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The resulfurization of hot metal has not been comprehensively studied in literature. This study
presents an experimental and mathematical modeling study of resulfurization in thermodynamic
and kinetic point of view. The rate, extent, and mechanisms of resulfurization were evaluated by
analyzing concurrently the physical properties and sulfur-extracting ability of the slag.
Experiments were conducted in a chamber furnace in an argon atmosphere, and the hot
metal was sampled with pre-defined basis. The experiments were continued until the metal–slag
system reached an apparent thermodynamic equilibrium. To obtain a quantitative measure on
the effect of system properties on the rate and extent of resulfurization, the results of this study
were combined with previous studies handling the sulfide capacities of Na2O-SiO2 and
CaO-SiO2-Na2O slag systems. The sulfide capacities of the slag and corresponding metal–slag
sulfur partition ratios were mathematically modeled with data-driven techniques such as
multiple linear and non-linear regression and artificial neural networks. Finally, with the help of
these, to study the kinetics of resulfurization, a simple mechanistic reaction model was derived.
The results suggest that resulfurization of hot metal follows 1st-order kinetics and that the rate
and extent can be regulated through the control of the associated thermodynamic driving force
and by modifying the physical properties of the slag. The rate-limiting factor was found to be
determined by the morphology of the slag phase.
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I. INTRODUCTION

IN blast furnace-based steelmaking, sulfur is consid-
ered as one of the main impurities in hot metal. The
removal of sulfur is commonly conducted with powder
injection. In powder injection, a desulfurization reagent
is injected into hot metal with the help of a carrier gas
through an immersed lance. Suitable desulfurization
reagents include lime, calcium carbide, magnesium, soda
ash, limestone, and zinc oxide. Hot metal desulfuriza-
tion with powder injection consists of two main
reactions[1]:

(i) Transitory contact reaction (reagent–metal)
(ii) Permanent contact reaction (metal–slag)

In the thermodynamic calculations conducted by Pal
and Patil,[1] it was suggested that the majority of sulfur is
extracted via the transitory contact reaction, but the
equilibrium sulfur content is often higher for the
permanent contact reaction.[1] This implies the existence
of a thermodynamic driving force for the inverse
reaction that is referred to as resulfurization. The
kinetics of the desulfurization of hot metal via a
permanent phase contact has been studied intensively
for Na2O-containing slag systems in References 2
through 4. However, the resulfurization of hot metal
has drawn less attention.
Early observations on the resulfurization of hot metal

in the case of the CaO-SiO2-Na2O system were made in
the study of Schenck et al.[2] The authors conducted
experiments on desulfurization in the Fe-C-S system and
identified that the changes in the sulfur and iron oxide
contents of the slag followed were found to be associ-
ated with each other, but the authors did not present the
mechanisms behind the resulfurization reaction.[2] Liu
et al.[5] studied the kinetics of resulfurization of steel in
the CaO-FeO-SiO2-CaS slag system. In their study, it
was established that resulfurization of steel follows
1st-order reaction kinetics, and is controlled by mass
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transfer in the slag phase. The authors also suggest that
the increased liquid phase fraction in the slag phase
could increase the rate of resulfurization due to the
increased rate of mass transfer at the interface.[5]

However, the authors did not consider the fact that
the studied fluxes (FeO and CaF2) both decrease the
sulfide capacity according to van Niekerk and Dippe-
naar[6] and Schenck et al.[2] This being so, the rate of
resulfurization increases due to the increase in the
thermodynamic driving force, which assumedly has a
greater effect on the molar flux of sulfur through the
metal–slag interface than the increased rate of mass
transfer associated to the liquid phase portion. Also in
their study, the sulfur content of the slag phase was only
0.12 wt pct,[5] which would imply a low thermodynamic
driving force in the case of high carbon and silicon
contents in the metal phase.

Because of the tighter quality specifications of hot
metal and steel, there is a need for the detailed
characterization of sulfur balance at every stage of the
production chain. For these reasons, the rate and extent
of resulfurization after hot metal desulfurization needs
to be studied further. The aim of this work was to study
resulfurization using laboratory-scale equipment to
assess rate-controlling factors and means to affect the
phenomenon. To this aim, a mathematical description
of accounting the main mechanisms of resulfurization
was formulated. A comprehensive evaluation of the
sulfide capacity of the slag phase was made with
data-driven techniques to evaluate the significance of
the slag composition and thus the sulfide capacity on the
rate of reaction.

II. MATHEMATICAL MODEL FOR HOT METAL
RESULFURIZATION

A. Kinetic Basis of Resulfurization via Permanent Phase
Contact

As the rate of resulfurization is controlled by mass
transfer in the slag phase, the sulfide capacity of the slag
phase controls the rate of resulfurization through the
thermodynamic driving force. In order for an inverse
desulfurization reaction to occur, the following inequal-
ity would have to be true:

LS;t � LS;eq; ½1�

where LS;t is the sulfur partition ratio between the slag
and the metal phase at time instant t and LS;eq is the
sulfur partition ratio in case of the metal–slag equilib-
rium state. To clarify, the sulfur partition ratio is
determined as

LS ¼
ðpct SÞ
½pct S� : ½2�

If the sulfur concentration of the top slag is signifi-
cantly larger than the equilibrium sulfur concentration
in the top slag, there is a thermodynamic potential for
resulfurization and the transfer rate is controlled by
mass transfer of sulfur in the slag phase. The

concentration of sulfur in the slag phase can be written
assuming a 1st-order rate of reaction:

dðSÞ
dt

¼ �ktotððpct SÞ � ðpct SÞeqÞ; ½3�

where ktot is the rate constant for the resulfurization
reaction via a permanent phase contact; (pct S) is the
sulfur content in the slag phase; and (pct S)eq is the
equilibrium sulfur content in the slag phase. In a
steady flow field, the value of ktot can be approximated
with

ktot ¼
DðSÞ
dS

AS�M

VS
; ½4�

where AS�M is the interfacial area between the slag
and the metal phases; VS is the volume of the slag
phase; dS is the thickness of the diffusion boundary
layer; and DðSÞ is the diffusion coefficient of sulfur in
the slag phase. The temperature dependency of diffu-
sion in the slag phase was assumed to follow Arrhe-
nius’ type of equation. Integrating Eq. [3] with respect
to time and rearranging yields the following expression
for the time constant of the resulfurization reaction:

ktot ¼ � 1

t
ln

ðpct SÞt: � ðpct SÞeq
ðpct SÞ0 � ðpct SÞeq

 !
: ½5�

The value of the rate constant of desulfurization has
been proposed to correlate with the sulfide capacity of
the slag. Choi et al.[3] and later on Tong et al.[4] pro-
posed the following experimental expression for the
interaction of rate constant of desulfurization in
CaO-SiO2-Al2O3-Na2O-system and sulfide capacity

k0tot ¼ biCS þ b0; ½6�

where CS is the sulfide capacity; bi is the regression
coefficient for variable i; b0 is the bias term; and k0tot is
the apparent rate constant for the desulfurization reac-
tion. The proposed approach is problematic for several
reasons. Firstly, the sulfide capacity is related non-lin-
early with the physical properties of the slag phase, for
example, with the liquid phase fraction, and secondly
the approach concerns the mass transfer coefficients,
activities of the species, and dimensions of the system
as constants, which can be seen from the definition of
the total mass transfer resistances for the permanent
contact reaction

k0tot ¼
A

V

1
1
b½S�

þ 1
q�

K1CSa
H
½O�

fH
½S�

bðSÞ

0
BBBB@

1
CCCCA; ½7�

where b½S� is the mass transfer coefficient for sulfur in

the metal phase; q� is the density ratio between slag
and metal; bðSÞ is the mass transfer coefficient of sulfur

in the slag phase; aH½O� is the Henrian activity of oxygen

in the metal phase; A is the interfacial area for mass
transfer; and V is the volume of the slag phase.
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B. Thermodynamic Properties

A major problem in the prediction of sulfide capacity of
the slag phase is the methodology for determining the
activity of oxygen at themetal–slag interface. Typically, this
problem is solved by assuming that the activity of oxygen at
the interface corresponds to the activity of oxygen at
equilibrium. Thus, the activity calculations can be carried
out by assuming a reversible oxidation reaction to occur at
the interface. In the case of a hot metal with high C and Si
contents, the equilibrium expression for the equilibrium
activity of oxygen can be derived based on the equilibrium
constants of either C-CO or Si-SiO2 as follows

[45]:

log10 a
H
½O� ¼ � 1

2
log10KðSiO2Þ �

1

2
log10ðfH½Si�½pct Si�Þ

þ 1

2
log10a

R
ðSiO2Þ; ½8�

log10 a
H
O½ � ¼ �log10K COf g þ log10pCO� log10ðfHC½ � pctC½ �Þ: ½9�

The activities of metal and slag species are defined
with Henrian and Raoult’s law, respectively. The defi-
nitions of the Raoultian and Henrian activities for a
compound i are given as follows[46,47]:

aRðiÞ ¼ ciðxiÞ; ½10�

aH½i� ¼ fi½pct i�; ½11�

where ci is the Raoultian activity coefficient for component
i; xi is the molar fraction of component i in the slag phase;
and fi is the Henrian activity coefficient. The activity coeffi-
cient of a component i in a regular solution can be calcu-
lated by applying a model proposed by Ban-Ya[48]:

RT lnci ¼
X
j

aijX̂
2
j þ
X
j

X
k

ðaijþ aik� ajkÞX̂jX̂kþDG�
C:;

½12�

where aij is the interaction energy between two corre-

sponding cations (i and j); X̂i is the cation fraction of i;
and DG�

C: is the conversion factor of the activity coefficient
between a hypothetical regular solution and a real solution
(J/mol). The interaction energies for the slag components
were extracted from Reference 48. The activity coefficient
based on the Henrian standard state is calculated with
WLE formalism. The interaction coefficients for Eqs. [32]
and [33] are extracted from Reference 47.

log10 f
H
i ¼

Xnj
j¼1

eji pct j½ �: ½13�

C. Sulfide Capacity of the Slag Phase

The sulfide capacity is a measure for the sulfur-ex-
tracting capacity of the slag phase in a situation where
the slag and the metal or slag and gas phase are in
thermodynamic equilibrium. The sulfide capacity of the
slag phase can be defined based on either one of the
following reactions[7]:

1

2
fS2g þ ðO2�Þ ¼ ðS2�Þ þ 1

2
fO2g; ½14�

½S� þ ðO2�Þ ¼ ðS2�Þ þ ½O�: ½15�

The expression for the sulfide capacity of the slag
phase can be derived based on the equilibrium con-
stants aforementioned:

CS ¼ pct Sð Þ
ffiffiffiffiffiffiffiffiffiffiffi
pfO2g
pfS2g

s
; ½16�

C0
S ¼ pct Sð Þ

aH½O�

aH½S�
; ½17�

where C0
S is the sulfide capacity of the slag phase

defined based on the metal–slag equilibrium and aH½S� is

the activity of sulfur in the metal phase and pi is the
partial pressure of a compound i. The relation can be
simplified further to Reference 7:

log10C
0
S ¼ log10CS �

935

T
þ 1:375: ½18�

In reference to the expression of equilibrium distribu-
tion of sulfur with respect to slag and metal phases,
the formulation for the sulfide capacity of the slag
phase with respect to sulfur partition ratio can be
given as follows:

log10 CS ¼ log10 LS þ log10 a
H
½O� þ

935

T
� 1:375

� log10 f
H
½S�; ½19�

where fH½S� is the activity coefficient of sulfur in the

metal phase.
A vast amount of semi-empirical or theoretical

models have been developed for predicting the sulfide
capacity of the slag phase.[6–30] The theoretical models
intend to describe the effect of chemical interactions
between the slag ions and molecules,[9,12,20,21] whereas
semi-empirical correlations use data-driven fitting
techniques, namely, the multiple linear regression or
artificial neural networks, to identify the effect of slag
composition and system properties on the sulfide
capacity.[6–8,10,11,13–20,23–30] The advantage of semi-em-
pirical models compared to theoretical ones is a lower
computational complexity and usually a more sensible
model formulation, thus making them more applicable
as a part of dynamic process models. In the case of
semi-empirical models, probably the most common
variable that is used for capturing the interactions
between the slag composition, system properties, and
sulfide capacity is the optical basicity of the
slag.[7,8,10,11,13] The optical basicity of the slag can be
expressed in such a way that each of the cation
fractions is weighted by the corresponding optical
basicity of the compound[8]:
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K ¼
Xk
i¼1

KiX̂i; ½20�

where X̂i is the cation fraction of the component i in
the slag phase and K is the optical basicity of the slag
phase. The cation fraction of a slag component i is
given as[8]:

X̂i ¼
nXiPk
i¼1 nXi

; ½21�

where n is the number of oxygen atoms in the corre-
sponding component and k is the number of compo-
nents in the slag phase. To identify the cross-interaction
of temperature and chemical composition on the sulfide
capacity of the slag phase, Sosinsky and Sommerville[8]

expanded the concept by combining the data gathered
from multiple sources. In their study, the prediction
model for sulfide capacity of the slag phase is given as[8]

log10CS ¼ 22690� 54640K
T

� �
þ 43:6K� 25:2; ½22�

where CS is the sulfide capacity of the slag phase; K is
the optical basicity of the slag phase; and T is tempera-
ture of the slag. Despite applicability for wide range of
different slag compositions and temperatures, the Sosin-
sky and Sommerville model has often been found to be
ill-suited for predicting the sulfide capacities of Na2O-
SiO2

[10,11,13] and CaO-SiO2-Na2O systems[6] as well as
the sulfide capacity in particular of slag systems in
which CaO content is well above the saturation limit.[8]

Later on, Young et al.[7] introduced a piecewise-defined
quadratic formulation of sulfide capacity with respect to
optical basicity, which is given as[7]

Despite simplifications in the model formulation, the
model given in Young et al.[7] performs reasonably well
in validation with an external data set. A common prob-
lem of the model formulations is that models employing
the concept of optical basicity do not extrapolate well to
slag systems outside the studied composition range. In
fact, there are numerous slag compositions that have
nearly equal optical basicities, but are known to have
unequal sulfide capacities; for instance, there is a large
difference in the sulfide capacities of CaO-SiO2 and
Na2O-SiO2 systems that cannot be explained by differ-
ences in optical basicity.[6] To address this shortcoming,
a thermostatistical model, often referred as the KTH
model has been proposed for a thoroughly molten slag.
The model is based on the assumption that the sulfide
capacity of the slag is defined by equilibrium expression
for the pure liquid FeO and with the experimental
parameter e that is dependent on the composition and
temperature of the slag.[14–17] The ratio of the free

oxygen content and the activity coefficient of the dis-
solved sulfides in the slag is given in the model with a
following relation[17]:

aO2�

fS2�
¼ exp � e

RT

� �
; ½24�

where e is a model parameter that is linearly dependent
on the molar fractions of the slag compounds as well as
on the interactions of cation fractions of slag com-
pounds and temperature of the slag. Thus, the expres-
sion for the parameter can be written as[14]

e ¼
X

Xiei þ emix: ½25�

By assuming that the Ca2+ content has a quadratic
interaction with the sulfide capacity, the parameterized
expression for the e in the case of system under study
would be

e ¼ XCaOeCa2þ þ XNa2OeNaþ þ XSiO2
eSi4þ

þ yCa
2þ
yNaþ b0 þ b1Tð Þ þ yCa

2þ
ySi

4þ
b2 þ b3Tð Þ

þ yNaþySi
4þ

b4 þ b5Tð Þ
þ yCa

2þ
ySi

4þ
yNaþ b6 þ b7Tþ b8y

Ca2þ
� �

: ½26�

The advantage of the approach is that it describes all
the possible cation interactions for the slag compounds
and has been proven fairly accurate.[14–17] However, the
previous studies do not address the CaO-SiO2-Na2O
system, and therefore some of the parameters have not
been previously identified. For this reason, the perfor-
mance of the model is evaluated by making use of the
parameters given in literature[14–17] as well as with the
parameters that are identified based on the sulfide

capacity measurements for Na2O-SiO2 and CaO-SiO2-
Na2O slag systems. The data for the identification are
extracted and combined from References 6, 10, 11, and
31.
The effect of sodium oxide (Na2O) on the rate of

desulfurization via transitory and permanent phase
contact and on the sulfide capacity of the slag has been
reported in several studies.[2–5,10,11,13,30,31] It has been
concluded that the sulfide capacities of Na2O/SiO2-
based slags are higher than those of CaO/SiO2-based
slags[3,5–7] and the rate of desulfurization increases with
the increase of the Na2O content in the slag.[2,3] The
activity of CaO has been found to be increased with the
activity of Na2O in the slag phase,[30,32] which can be
associated to increased dissolved fraction of CaO. As
regards the sulfide capacity of Na2O-SiO2 and
CaO-SiO2-Na2O-systems, several authors suggest that
the Na2O/SiO2 ratio is the strongest predictor vari-
able.[6,13] In the studies of Chan and Fruehan[10,11] and

log10CS ¼
�23:82K2 þ 42:84K� 11710

T � 0:02 � SiO2ð Þ � 0:02 Al2O3ð Þ � 13:913; K<0:8

0:72K2 þ 0:48K� 1697�2587Kð Þ
T þ 0:02 � SiO2ð Þ � 0:0005 Al2O3ð Þ � 0:63; K � 0:8

(
½23�
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Kunisada and Iwai,[13] it was observed that the sulfide
capacity of a binary Na2O-SiO2 slag system in different
temperatures can be expressed with the following
correlations:

log10CS ¼ b1Kþ b0

¼
11:66K� 11:86½10� T ¼ 1423:15K
11:86K� 11:33 11½ � T ¼ 1673:15K
27:00K� 21:20½13� T ¼ 1773:15K

8<
: ; ½27�

where b1 and b0 are experimentally determined regres-
sion coefficients fitted as a function of system tempera-
ture. However, as the experimental results are fitted
for the binary Na2O-SiO2-system, the coefficient
related to the interaction of optical basicity and sulfide
capacity does not include the effect of various basic
compounds, e.g., CaO, on sulfide capacity. To include
the effect of CaO on the sulfur partition ratio for the
CaO-SiO2-Na2O system, van Niekerk and Dippenaar[6]

proposed the following correlation in the CO atmo-
sphere[6]:

log10LS ¼ 1:01
ðNa2OÞ
ðSiO2Þ

� 0:07
CaOð Þ
Na2Oð Þ þ 0:37: ½28�

The problem of the formula of van Niekerk and Dip-
penaar[6] is that it does not include the effect of activ-
ity of oxygen that is well known to explain the
changes in the sulfur partition ratio. A more close
inspection of the model formulation and their data
reveals the existence of a multicollinearity problem in
the formulation, as the coefficient of determination
between the predictor variables is R2 = 0.87.[6] A sum-
mary of the sulfide capacity models with relevant com-
positions in reference to blast furnace-based
steelmaking has been given in Table I.

D. An Artificial Neural Network-Based Approach
for the Prediction of Sulfide Capacity

Artificial neural networks (ANN), or just neural
networks, are a class of computational models that are
inspired by the biological neurons that constitute the
natural brains. The neural networks are applied for
classification, clustering, or regression problems. The
advantage of a neural network-based model is that
besides the measurement data, it does not necessarily
require any external information on the system’s
dynamics,[33–35] although the selection of proper input
variables and the architecture of a network for predict-
ing complex dynamics often requires extensive work.[35]

A neural network usually consists of layers of
connected neurons that are referred to as input, hidden,
and output layers. A single neuron is, depending on the
case, either a linear or non-linear computational unit
that includes a summation term and an activation
function. The number of neurons and connecting
weights in a neural network vary within the complexity
and nature of the problem. The most suitable architec-
ture for a neural network is thus case dependent. As a
rule of thumb, in reference to literature, it is said that a
network, which consists of a single hidden layer with a

sigmoid-type activation function and a linear output
layer, can approximate an arbitrary, but continuous and
twice differentiable function with sufficient accu-
racy.[36,37] The output of a sigmoid-type activation
function is given as

ai ¼
1

1þ e�zi
; ½29�

where ai is the output of a hidden neuron i and zi is
the input of a hidden neuron i. In the case of a single
hidden layer, the input of a single hidden neuron can
be expressed as a weighted sum of the selected input
variables:

zi ¼
Xn
j¼1

wj;ixj þ b0;i; ½30�

where wj;i is the synaptic weight between the input
variable j and the hidden neuron i; xj is an input vari-
able j; and b0;i is the bias term of a hidden neuron i;
and n is the number of input variables. The output of
the hidden neuron zi is then passed to the output
layer. In the case of a single variable regression prob-
lem, the output layer consists of a single output neu-
ron. In this study, the output neuron constitutes of a
linear unit. This being so, the output of the neural net
is given by

ŷ ¼
Xk
i¼1

wizi þ b0;kþ1; ½31�

where k is the number of hidden neurons and b0;kþ1 is
the bias of the output neuron. The aforementioned
formulation can be intuitively interpreted as a two-step
regression model, in which the output of the network
corresponds to a multivariable linear regression
between a non-linear mapping of the input variable
and the output variable.
The procedure, in which the synaptic weights con-

necting the neurons with each other are solved, is
referred to as training.[38] When applying a neural
network for regression, a more specific term for the
procedure would be supervised training. In supervised
training, the synaptic weights of the neural network are
identified such that the outputs of the network corre-
spond to the training samples, ergo by minimizing the
sum of the prediction residuals. A mathematical expres-
sion for this is given as[38]

SSE ¼ min
Xn
i¼1

yi � ŷið Þ2; ½32�

where yi is a training sample; ŷi is the neural network
output; and n is the number of training samples. The
minimization of the objective function can be
carried out with a suitable optimization algorithm,
which can be roughly divided in gradient-based meth-
ods,[38] derivative-free methods,[39] and to hybrid
approaches.[40] A well-known problem in the training
of a neural network with a gradient-based method is
the tendency for the algorithm to get stuck in the local
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optima.[38] This is rather usual in the case of real-life
data fitting problems, especially when the training data
set consists of noise and collinearities, which results in
a non-smooth function space and multimodality. To
tackle this, a variety of methods have been suggested.
An interesting approach is to apply evolutionary
search methods in the identification of the neural net-
work synaptic weights.[40] A major advantage of an
evolutionary search method compared to gradi-
ent-based methods is that the algorithm explores a
large search space, while gradient-based methods usu-
ally apply a single initial guess in the calculation.
However, the evolutionary search methods, such as
genetic algorithms tend to converge near the local or
global minima, and not to the exact minima. This par-
ticular problem could be solved by finishing the opti-
mization with a gradient-based method for which the
convergence to the local minima is guaranteed, if the

applied step-size yields a numerically stable conver-
gence. An example of this kind of an approach is
applied successfully in a rainfall forecasting by Asadi
et al.,[40] in which the authors used a real-coded genetic
algorithm to generate an initial guess for the steepest
descent method.[40] In this work, the concept of the
training algorithm is the same, but the initial guess is
generated with a combination of a standard particle
swarm optimization algorithm[41] and a real-coded
genetic algorithm. The proposed algorithm shares
some similarities with the algorithms reported, for
example, in References 42 and 43.
The advantage of the particle swarm optimization is

that the algorithm memorizes the best location in the
population, whereas the genetic algorithm is efficient in
generating new information in the existing popula-
tion.[42] The algorithm can provide a desirable initial
guess for the gradient-based method. The convergence
to a near exact local minimum is ensured by finishing the
training with Levenberg–Marquardt algorithm, which is
described in more detail in Reference 38. The
flowchart of the applied training algorithm is given in
Figure 1. The convergence curve presented in Figure 2 is
calculated based on the identification of a test func-
tion[44] with the neural network that is applied in this
study.
A common problem in training a neural network is

overfitting. To ensure the good generalizability of a
network, the trained network has to be tested on an
external data set. Some common situations where a
network has a high tendency for overfitting is where
there is a sparse distribution of observations or the
applied network architecture is far too complicated. A
too complicated architecture of a neural network
applied to a sparse or simplistic problem is analogous
to a simple multivariable linear regression model, in
which the number of predictor variables is excessively
large, especially when complemented with a small
number of observations.

Fig. 1—PSO-GA+LM algorithm.

Fig. 2—Convergence of the PSO+GA+LM training algorithm to
a minimum of a test function (simplefit.m[44]).
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So far, only a few attempts have been made to predict
the sulfide capacity of a multicomponent slag system
with a neural network. In the studies of Derin et al.[27]

and Ma et al.,[28,29] a neural network was applied to
predict the sulfide capacity of the slag phase based on
the chemical composition, temperature, and partial
pressures of oxygen and sulfur in the system. The study
of Derin et al.[27] showed that a neural network can be
trained using a data set of a multicomponent slag
system. Unfortunately, the absence of validation and
testing of the model, a disproportionately high coeffi-
cient of determination for the training set (R2 	 1) and
the fact that apparently, the training procedure is
repeated for each of the slag systems, and not by
combining the data,[27] imply that the model may be
subject to overfitting. The studies of Ma et al.[28,29]

tested a high variety of prediction models and conducted
a careful cross-validation of the results for each of the
network architectures. Despite the merits of the study,
the authors applied the sulfur content in the slag phase
as well as the partial pressures of the gas phase as the
explanatory variables. This obviates the need of a neural
network for the prediction of sulfide capacity and the
sulfur partition ratio and also could saturate the effect of
slag composition on the sulfide capacity.[28,29]

In this work, an artificial neural network model
(ANN) was constructed as a comparison for the more
traditional approaches for the prediction of sulfide
capacity. The input variables of the ANN are selected
manually with the forward selection procedure by using
multivariable linear regression (MLR) as the model
basis. In forward selection procedure, the algorithm is
initialized with a variable with the highest correlation
with the dependent variable. The selection is continued
until the prediction and generalization ability of the
model does not improve significantly. The model
parameters are identified with the Moore–Penrose
inversion in the case of MLR models. A least-squares
solution for the MLR model parameters is given as[53]

b̂ ¼ ðXTXÞ�1XTy: ½33�

The architecture of the ANN was determined with the
cross-validation procedure, in which the network giv-
ing the most realistic prediction results based on the
training and external validation data sets is selected as
the final model. For the validation of the models, the
Leave-Multiple-Out-cross-validation was applied. In
the validation procedure, the data were split such that
58 pct is used for training and 42 pct for external vali-
dation, which excludes the possibility of chance corre-
lation and overfitting,[54] but also assists to evaluate
the consistency of the selected, which consequently
yields as more stable models.[54,55]

III. EXPERIMENTAL SET-UP

To study the resulfurization phenomenon experimen-
tally, high-temperature metal–slag experiments were
conducted in a chamber furnace. A description of the
experimental apparatus as well as the experimental
design is provided below.

A. Apparatus

A schematic illustration of the experimental appara-
tus is presented in Figure 3. During the experiments, the
temperature of the system was held constant at 1350 �C
(1623 K). At the beginning of each experiment, the hot
metal was heated to a temperature of ~ 1700 �C
(1923 K), to ensure the melting of Fe and thus the
dissolution of graphite in the melt. The maximum
temperature was held for 2 hours, after which the
temperature of the system was decreased to the exper-
imental temperature 1350 �C (1623 K). The initial
sample of the metal phase was taken at time instant
t = 0 minutes. After taking the initial sample, the slag
phase was poured on the hot metal phase through the
sampling hole with the help of a quartz tube. The
sampling of hot metal was conducted every 5 minutes
during the time period of 0 to 20 minutes, and every ten

Fig. 3—A schematic illustration of the applied apparatus.
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minutes during the rest of the experiment, which makes
the total duration of the experiment 90 minutes, which
according to various authors is held to be a sufficient
time to reach the apparent metal–slag equilibrium
state.[2–6,10,11]

The sulfide capacity for each of the slag phases was
determined with the metal–slag equilibrium method.
The compounds used in the preparation of the slag
phase with corresponding chemical purities were CaO
(99.7 wt pct), CaS (97 wt pct), Na2CO3 (99.9 wt pct),
and SiO2 (99.7 wt pct). To ensure the dissolution of
sulfides in the oxide-melt prior to the tests, the slag
phase was pre-treated in a chamber furnace by holding
the system at a temperature of 1400 �C (1673.15 K) for
2 hours. The rate of change of temperature was 600 �C/
h (600 K/h).

B. Experimental Design

The test series were built by varying the composition
of the slag phase. The chemical compositions of the
metal and slag phases are presented in Tables II and III.
The independent variable in the test series is Na2O
content of the slag phase, as the other variables (B2 and
CaS content) are held constant. The main dependent
variable is the apparent rate constant of the resulfur-
ization reaction (ktot) and the sulfur partition ratio (LS)

at the approximated equilibrium state between the slag
and hot metal. The rate constant (ktot) for the 1st-order
resulfurization reaction was determined based on the
mass balance of sulfur in the slag and metal phases. The
mass of sulfur in the slag phase at time instant t can be
given implicitly based on the following mass balance:

ðpct SÞtþh;calc: ¼ ½ðpct SÞtm0;slag � ð½pct S�tþh

� ½pct S�tÞmFe;t�
1

m0;slag
; ½34�

where ½S�tþh is the sulfur content in the metal phase at
time instant t + h; ½S�t is the sulfur content in the
metal phase at the time instant t; m0;slag is the initial
mass of the slag phase; mFe;t is the mass of the hot
metal at time instant t; and h is the sampling fre-
quency. The rate constant is yielded by minimizing the
following objective function:

min
Xtend
t¼0

½ðpctSÞt;calc: � ðpctSÞt;pred:�
2; ½35�

where tend is the end time of a test sequence. The for-
mulated cost-function can be solved analytically with
log-linear transformation or by applying a suitable nu-
merical solution strategy. In this study, the rate con-
stant is solved with gradient descent method.

Table II. Composition of the Metal Phase in the Experiments

Fe (Wt Pct) C (Wt Pct) S (Wt Pct) Si (Wt Pct) Mn (Wt Pct)

95.3 4.5 0.005 0.045 0.172

Table III. Compositions of the Slag Phase in the Experiments

Slag CaO (Wt Pct) Na2O (Wt Pct) SiO2 (Wt Pct) CaS (Wt Pct)

Experiment 1 76.2 0 15.7 7.9
Experiment 2 73.7 3.2 15.2 7.9
Experiment 3 71.2 6.3 14.7 7.9
Experiment 4 67.9 10.1 14.0 7.9

Table IV. Dimensional Analysis of the System

Dimension Hot Metal Ladle Crucible Ratio

Diameter (m) 2.5 4.4 9 10�2 56.1
Height of the Crucible (m) 3.6 5.5 9 10�2 64.9
Metal–Slag Interfacial Area (m2) 4.8 1.5 9 10�3 3151.3
Volume (m3) 17.1 8.4 9 10�5 204,547.5
Weight of the Metal Bath (kg) 80,000 0.45 176,902.0
Density of Hot Metal (kg/m3) 6900 6900 1.0
Volume of Hot Metal (m3) 11.6 6.6 9 10�5 176,902.0
Height of Hot Metal Bath (m) 2.4 4.3 9 10�2 56.1
Weight of Slag (kg) 1200 6.8 9 10�3 176,902.0
Density of Slag (kg/m3) 3000 3000 1.0
Volume of Slag (kg/m3) 0.4 2.3 9 10�6 176,902.0
Height of Slag (m) 0.1 1.5 9 10�3 56.1
Area/Volume Ratio (AM–S/VM) 0.4 23.2 56.1
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To evaluate the industrial relevance of the rate and
extent of resulfurization, the experimental setting has to
fulfill the dimensional homogeneity between the crucible
and the hot metal ladle. The dimensions of the systems
under study are presented in Table IV. The ratio
between the lab- and full-scale systems is 56.1, which
is defined based on AM-S/VM (area–volume ratio). The
dimensional analysis yields that corresponding masses
of hot metal (80,000 kg) and slag (1200 kg) for labora-
tory-scale experiments are 452.2 g and 6.78 g,
respectively.

Although Na2O is a strong desulfurizer, the tendency
for evaporation complicates the system dynamics.
According to the thermodynamic calculations of Task-
inen and Janke,[49] it is evident that in the presence of
hot metal saturated with carbon, the stable form of
Na2CO3 is Na in a gaseous form.[49] However, as
suggested by Kim et al.,[50] in the presence of SiO2,
Na2CO3 is thermodynamically favored to decompose
into Na2SiO3 and only a small fraction of initial
Na2CO3 is decomposed into Na-gas if no carbon is
available for the reaction, which is consistent with the
results of Pak et al.[32] In addition to this, as the rate of
evaporation is controlled by either the rate of mass
transfer or chemical reaction, the effect Na2O-loss on
the sulfide capacity is rather small, but assumedly not
negligible.[2,3,51,52]

The evaporation rate of Na2O from the slag in the
presence of carbon was studied by Li et al.[51] in
temperatures between 1300 �C (1573.15 K) and
1500 �C (1773.15 K). The authors suggest that the
rate-limiting step for decomposition is the rate of
chemical reaction at the interface or the rate of mass
transfer of carbon to the interface. The authors
proposed that the evaporation reaction follows the
first-order reaction kinetic and determined the
activation energy of the chemical reaction controlled
step to be approximately 150 kJ/mol.[51] Based on the
extrapolation of their results, the apparent rate constant
for the chemical reaction controlled step in 1350 �C
(1623.15 K) is k(1623.15 K) = 0.41 9 10�5 1/s. Tong
et al.[52] defined the apparent rate constant in the
temperature range between 1500 �C (1773.15 K) and
1560 �C (1833.15 K) to be k (1833.15 K)= 4.02 9
10�4 1/s.[52] However, the authors did not give a
quantitative measure for the rate constant at 1350 �C
(1623.15 K). Based on the assumption that the temper-
ature dependency of the rate of reaction follows
Arrhenius’ kinetics, the extrapolation of their test results

to the test temperature yields k (1623.15 K) = 0.5 9
10�5 1/s, which is in fair agreement with the rate
constant extrapolated from the results of Li et al.[51]

IV. RESULTS AND DISCUSSION

A. Rate of Resulfurization

The rate constant for mass transfer-controlled resul-
furization was calculated based on the experimental
results for each of the test series. The evolution of the
sulfur content in the metal phase is presented in
Figure 4. The evolution of sulfur in the metal phase
appears to follow 1st-order kinetics, and the reaction
seems to reach the equilibrium state relatively fast,
which is in agreement with the results given in Liu
et al.[5] It can also be interpreted from the figure that
both the rate and extent of resulfurization are inversely
proportional to the Na2O content of the slag. For this
reason, it is evident that the rate and extent of
resulfurization can be regulated by adding alkaline flux
on the slag. These results are in qualitative agreement
regarding sulfide capacity with the results of Chan and
Fruehan[10,11] and van Niekerk and Dippenaar.[6]

The calculated time constant and apparent rate
constants for the resulfurization of hot metal are
presented in Table V. It is seen that the apparent rate
constants are in fair agreement with the values presented

Fig. 4—The calculated evolution of sulfur in the metal phase as a
function of time during the experiments.

Table V. Calculated Apparent Rate Constants Based on the Experimental Results Compared to the Corresponding Values

Provided in Ref. [5]

Series ktot (1/s) k’ (m/s) k’A (m3/s) k’A (cm3/s) k’A (cm3/s)[5] k’ (m/s)[5]

1 0.0045 2.0 9 10�4 3.0 9 10�7 0.30 0.07 2.0 9 10�5

2 0.0044 1.9 9 10�4 2.9 9 10�7 0.29
3 0.0033 1.4 9 10�4 2.2 9 10�7 0.22
4 0.0022 9.5 9 10�5 1.4 9 10�7 0.14

1800—VOLUME 50B, AUGUST 2019 METALLURGICAL AND MATERIALS TRANSACTIONS B



by Liu et al.,[5] as there are significant differences in the
properties of both slag and metal phases and in the
temperature of the system.[5] It is seen from the values of
the apparent rate constant that the Na2O content in the
slag phase not only decreases the magnitude of the
thermodynamic driving force, but also assumedly affects
the rate of mass transfer in the metal–slag interface due
to the fact that Na2O acts as a strong flux. However, the
difference between the test series 1 and 2 is practically
negligible with respect to the rate of mass transfer, but
remarkable when concerning the overall rate and extent
of resulfurization.

In Figure 5, the effect of Na2O content on the average
sulfur partition ratio is presented. The graph shows that
a higher Na2O content in the slag phase results in a
higher sulfur partition ratio, which is in accordance with
References 2 through 4, 6, 10, 11, and 31. This being so,
it is evident that the magnitude of the thermodynamic
driving force can be decreased by adding an alkaline
compound in the xCaOÆySiO2-based slag, and by that
the rate of resulfurization can be regulated. Although it
should be noted that as the Na2O content in the slag
phase decreases as a function of time due to evapora-
tion, the final sulfur partition ratio approaches the value
corresponding to equilibrium content of Na2O in the
slag phase. The mechanism behind the rate of resulfu-
rization is discussed in more detail in the next section.

B. Mechanism of Resulfurization

To support the findings of the kinetic experiments,
some thermodynamic calculations were conducted with
FactSage ver. 7.2. Based on the calculations, it is evident
that CaO and CaS dissolve in the liquid xNa2OÆySiO2.
The distribution of sulfur between different sulfides
during the thermal pre-treatment of the slag phase was
evaluated with thermodynamic calculations. Figure 6
presents the effect of Na2O content on the distribution
of sulfur between the different phases in molten slag, as
well as the liquid phase fraction in equilibrium state in

the conditions of thermal pre-treatment. It is seen that
some of the sulfur that is originally bound to Ca2+ is
transformed into Na2S during the thermal treatment in
the chamber furnace. It is worth noticing that a
relatively large amount of sulfur is thermodynamically
favored to be bound by Si4+ to form SiS2, which could
be related to the strong desulfurizing ability of the
sodium-silicate phases.
Liu et al.[5] observed that the rate and extent of

resulfurization increased with the liquid phase fraction.
The results of van Niekerk and Dippenaar[6] indicate
that the increased liquid phase portion of the slag phase
is not realized as an increased sulfur partition ratio, if
the flux is a fluoride-based compound (CaF2).

[6] How-
ever, Liu et al.[5] did not consider the fact that the
studied fluxes (FeO and CaF2) both decrease the sulfide
capacity according to van Nieker and Dippenaar[6] and
Schenck et al.[2] Thus, the rate of resulfurization
increases due to the increase in thermodynamic driving

Fig. 5—The average sulfur partition ratio at time instant t = 60 min
as a function of the molar fraction of Na2O in the slag phase.

Fig. 6—Equilibrium composition of the slag phase at 1400 �C
(1673.15 K) and ptot = 1 atm as a function of molar fraction of
Na2O in the molten slag phase.

Fig. 7—Slag phase after the thermal pre-treatment, and SEM image
of the corresponding slag phase.
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force, which assumedly has a greater effect on the molar
flux of sulfur through the metal–slag interface than the
mass transfer coefficient does. By that, it is evident that
the increase in the liquid phase fraction could regulate
the net rate of resulfurization, but only in the case of
fluxes with high sulfide capacities. Nevertheless, it can be
stated that the sulfide capacity is a more dominant
variable than, for example, viscosity or interfacial
tension, both of which are related to the physical
properties of the slag phase, when concerning the overall
molar flux through the metal–slag interface.

The slag samples were analyzed using field emission
scanning electron microscope (FESEM) to provide
additional information on their morphology. Figure 7
shows a FESEM image of the slag phase that is taken
from the polished microsection of thermally pre-treated
slag. The chemical analysis of the spectrums supports
the thermodynamic calculations; for example, the spec-
trums 3 (Na = 13.7 wt pct, Ca = 18.1 wt pct, S =
39.8 wt pct) and 8 (Na = 16.8 wt pct, Ca =
17.2 wt pct, S = 38.5 wt pct) correspond to a Na-Ca-
S-O-phase which indicates a co-existence of Na2S
and CaS. A CaO/CaS phase is found from the spec-
trum 2 (Ca = 32.5 wt pct, S = 26.5 wt pct). As the
xNa2OÆySiO2 phases solidify as glassy phases, their
existence is not observable with FESEM. The observa-
tion of the morphology of the slag reveals that the
system contains a high amount of non-dissolved CaO
(CaO/SiO2 = B2 = 5.1). It is obvious that in high
temperatures such a high CaO/SiO2 ratio would result in
an increased sulfur partition ratio, but as the system
operates at 1350 �C (1523 K), the high CaO content
does not lead to an corresponding increase in sulfide
capacity, as the contact area between two solid phases is
small. The low contact area would also regulate the rate
of resulfurization and desulfurization reactions between
the solid slag and hot metal. Based on this, it can be said
that as the parameters of the existing models are
identified for the thoroughly molten slag, they assum-
edly do not describe the changes in the sulfide capacity
with sufficient accuracy, especially in a situation where
the CaO content is well above the saturation limit.

It is seen that the slag phase has melted during the
pre-treatment, which indicates the fluxing effect of
Na2O. A more careful investigation of the slag phase
with FESEM shows that the CaS has been dissolved in
the Na2O-Na2CO3 melt, and formed a mixed
Ca-Na-O-S phase. The formation of the aforementioned
phase is supported by the thermodynamic calculations,
which indicate the co-existence of Na2S and CaS in the
slag phase. Thus, it is evident that Na+ has a high
affinity for sulfur, which is consistent with various
authors.[2–4,6,10,11,13,30,32]

The differences in the rate of mass transfer between
the varying flux contents can be explained with the
morphology of the slag. The increase in the liquid
phase fraction gives the slag a more homogeneous form
due to the increased fraction of dissolved sulfides and
oxides. A more accurate inspection of individual
samples in the case of test series 1 (solid slag) reveals
that the resulfurization could take place between
individual particles, as the rate of resulfurization is

significantly higher than in the case of partially liquid
slag. From a mass transfer point of view, a slag
containing a high amount of non-dissolved CaO-CaS
particles is more similar to a packed bed of particles
than a homogeneous slag layer. Consequently, the
rate-controlling mechanism is dependent on the mor-
phology of the slag.

C. Effect of Sulfide Capacity of the Slag

To evaluate the effect of composition and temperature
on the sulfide capacity of the CaO-SiO2-Na2O system,
the results of this study were combined with the data
given in References 6, 10, 11, and 31, all of which make
use of the metal–slag equilibrium method in the deter-
mination of the sulfide capacity. The combined data
include a total of 100 data points, and cover the
compositional range from Na2O-SiO2 binary systems to
ternary systems that are saturated with CaO and
furthermore to system that contain undissolved CaO
particles. The measurements have been conducted in a
temperature range of 1200 �C and 1400 �C (1473.15 K
and 1673.15 K).
The measured sulfur capacity was predicted using the

proposed ANN as well as with two other modeling
approaches: a simple MLR model and a MLR model
with the quadratic predictor (KTH-type model). It
should be noted that variables for the MLR and ANN
were selected manually with the forward selection
procedure as explained in Section II�C, whereas the
form of the KTH-type model was identified based on the
descriptions given in References 14 through 17. The
resulting model for the sulfide capacity of the slag is
given as

log10 CS;eff: ¼ b0 þ b1 log10 a
H
½O� þ b2

ðNa2OÞ
ðSiO2Þ

þ b3log10 CaOð Þ þ b4
1

T
: ½36�

Inserting the expression of the sulfide capacity to the
definition of the sulfur partition ratio yields the follow-
ing expression:

log10 LS ¼ b0 þ ðb1 � 1Þ log10 aHO½ � þ b2
ðNa2OÞ
SiO2ð Þ

þ b3 log10ðCaOÞ þ b4 � 935

T

� �
� log10 f S½ �

þ 1:375:

½37�

The architecture of the ANN model was kept as parsi-
monious as possible keeping in mind training perfor-
mance and generalizability of the network. Hence, the
resulting network constitutes of five input variables
(XNa2O;XCaO;XSiO2

, 1
T and aH½O�), three hidden neurons

with sigmoidal activation functions and an output neu-
ron with a linear activation function. The training of
the ANN was performed with the algorithm proposed
in Section II�C. To improve the convergence of the
training algorithm, the experimental data were treated
with zero-mean and unit-variance normalizations. The
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measures of the fit for all the model types are given in
Table VI. The cross-validated training result of the
neural network is presented in Figure 8. The compara-
tive summary of the predictive power of the selected
models for sulfide capacity as well as the modeling
approaches proposed in this study is presented in
Table VII.

A comparative illustration of the models fitted in this
study is presented in Figure 9. It is seen from the
figure that all the suggested model types are capable of
explaining a large fraction of the total variance in the
sulfur partition ratio. However, it is seen from the
figure and interpretable from the table that the ANN
approach outperforms the other models. This is easily

Table VI. Training and External Validation of the Modeling Approaches

ANN MLR KTH-Type Model*

R2—Training 0.84 0.75 0.78
MAE [for log10 (CS)]—Training 0.15 0.19 0.17
R2—External Validation 0.89 0.68 0.77
MAE [for log10 (CS)]—External Validation 0.12 0.25 0.20

*Fitted to studied data with Moore–Penrose inversion.

Fig. 8—(a) Training and (b) external validation data sets predicted with ANN.

Table VII. Quantitative Measure of Predictive Power of

Existing Sulfide Capacity Models and Their Applicability in

the Prediction of Sulfur Partition Ratios Between Hot Metal
and Na2O-SiO2 and CaO-SiO2-Na2O Slag Systems

Study or Method R2 MAE [for log10 (LS)]

Sosinsky and Sommerville[8] 0.39 1.13
Young et al.[7] 0.29 1.16
Zhang et al.[26] 0.40 0.96
van Niekerk and Dippenaar[6] 0.26 0.50
Chan and Fruehan[10,11] 0.40 0.56
KTH-type Model* 0.81 0.18
KTH-type Model[17]** 0.61 0.29
This Work—MLR* 0.75 0.21
This Work—ANN*** 0.88 0.15

*Fitted to studied data with Moore–Penrose Inversion.
**Calculated with the parameters given in Ref. [17] and with the

parameters identified with GA.
***Trained to studied data with the algorithm proposed in

Section II�C. Fig. 9—Comparison of the sulfide capacity models in the prediction
of the sulfur partition ratio.
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explained with the fundamental differences in the
prediction model types; a non-linear approach explains
better the highly non-linear nature of the effect of slag
composition and system conditions on the sulfide
capacity. From Table VII it can be also seen that the
models fitted for the Na2O-SiO2 binary system[10,11] do
not describe the changes in the sulfide capacity of the
CaO-SiO2-Na2O system, and it is evident that the model
given by van Niekerk and Dippenaar[6] gives reasonable
results only when CaO content is between 30 and 45 wt
pct. When analyzing the modeling results in more detail,
it can be observed that the values predicted with the
models presented by Chan and Fruehan[10,11] are highly
overestimated (MAE = 0.58), whereas the models of
Sosinsky and Somerville[8] and Young et al.[7] underes-
timate the sulfide capacities. The most consistent results
with the modeling approaches presented in this study
are acquired with the KTH-type model. However, as
was presumed from the results of the previous stud-
ies,[14–17] the data set is simply not adequate to reveal all
the interactions that are included in the model. Also it is
evident that the parameters given in literature[17] are not
suitable of predicting the sulfide capacity for high CaO
contents.

In relatively low temperatures and in the case of slags
with high CaO/SiO2 ratios, the slag phase contains a
significant amount of non-dissolved CaO, which does
not take part in desulfurization. Thus, the high CaO
content ratio is not realized as an increased sulfide
capacity because the nominal number of Ca2+-cations is
significantly larger than the number of cations that
actually take part in the reactions. This is also consistent
with the findings of Vargas-Ramirez et al.[30] This

particular matter is also observable from Figure 10,
which shows that the sulfide capacity of a ternary
CaO-SiO2-Na2O slag system is higher than the sulfide
capacity of a binary Na2O-SiO2. However, it is observ-
able that in relatively low temperatures 1350 �C
(1623.15 K), the effect of CaO content is more promi-
nent with contents below a typical saturation limit in the
system, which is B2 	 1 under the given conditions. This
is qualitatively consistent with the results of van Niekerk
and Dippenaar,[6] who proposed a linear dependency
between the sulfur partition ratio and CaO/Na2O ratio.
However, van Niekerk and Dippenaar suggested that
the sulfur partition ratio decreases with the increase in
the CaO/Na2O ratio. However, it is likely that this
conclusion holds only in certain compositional areas,
namely, in the case where Na2O contents in the slag are
low.
The results of Pak et al.[32] imply that the activity of

Na2O is highly dependent on the activity of SiO2.
Especially with high Na2O contents, it is seen that there
is a complex interaction between the sulfide capacity and
the interaction of Na2O and CaO/SiO2. The cross-in-
teraction of Na2O and SiO2 is seen in Figure 10(a);
when the CaO/SiO2 ratio is kept constant and the
fraction of Na2O increases, the SiO2 content and thus
the activity of SiO2 decrease. This being so, according to
the modeling results, the increase in the CaO/SiO2 ratio
results as a logistic increase in the sulfide capacity in the
certain compositional areas an in low temperatures.
From this it can be further deduced that the contribu-
tion of the non-dissolved CaO particles to desulfuriza-
tion are lower than the contribution of dissolved CaO.
This deduction is supported by the ternary phase

Fig. 10—(a) Sulfide capacity as a function of molar fraction of Na2O and CaO/SiO2 ratio of the slag phase predicted with the selected ANN
(T = 1623.15 K and aH½O� = 10�4). (b) Liquidus projection of the CaO-SiO2-Na2O slag system.[56]

1804—VOLUME 50B, AUGUST 2019 METALLURGICAL AND MATERIALS TRANSACTIONS B



diagram that is presented in Figure 10(b). However, the
magnitude of the interaction should be critically eval-
uated due to the interpolation properties of the ANN
and errors related to the experimental setting and to the
feature generation procedure.

D. Kinetic Simulations

To evaluate the industrial relevance, the kinetic
simulations were carried out with the model presented
in Section II. The numerical solution of the differential
equations is conducted with 4th order Runge–Kutta
method, which was originally formulated by Runge.[57]

The flowchart of the calculation procedure is illustrated
in Figure 11.
From the results of the simulations, it is seen that the

metal–slag system reaches an apparent thermodynamic
equilibrium very fast, but the resulfurization reaction
could carry on due to the dynamics of the slag phase.
When comparing the rate curves between 3.2 wt pct and
10.1 wt pct Na2O contents, it is seen that the evapora-
tion of Na2O decreases the sulfide capacity of the slag,
which results in the apparent equilibrium state evolving
dynamically. The dynamics and extent of resulfurization
predicted by the proposed reaction model are illustrated
in Figure 12. It is seen that the model is capable of
predicting the extent of resulfurization with reasonable
accuracy R2 = 0.77 and MAE = 0.0015 wt pct.
If the assumption of the dimensional similarity is

drawn, the evolution of sulfur content in the metal phase
can be evaluated in the case of the industrial scale
process. The simulation results are presented in
Figure 13. It is seen that in the industrial scale, the rate
of mass transfer has a more prominent effect on the net
rate of resulfurization, but the differences between the
series can be explained with the thermodynamic driving
force. When observing the curves, it can be said that the
resulfurization of hot metal is a technically relevant
phenomenon under conditions of this study.

Fig. 11—Flowchart of the resulfurization model.

Fig. 12—Evolution of sulfur content as a function of time in hot metal. (a) XNa2O = 0.03, (b) XNa2O = 0.09.
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It should be noted that assumedly there are some
fundamental differences between the industrial and
laboratory-scale systems. As the slag phase of the
industrial hot metal desulfurization forms during the
injection, the composition of it is highly dependent on
the dynamics of the desulfurization. As the sulfur
content of the individual particles is significantly smaller
at the end of injection, the sulfur content at the
metal–slag interface is not necessarily as high as 3.5 wt
pct. In addition, due to heterogeneous structure of the
slag, the complex morphology of the industrial hot
metal desulfurization slag increases the complexity of
the reaction mechanism. These implications are in
agreement with the findings of Condo.[58]

V. CONCLUSIONS

The main results of this study can be summarized as
follows:

1. Resulfurization of hot metal was found to occur
under experimental conditions mimicking those after
hot metal desulfurization using lance injection in a
ladle. It is suggested that this is due to the fact that
the sulfur removal capability of the slag is typically
lower than that of the desulfurization reagent. The
resulfurization reaction is driven by a thermody-
namic driving force created by the difference between
the sulfur content in the bulk and the sulfur content
in equilibrium with the slag.

2. The rate of resulfurization can be regulated by
increasing the Na2O content in the CaO-SiO2-Na2O
system. The effect of CaO on the sulfide capacity was
found to be much higher in contents well below or
near the saturation limit, which implies that the
undissolved particles provide only a limited contri-
bution to desulfurization.

3. The morphology of the slag phase determines the
rate-controlling step. However, in these concentra-

tion areas, the thermodynamic driving force has a
more prominent effect on the net rate than the rate of
mass transfer, when the emulsification of small CaS
particles in the metal phase has not been taken into
account. When increasing the liquid phase fraction of
the slag, the rate of resulfurization could decrease due
to increased dissolution of sulfides in the slag phase.

4. The optical basicity of the slag does not seem to be a
suitable predictor in predicting the sulfide capacity
CaO-SiO2-Na2O slag system, especially in low tem-
peratures where the solubility of CaO is low. This
could be associated with complex non-linear inter-
actions of the system under study. Especially, as the
composition and morphology of the slag is deter-
mined by the injection scheme. The neural network
model for sulfide capacity would be beneficial to ex-
tend in systems with higher-order systems, and thus
could be applied in the prediction of other processes
as well.
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NOMENCLATURE

A Area (m2)
bi Regression coefficient for a variable i (-)
CS Sulfide capacity determined from gas–slag

equilibrium (-)
C0

S Sulfide capacity determined from metal–slag
equilibrium (-)

D Diffusion coefficient (m2/s)
f Henrian activity coefficient (-)
K Equilibrium constant (-)
ktot Rate constant of the permanent contact

reaction (1/s)
LS Sulfur distribution coefficient (-)

Fig. 13—The calculated evolution of sulfur in the metal phase as a
function of time with the industrial scale dimensions presented in
Table IV.
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m Mass of a phase (kg)
R Universal gas constant (8.3145 J/(KÆmol))
R2 Coefficient of determination (-)
T Temperature (K)
t Time (s)
tmax Experimental time (s)
V Volume (m3)
xi Molar fraction of a compound i (-)

X̂i Cation fraction of a compound i (-)
X Data–matrix (-)
y Output variable (-)
ŷ Predicted output variable (-)
w Mass fraction (-)
b Mass transfer coefficient (m/s)
d Length of the diffusion boundary layer (m)
q* Density ratio between slag and metal (kg/m3)
K Optical basicity (-)
c Raoultian activity coefficient (-)
[ ] Species dissolved in hot metal (-)
() Species in slag phase (-)
{ } Species in gas phase (-)
h i Solid species (-)
ANN Artificial neural network (-)
MLR Multivariable linear regression
MAE Mean absolute error of prediction (-)
SSE Sum of squared errors (-)
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