 parameters include 20
parameters stored before the oxygen blow and 13
parameters stored during the oxygen blow. In addition,
five parameters are collected as time-series throughout
the oxygen blow. For each heat, the resulting target
outcomes are stored as one single value per heat and
target for temperature, carbon, and phosphorus (T, pct
C, pct P).
From the original 17,000 heats collected, a number of

heats were removed that suffered from corrupt or
missing values which were determined by the process
experts, resulting in a final heat dataset of 9708 heats.
The heats were removed due to corrupt or missing
values in pre-sample temperature, last tap temperature,
pre-sample carbon, and hot metal carbon. Also, the first
four heats after a furnace relining were removed since
they can be regarded as tuning heats for the furnace, and
are therefore outliers for describing continuous produc-
tion. In addition, heats with exceptional values were
removed, such as those with a too short or too long
blow time (thresholds set for blow time less than 12
minutes. or longer than 30 minutes) and the apparent
sensor breakdowns.
Furthermore, the five time-series for each heat were

aggregated into 64 statistical descriptors (Sec-
tion IV–A–2) to represent the time-series using one
value per heat. An additional set of 17 ‘expert’ or
‘engineered’ parameters (Section IV–A–3) were calcu-
lated from the originally collected parameters using
thermodynamic principles to capture expected depen-
dencies between parameters.
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We normalize the dataset by calculating the mean and
standard deviation and for each observed value of a
feature, subtract the mean and divide by the standard
deviation. The data are split for 10-fold cross-validation
into a training set of 80 pct of the 9708 heats, a 10 pct
validation set for model selection, and a 10 pct hold-out
test set for model evaluation.

Figure 2 shows a view of the complexity of this large
and high-dimensional real-world dataset, as visualized
by a t-SNE scatter plot (t-distributed Stochastic Neigh-
bor Embedding[29]) that embeds a high-dimensional
problem space in a low-dimensional similarity represen-
tation. The distance of clusters in this plot indicates
high-dimensional separability. The interleaving of red
and blue data points in Figure 2, respectively, repre-
senting the classes ‘above’ and ‘below’ heat outcomes,
clearly shows that simple dimensionality reducers can-
not easily separate classes directly from these data. This
motivates the use of algorithms that can find the more
complex nonlinear dependencies. To separate the effect
of using knowledge of different parameter types, such as
parameters known before and during the oxygen blow
and the effect of expected dependencies between original
parameters, we partition the data for our experiments
into feature groups I, II, and III (Table I).

1. Feature group I: features collected
before the process

Out of the 33 single-value parameters (features)
collected for each heat, 20 features describe the heat
before the blow is started, while the remaining features
are collected during the blow of the heat. These
pre-blow features include data such as the element
composition of the hot metal (with essential elements
such as carbon, silicon, and manganese). Other signif-
icant pre-blow features are the amount of hot metal and
scrap used for the heat; the temperature of the hot
metal; the waiting time between subsequent heats (where
both the material and the equipment cool off); the final

heat tap temperature of the previous heat; furnace ID
and lance ID; the lifetime in number of heats of the
currently used oxygen lance; the number of heats
processed so far in the current furnace body since last
body relining; and the duration between the sample time
of the hot metal’s temperature and the start time of the
blow. We evaluate the prediction accuracy of these
pre-blow features in isolation since some information
that determines the results is already available before the
blow.

2. Feature group II: features collected
during the process
Out of the 33 single-value features collected for each

heat, 13 features are collected during the blow. These
features include the amount of nitrogen and argon used;
the total amount of oxygen blown; the accumulated
amount of material additions to the heat during the
blow (such as dolomite, ferrosilicon, and lime); duration
of heat and blow periods; the time point of the final
measurements of steel temperature; and analysis of the
hot metal sample.
In this feature group, we also include aggregations of

time-series that describe the actual blow execution. Five
time-series were collected during the blow including
outdoor temperature; carbon monoxide (CO) and car-
bon dioxide (CO2) levels of the blow exhaust gas; lance
cooling water temperature; and lance movements. The
five time-series are aggregated into 64 statistical descrip-
tors. More specifically, for outdoor and cooling water
temperatures, we calculate the mean, standard devia-
tion, and the maximum and minimum values, resulting
in 8 features. For the CO and CO2 time-series of the
exhaust gas composition, we calculate the mean, stan-
dard deviation, and the integral, resulting in six features.
The lance movement is treated in more detail. Depend-
ing on the process phase, the distance between the
oxygen lance and the liquid metal surface varies
following a preset movement profile through the

Fig. 2—Our multidimensional dataset, reduced into a two-dimensional space by the t-SNE algorithm. Higher than average values are
represented in red (brighter), while lower than average values are represented in blue (darker). There are some clusters of samples with similar
values, but the overall picture is that there is no consistency in how the samples are distributed. Hence, predicting the outcome of a heat
targeting (a) temperature, (b) carbon, and (c) phosphorus would require methods that can capture complex dependencies in the feature space
(Color figure online).
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process. The operator may, for optimization purposes,
adjust this movement slightly, deviating from the preset
profile. In an early stage of the process, the lance
position is relatively high over the steel bath. In the
middle stage, the lance position is lowered to accelerate
the decarburization, while at an end stage, the position
is raised again. Since the lance height affects the
decarburization rate in the heat over time, we assume
that the lance height influences the heat composition in a
way that affects the process targets, and that the
influence varies during the process. Therefore, we create
features based on evenly spaced time slots (bins) of the
lance movement program. Each such bin is described by
features aggregating the mean, standard deviation,
maximum, minimum, and integral. Each lance sequence
is divided into 10 times 144-second bins, with the first
bin starting from the blow start time. In total, this lance
program aggregation results in 50 features. The reason
for elaborating on the lance program this way is that
lance movements directly influence the oxidation during
the blow, and that seemingly insignificant operator lance
adjustments may matter much for the final result. This
feature group II is evaluated in combination with
feature group I (i.e., feature group combination I +
II, refer to Section V–B), and the significant difference in
prediction accuracy between them is expected to reveal
the effect of during-process features.

3. Feature group III: thermodynamic calculation data
We assume that a simplified thermodynamic and

kinetic calculation of the thermal balance of the system
would capture properties of the data that could give a
significant prediction improvement compared with only
using the collected features. Excluding the possible
influence of mechanical stimulus to the heat and
assuming constant pressure, the thermal energy balance
of a process can be approximated by Eq. [1].

Hout ¼ Hin �Hloss ½1�

Hout is the final enthalpy of the system, Hin is the
enthalpy of the in-going raw materials, and Hloss is the
enthalpy losses from mass transfer, radiation, and con-
duction. If the reference level of enthalpy is defined as
the pure elements at room temperature, the terms of
this thermal balance equation can be approximated by
combining some of the logged features. The Hout can
be described as the sum of the thermal energy of the
total outgoing mass and reaction product enthalpies.
The former is taken as proportional to the product of
the total mass and the final temperature, and the latter
is taken as proportional to the respective masses of

reacting elements. Hin can be described as the thermal
energy contained in the hot metal, here taken as pro-
portional to the product of hot metal temperature and
hot metal mass. Hloss is the term that is mostly difficult
to simplify, as the energy flux is described by a differ-
ential equation containing nonlinear, time-dependent
temperature terms. In this case, the time steps between
the tapping of the last heat and blow start, between
hot metal temperature reading and blow start, and
between blow start and final temperature reading have
been chosen to describe the time-dependent losses.
Now, leaving the term containing the final temperature
aside and dividing both sides of the equation by the
total mass produces the 17 new features that describe
the process. This feature group is evaluated both in
isolation and in combination with the feature group
combination I + II (i.e., feature group combination I
+ II + III, refer to Section V–B), and the significant
difference in prediction accuracy is expected to reveal
the information content in these informed expert-de-
signed features based on current domain knowledge.

B. Hyperparameter Tuning

We perform a grid search using a range of hyperpa-
rameters for the chosen ML methods using 10-fold
cross-validation. Table V in Appendix A lists the
parameters used for combinations in the grid search
and also marks the parameters that achieved the best
result. The chosen methods are ANN, SVR, XGBoost,
random forest (RF), k-nearest neighbors (KNN), and
decision tree (DT). With linear regression, we use the
default settings provided by scikit-learn. For SVR, we
use a radial basis function kernel. The scoring metric
used is ‘mean_squared_error’ for the grid search with
SVR, XGB, random forest, KNN, decision tree, as well
as the loss function for ANN. The mean-squared error
regression loss (MSE) calculates the average of squared
differences between the predicted and actual values and
is often used in a regression problem.
With ANN, we evaluate different combinations of

neurons in the hidden layer with input and output layers
to find the best-fit combination. We use LeakyReLU
(Rectified Linear Units) since their performance is better
than other activation functions in the hidden layer. For
example, we find the optimal hyperparameters for target
temperature to be as follows. The ANN is configured
with three hidden layers with 128, 512, 64 units,
respectively, set up with the Python Keras package.[30]

To avoid ANN overfitting, we add a dropout layer with
rate 0.5 after the output of each hidden layer. In

Table I. Feature Groups (A Total of 114 Features)

Feature Group Description Number of Features

I Features collected before BOF process 20
II Features collected during BOF process + aggregated time-series

features
77 (13 + 64)

III Thermodynamic calculation features 17
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addition, it is trained with weight decay using the most
common type of regularization L2 with 0.001, which is a
typically cited value. The model output is given by a
linear combination of the output signals of the neurons
in the last hidden layer. In order to train the model to
the given data, we minimize the mean square error
between the output and the observation, using Adam
optimization with a learning rate of 0.0005. The model is
trained for 250 epochs using a batch size of 512.

C. Target Evaluation

The end-point steel temperature (T), steel carbon
content (pct C), and steel phosphorus content (pct P) are
the three target variables to predict.

In order to evaluate the performance of using these data
with commonlyusedMLmethods,weapply sevendifferent
machine learning algorithms to predict the hit rate (HR) of
T, pct C, and pct P. We define the hit rate (HR) as

HR ¼ N Prediction�RealValuej j<eð Þ
N Heatsð Þ ½2�

where e ¼ 15 �C in temperature (T) prediction, e ¼ 0:02
pct in carbon (pct C) prediction, and e ¼ 0:003 pct in
phosphorus (pct P) prediction.

D. ML Algorithms Evaluation

The seven ML algorithms used are artificial neural
networks (ANN),[31] support vector regression
(SVR),[32] extreme gradient boosting (XGB),[33] linear
regression (LR),[34] random forest (RF),[35] k-nearest
neighbors (KNN),[36] and decision tree (DT).[37] For a
baseline comparison, we use a mean-guess, which is
calculated by

N mean RealValue Trainð Þ �RealValue Testj j < e
N Heats Testð Þð Þ ½3�

Fig. 3—Hit rates of different ML algorithms targeting (a) temperature, (b) carbon, and (c) phosphorus.
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V. RESULTS

For evaluation, we perform two main experiments.
The first experiment compares the hit rate of alternative
ML algorithms and a mean-guess baseline (Figure 3,
Table II). For a subset of algorithms, we further

evaluate the hit rates of the combinations of different
feature groups (Table 3). Moreover, the prediction error
distribution of the two algorithms, ANN and SVR, are
illustrated in Figure 4. The second experiment further
examines the use of informed features based on ther-
modynamic calculations (Figure 5, Table III).

Table II. Hit Rates for Whole Dataset for Target Temperature (T, ± 15 �C), Carbon (C, ± 0.02 pct), and Phosphorus (P, ±
0.003 pct)

Target ANN SVR XGB LR RF KNN DT mean-guess

T 0.88 0.88 0.87 0.86 0.77 0.67 0.68 0.53
C 0.92 0.92 0.92 0.9 0.92 0.91 0.89 0.9
P 0.89 0.88 0.87 0.85 0.85 0.77 0.8 0.68

Table III. Hit Rates of Different Combinations of Feature Groups: I + II + III (114 Features), I + II (97 Features), III (17
Features), and I (20 Features) for the Targets Temperature (T, ± 15 �C), Carbon (C, ± 0.02 pct), and Phosphorus (P, ± 0.003 pct)

Feature Group Combination Target ANN SVR LR Mean-Guess

Pre-process + During-process + T 0.88 0.88 0.86 0.53
Thermodynamic features C 0.92 0.92 0.9 0.9
(Feature Groups I + II + III) P 0.89 0.88 0.85 0.68
Without Thermodynamic- T 0.86 0.86 0.84 0.53
Calculation Features C 0.92 0.91 0.9 0.9
(Feature Groups I + II) P 0.85 0.84 0.8 0.68
Only Thermodynamic- T 0.81 0.8 0.79 0.53
Calculation Features C 0.9 0.89 0.9 0.9
(Feature Group III) P 0.84 0.81 0.79 0.68
Only Pre-process T 0.68 0.67 0.66 0.53
Features C 0.9 0.89 0.89 0.9
(Feature Group I) P 0.73 0.73 0.71 0.68

Fig. 4—The distribution of the predictive error for the two best performing methods, (a) ANN and (b) SVR, for target temperature. The error
distribution from a mean-guess approach is added in the background for comparison (Color figure online).
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A. Experiment 1: Prediction Performance Comparison

In order to compare seven chosen ML algorithms’
performance on a large dataset we have, we train all the
algorithms with 10-fold cross-validation based on the
80/10/10 data splits with 114 features and 9708 heats.
For each target, a separate model is trained for each of
the algorithms. Table II lists the hit rates for each
method and target combination, as well as the mean-
guess baseline. We conclude that it is possible to achieve
high hit rates when using standard ML algorithms, also
with a full-sized and rich dataset that has a mixture of
heats with a wide range of process uncertainty captured
by the data. This shows that most of these algorithms
are capable of capturing the dependencies, even for
more complex data with the variance in a full

production dataset. ANN and SVR have higher hit
rates than other algorithms and Figure 3 plots the hit
rates for each algorithm over different target deviation
ranges.
In addition, we compare the distribution of the target

error for the top-two algorithms (Figure 4) to under-
stand more about the prediction uncertainty. In this
figure, the predictive errors of the top-two algorithms
are shown as the difference between the predicted and
actual temperatures. The distribution of the target error
for these methods is shown in a brighter distribution
plot (in orange). The distribution of the differences
between the target temperature and the measured
outcome during the production is shown as a darker
distribution plot (in blue). The dashed line (in red)
shows the temperature target center, and two dotted

Fig. 5—Hit rates of ANN prediction for target (a) temperature, (b) carbon, and (c) phosphorus. Refer to Sections IV�A–1, IV�A–2, and
IV�A–3 for more details of the different feature groups (I, II, III).
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lines (in black) mark the temperature target range. The
hit rate values of Table II are the integral of the area
between these two dotted lines.

B. Experiment 2: The Effect of Using Thermodynamic
Features and Features During the process

To understand how informed features such as features
based on thermodynamic calculations influence the hit
rate, we evaluate combinations of the feature groups.
The feature group combinations I; III; I + II; and I +
II + III (refer to Sections IV�A–1, IV�A–2, and
IV�A–3) compare hit rates when using or not using the
thermodynamic calculations and features during the
process. The hit rates of the two commonly used and
best performing algorithms, ANN and SVR, are further
described in Table III. The result of a linear regression
model, which is much simpler and easier to interpret, as
well as the selected baseline of mean-guessing are also
reported in this table to contrast the results of the two
best models.

Figure 5 plots the hit rates of target temperature,
carbon, and phosphorus. In general, ANN and SVR
perform better than other algorithms. Using all features
to predict end-point temperature, the hit rates of ANN
and SVR are 88 pct, XGB is 87 pct, and linear regression
is 86 pct.

When excluding the thermodynamic-based features
(compare I + II + III and I + II), the hit rate is lower
for temperature (88 vs. 86 pct) and phosphorus (89 vs. 85
pct). However, using only the thermodynamic-based
features, we still achieve a high hit rate around 81 pctpct
for temperature while the baseline is 53 pct. Thus, these
17 features capture important information for the
temperature and phosphorus predictions. Furthermore,
the thermodynamic calculation seems to simplify the
prediction problem towards a more linear dependency
between data and prediction, since all three algorithms
including linear regression (LR) have a hit rate around
80 pct when using only 17 thermodynamic features of
target temperature. The differences in absolute hit rate
values seem small, so we test for significance.

To investigate the significance of these hit rates, we
perform an analysis of variance (ANOVA) on ANN
with 10-run hit rates for the targets we used. There are
statistically significant differences between different fea-
ture group combinations for temperature as determined
by repeated measures ANOVA (F(3,27) = 1230.88, p<
0.00001). A Tukey post hoc test[38] reveals that the hit
rate is statistically significantly higher at ‘all features (I
+ II + III)’ or ‘with thermodynamic data’ (0.882 ±
0.0085) compared with ‘without thermodynamic data (I
+ II)’ (0.857 ± 0.0076), ‘only thermodynamic data (III)’
(0.815 ± 0.015), and ‘only pre-process data (I)’ (0.677 ±
0.0136). The condition ‘without thermodynamic data (I
+ II)’ (or ‘pre- and during-process data (I + II)’) is
significantly higher compared with the ‘only pre-process
data (I).’ In general, four feature group combinations
were found to be significantly different from each other
for target temperature in Figure 5(a).

Moreover, there are statistically significant differences
between different feature group combinations for phos-
phorus (± 0.003 pct) as determined by a repeated
measures ANOVA (F(3,27) = 818.37, p< .00001). The
condition ‘all features (I + II + III)’ (0.886 ± 0.0133) is
significantly higher than ‘without thermodynamic data
(I + II)’ (0.851 ± 0.0146), ‘only thermodynamic data
(III)’ (0.843 ± 0.0133), and ‘only pre-process data (I)’
(0.734 ± 0.0121). The condition ‘without thermody-
namic data (I + II)’ (or ‘pre- and during-process data (I
+ II)’) is significantly higher compared with the ‘only
pre-process data (I).’ However, ‘without thermodynamic
data (I + II)’ and ‘only thermodynamic data (III)’ are
not significantly different (p = 0.494) for phosphorus
(refer to Figure 5(c)).
Carbon (± 0.02 pct) shows a different result compared

with temperature and phosphorus based on repeated
measures ANOVA (F(3,27) = 17.97, p< .00001) as in
Figure 5(b). A Tukey post hoc test shows that the
conditions ‘all features (I + II + III)’ and ‘without
thermodynamic data (I + II)’ are significantly higher
compared with ‘only thermodynamic data (III)’ and
‘only pre-process data (I).’ The conditions ‘all features (I
+ II + III)’ (0.917 ± 0.0082) and ‘without thermody-
namic data (I + II)’ (0.917 ± 0.0081) are not signifi-
cantly different (p = .999) from each other. In addition,
‘only thermodynamic data (III)’ (0.904 ± 0.0111) and
‘only pre-process data (I)’ (0.902 ± 0.0109) are not
significantly different (p = .96) from each other.
However, the condition ‘without thermodynamic data
(I + II)’ (or ‘pre- and during-process data (I + II)’) is
significantly higher compared with the ‘only pre-process
data (I).’

VI. DISCUSSION

We find from the results of Experiment 1 (Sec-
tion V–A) that certain ML algorithms perform better
than others. The results of all three targets (end-point
temperature, end-point content of carbon, and phos-
phorus) are shown in Tables II and III. Specifically, we
perform 10 independent runs to examine whether the hit
rates from various algorithms are significantly different
from each other with a Tukey post hoc test.[38] The
results show that the prediction hit rates of ANN and
SVR are not significantly different from each other and
both are significantly better than other machine learning
techniques for all three targets.
In Experiment 2 (Section V–B), with end-point

temperature and phosphorus, we find that thermody-
namic data (III) improve the prediction performance
compared with only running with pre- and during-pro-
cess features (I + II) (compare I + II vs. I + II + III).
For all targets, we find that during-process features (II)
improve the prediction performance compared with
only using the pre-process features (I) (compare I vs. I +
II). Although we find carbon not showing significant
difference between ‘all features (I + II + III)’ and
‘without thermodynamic data (I + II),’ this is theoret-
ically explainable, since the 17 calculated features
primarily describe the thermal balance. That is,
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phosphorus and temperature have strong relationships
with the 17 thermodynamic features, while carbon, as it
continuously leaves the system, does not. In the case of
carbon (Figure 3(b)), mean-guessing showed even higher
hit rates than decision tree (DT) for deviations more
than 0.02 pct. In order to fully understand the results
that we achieved, we plan to work on explaining the
differences among the target predictions.

Overall, there is a significant difference between the
best and lowest performing ML algorithms and, thus, it
is beneficial to evaluate many algorithms when conduct-
ing a similar study as presented. The decision tree (DT)
algorithm was found to be the worst performing
algorithm for carbon, KNN for phosphorus, and both
decision tree (DT) and KNN for temperature (not
significantly different) in this set of algorithms. This
came as a surprise to us since the decision tree algorithm
is often recommended to be used in industrial settings,
since it is easy to use and understand and is also claimed
to perform tolerably well.[39,40] The explanatory prop-
erties of decision trees are useful in an applied setting, so
again, it is needed to explain classifications and predic-
tions, and we aim to pursue this in subsequent work.

The performance of the ANN and SVR methods are
compared to how well the process is controlled today in
the actual production unit and how much the measured
value deviates from the desired target, which is shown in
Figure 4. The error of the predictions is both smaller
and less volatile compared to the currently observed
differences. This would suggest that the current process
could be improved by incorporating the presented ML
methods into the process as a decision support system
for the operators.

One common claim about deep learning is that there
is no need for feature extraction since this would be
conducted automatically by the algorithm. However, in
this paper we show that in our particular case, this
assumption does not hold. Instead, Table III (bold text)
shows that the evaluated algorithms perform better at
target temperature and phosphorus with a few features
added that are engineered by experts. Thus, in this
particular case, it is more beneficial to add features that
are engineered by experts than to simply use the
gathered data. Hence, in this particular case which
considers a very dynamic and complex system, it is

important to emphasize that feature engineering can be
used to achieve a significant improvement over only
using the raw data.
A comparison with related studies (Section II) shows

that most related studies use less data or address
different types of problems. Comparable studies of
BOF cut-off prediction are listed, with their parameters,
in Table IV. The basic problem is the same, but there are
still differences in algorithms and methods, target error
range, number of heats and features, final production,
procedure, and also the aim of the process. In particular,
many studies use a limited number of features (or do not
specify), likely due to limitations on what data the
authors were able to collect or considered prominent.
Using a production-size dataset, we find our results to
be competitive and useful, considering the number of
heats, features, and the combination of targets used.
Our study differs in that it considers all types of heats
and incorporates the prediction of all three significant
targets used in actual production.
Our initial attempt to identify a ranked list of

influential factors out of the 114 features has resulted
in a list that is not immediately obvious. It was expected
that top factors influencing the prediction hit rate would
correspond to the factors that operators expect to
influence the BOF process. We conjecture that a ranked
list of factors corresponds instead to what influences the
learned model based on available data, rather than a
model that captures the factors that influence the BOF
outcome. Our current explanation is that the ML model
is based on the observable data, rather than the direct
BOF process data. The collected data represent the
overall behavior of the entire production unit, so the
ML model captures just the overall behavior. The
production unit that is actually measured includes the
existing temperature prediction support system, which
the operators use for process treatment during the
process and for the operators themselves. Thus, the
current production unit with all its constituent parts is
capable of mitigating a deviating process, in many
instances successfully bringing it back to a good process
state. The result ends up being highly dependent on the
operators’ level of experience, in terms of long-term
training in tacit skills and in transferable process
knowledge.

Table IV. Other Prominent Methods, Configuration, Deviations, and Hit Rates (Pct) for Temperature (T), Carbon (C), and
Phosphorus (P) on BOF

Ref. T(�C) C (Pct) P(Pct) Method Heat# Feature# Misc.

Ours ±15 ±0.02 ±0.003 ANN 9708 114
88 92 89

Gao et al.[41] ±15 ±0.005 — SVR 300 ?
96 94 —

Han et al.[27] ±15 ±0.05 — RBF-NN 60 ?
100 92 —

He et al.[25] — — ±0.005 ANN 1978 7 used
— — 93.3 pca

Wang et al.[18] — — ±0.006 ANN 2000 ? used
— — 96.4 k-means
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Our conclusion is that we cannot model the BOF
process directly given the data collected, but that we can
model the overall production system. It seems to be
common that data-based process models capture an
‘‘outer system’’ only. Another example of this is an
industrial ammonia scrubber. There is limited knowl-
edge about the reacting components, and the system is
known to be nonlinear and time-dependent. This is
fundamentally based on chemical equilibrium, reaction
kinetics, and thermodynamics.[42] Thus, reacting com-
ponents are unknown in the actual process. From what
we find from steel-making processes, the collected data
mainly reflect what has occurred as a result of the
optimizing operations by the operators during the
process (e.g., amount of initial scrap, updating the lance
position). The relationship of input features and the
output of the process is not only complicated by heat
and mass transfers and chemical reactions, but also by
the noise of the dataset. Moreover, there is a limitation
on capturing solely the behavior of the internal reaction
simply from the collected dataset, which necessitates
separating the internal reactions from external phe-
nomenon as seen in the collected data.

Given that our process model captures an ‘‘outer
system,’’ process experts are able to explain our ranked
list of influential features with rather high accuracy.
Assuming that these features are influential on the
prediction of the overall system rather than the BOF
process alone, these features would represent those that
are not yet fully controlled by the current control
system. If so, the feature list would be an actionable list
of features to control to improve the current process
control. Such knowledge would be of great use, and
thus, we plan to further investigate the features influ-
encing this process in order to understand those that
have larger effects on the outcome of the model’s
predictions.

We recognize some limitations of our study. Most
obviously, the data are collected from only one BOF
furnace. We have collected data from two more BOF
furnaces, but have not yet evaluated that data in the
same way, so we do not yet know how generalizable our
results are. In addition, our data cleaning in collabora-
tion with steel experts may still have introduced some
bias, even though we intended to use a dataset with all
types of heat executions. Moreover, for the aggregated
time-series, various other aggregation methods exist
which may better capture features relevant to BOF
target prediction. In fact, it may be that binning might
not be a suitable approach for capturing relevant
process properties. There are multiple approaches to
BOF cut-off prediction which we plan to use in future
work, in particular, the use of multivariate time-series
models.

From an industrial implementation point of view,
there is an immediate value and potential in improved
optimization possibilities from detecting previously
unknown relationships between features. Also, within
a relatively short time frame, a machine learning-based
prediction model with high accuracy could be installed
as a real-time application in parallel to existing process
systems used by the operators, continuously predicting

the process end-points based on the log of actual events
and the planned events during the heat. Such a tool
would be especially valuable for operators with limited
experience and when the process is running under
unstable conditions.

VII. SUGGESTIONS FOR FUTURE WORK

The potential energy, material, and environmental
gains from accurate cut-off predictions are clear. We
find that there had been various attempts to improve
performance in the past, but they seem limited due to a
lack of details and transparency and were limited by the
quantities of data and features. It seems that authors
have determined the influencing factors based on a
weight method[18] and a priori reasoning[21] and then
applied this to neural networks or other selected
methods. Moreover, there is no standard for the error
ranges of targets, probably due to different steel
production procedures for the different cases reported.
The variation can be seen in Table IV. In this paper, we
selected the deviation for phosphorus of 0.003 pct and
get an 89 pct hit rate with ANN. However, if we selected
a deviation for phosphorus of 0.005 pct, we would get a
98 pct hit rate with ANN which is much higher than
what others have reported. Thus, we suggest a general
and standardized protocol of configuration and report-
ing the results within the BOF processing domain in
different steel production procedures. In addition, it
would motivate more researchers if there were public
benchmarking datasets for steel manufacturing that
everyone can use.
Domain experts and researchers are especially inter-

ested in discovering the influencing factors and under-
standing the industrial process as a whole. As our next
step, we plan to use SHAP[43] and other statistical
analyses with this real-world dataset to find the influ-
encing factors and enhance the interpretation of BOF
cut-off prediction models.
Yet, to our knowledge, there is no dynamic sequential

model that can predict the targets at any given time
during the process, for instance using deep learn-
ing-based time-series modeling. Besides, it is even more
challenging to determine the influencing factors and
automate the parameters in real time. It is also necessary
to generalize the model and resolve the uncertainty
issues that are caused by sources such as measuring
devices, modeling error, human error, and inner vs.
outer systems. Ultimately, there is a need for a closed
loop system that optimizes itself based on a time-series.

VIII. CONCLUSION

In this paper, we examine the prediction accuracy of a
number of standard machine learning algorithms using a
large production dataset with the aim of predicting the
BOF cut-off point. We achieve high and robust accuracy
for temperature, carbon, and phosphorus prediction
while using significantly more and diverse production
data compared to previous studies. We also engineer
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features based on thermodynamic approaches in collab-
oration with domain experts. Furthermore, we address
some limitations of the previous research, such as the
dataset size and data selection, and evaluate all of the
most commonly used machine learning approaches. We
find that algorithms based on neural networks and
support vector machines perform better than other
standard machine learning techniques, similar to what
has been described in existing research. Moreover, we
show that it is possible to have the same performance
even with a full and more complex production dataset,
in spite of the variance in data caused by realistic
process uncertainty. The BOF process targets can still be
predicted with high accuracy.

The engineered features enable further improvements
in prediction accuracy. For this particular case, we find
that it is beneficial to use a number of well-crafted,
domain-specific, and informative features. This results
in more process knowledge for standard ML algorithms
to learn from, compared to merely using all available
data to train standard ML algorithms. Although it is
challenging to estimate the balance of mass and energy
of a BOF heat using sensor readings and implicit
variables, our results support the importance of feature
engineering and the combination of engineered features
with the raw data collected.
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Skövde. We would like to thank Carl Ellström, Patrik

Wikström, and Lennart Gustavsson at SSAB for their
close collaboration in this project. This project is fun-
ded by the Knowledge Foundation in Sweden, under
Grant Number 20170297.

OPEN ACCESS

This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other
third party material in this article are included in the
article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright hold-
er. To view a copy of this licence, visit http://creativec
ommons.org/licenses/by/4.0/.

APPENDIX A: HYPERPARAMETERS USED
IN GRID SEARCH

See Table V.

Table V. Hyperparameters and the Best Parameters for the Targets, Temperature (T), Carbon (C), and Phosphorus (P)

Method Parameters T (Best) C (Best) P (Best) Tested Parameters

ANN learning_rate 0.0005 0.0005 0.001 0.001, 0.0005, 0.0001
layer_sizes [128, 512, 64] [64, 128, 16] [128, 512, 64] [512, 1024, 128],[128, 512, 64],[64, 128, 16]
drop_out 0.5 0.5 0.5 0, 0.2, 0.5
batch_sizes 512 256 512 128, 256, 512

SVR epsilon 0.05 0.1 0.1 0.001, 0.005, 0.01, 0.05, 0.1
C 10 50 10 1, 10, 50, 100
gamma 0.001 0.001 0.001 0.0001, 0.001, 0.01, 0.1

XGBoost n_estimators 700 300 500 100, 300, 500, 700
learning_rate 0.1 0.1 0.1 0.01, 0.5, 0.1

Random Forest
(RF)

n_estimators 500 500 500 100, 300, 500
min_samples_leaf 1 5 1 1, 2, 5
min_samples_split 6 6 6 4, 6, 8
max_depth 20 20 30 10, 20, 30

K-Nearest Neigh-
bor (KNN)

n_neighbors 25 50 25 3, 5, 10, 25, 50

Decision Tree (DT) min_samples_leaf 15 20 15 1, 5, 10, 15, 20
min_samples_split 200 200 200 2, 10, 50, 100, 200
max_depth 20 5 20 5, 10, 20, 30
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