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Early, yet still often-cited, mathematical models for electromagnetic stirring (EMS) in
continuous casting are re-examined and found to contain a surprising anomaly: the solutions
obtained were not unique. Analysis for the case of a round billet under rotary EMS shows how
to avoid this behavior, whilst still making use of the experimental data that motivated the
original models. The relevance of this result for current-day modeling of EMS is highlighted,
particularly in the context of modulated EMS.
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I. INTRODUCTION

ELECTROMAGNETIC stirring (EMS) has been
used in the continuous casting of steel[1] since as early
as the 1970s as a way to control solidification structures,
thereby increasing yield and productivity. In tandem,
mathematical modeling has played an important role in
the implementation of EMS, as regards providing
understanding of exactly what effect stirring has.

A cornerstone of the modeling literature in this area is
a sequence of papers by Schwerdtfeger and co-work-
ers[2–7] which explore, both experimentally and theoret-
ically, the effect of stirring in the round billet,
rectangular bloom, and slab geometries that are char-
acteristic for the continuous casting of steel. The models
in question consist of the Navier–Stokes equations for
the velocity field of the molten metal and Maxwell’s
equations for the induced magnetic flux density; in
principle, these are two-way coupled, since the alternat-
ing magnetic field gives rise to a Lorentz force which
drives the velocity field, which can in turn affect the
magnetic field. Moreover, the frequency of the magnetic
field is typically great enough to allow the use of the time
average of the Lorentz force as input to the Navier–
Stokes equations.

In calculating the induced magnetic field, an assump-
tion is necessary as regards the applied oscillating field
surrounding the domain of interest, typically the steel
strand. To obtain adequate data for this, it may in
practice mean using a Hall probe magnetometer to make
measurements of the magnetic field at a point or points

in the space between the outer surface of the steel strand
and the periodic winding of the inductor on an iron
comb,[2,3,7] or a Gauss meter[8,9]; indeed, measurements
acquired in the former way were used as the basis for
prescribing the normal component of the magnetic flux
density at the surface of the strand. However, some time
later, and in a mathematically related problem, McKee
et al.[10] prescribed the tangential component in their
model for particle tracking within a turbulent cylindrical
electromagnetically driven steel melt. Consequently,
there appears to be some uncertainty as to what should
be the correct boundary condition in this situation:
indeed, McKee et al.[10] followed Moffatt[11] in initially
assuming that both the normal and tangential compo-
nents of the magnetic flux density are required as
boundary conditions, only to ultimately just use the
latter. Moreover, the fact that the expressions for the
components of the Lorentz force for round billets[2,7]

and for rectangular strands[3] have been cited and used
on numerous occasions since, even up to the present
day,[9,12–19] suggests that a resolution of the issue is
timely.
Here, we focus on the analytically simpler case of the

round billet. In particular, we demonstrate that pre-
scribing the normal component of the magnetic flux
density at the boundary leads to a solution that is not
unique; however, prescribing the tangential component
leads to a solution that is unique. It is also found that
the expressions for the spatial distributions of the
time-averaged radial and cylindrical components of the
Lorentz force obtained via the two routes turn out to be
the same as each other, to within a multiplicative factor
that depends on a single dimensionless parameter,
although only when the magnetic Reynolds number is
small. Otherwise, it is possible to reconcile only the
tangential and normal components at the boundary
from the two routes, although this time via a multi-
plicative factor that depends on two dimensionless
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parameters, one of which is the magnetic Reynolds
number; this factor can only be computed numerically
by solving the full model equations. Lastly, remedies are
suggested for avoiding the problems mentioned above,
as is the significance of these results for further work.

II. MODEL EQUATIONS

A. Governing Equations and Boundary Conditions

We consider, as shown in Figure 1, a rotary EMS
stirrer operating with an electric current having angular
velocity x; related to the frequency of the coil current f
by f ¼ x=2p; acting on a melt region of radius rb; a
horizontal cross-section of Figure 1 is shown in
Figure 2.

The continuity equation for the region in 0<r<rb is
given in cylindrical (r; h; z) coordinates by
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where vr; vh; and vz denote the r-, h-, and z-compo-
nents of velocity, respectively. The conservation of
momentum for 0<r<rb is given by
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where q is the density of the melt and p is the pres-
sure. Also, in Eqs. [2] through [4], srr; shh; szz; srz;
szr; shr; srh; shz; and szh denote the components of the
stress tensor and are given, respectively, by
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with l being the dynamic viscosity and lT, the turbu-
lent viscosity. Furthermore, in Eqs. [2] through [4],
�Fr; �Fh; and �Fz denote the time-averaged components of
the Lorentz force, which we write as Fr;Fh; and Fz

and which are given by

Fr ¼ JhBz�JzBh; Fh ¼ JzBr�JrBz; Fz ¼ JrBh�JhBr;

respectively, where Jr;Jh;Jzð Þ is the electrical current
density vector, J, and Br;Bh;Bzð Þ is the magnetic flux
density vector, B; moreover, Fr;Fh; and Fz are related
to �Fr; �Fh; and �Fz by
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1
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where the integrals are taken with respect to time over
one oscillation period, 2p=x: At this point, it may
appear that �Fr; �Fh; and �Fz should all be functions of
r;h; and z, but, as a consequence of the boundary
conditions to be specified later, they will only be func-
tions of r.

Fig. 1—Schematic of the arrangement of an inductor around a cir-
cular steel strand for inducing rotating fields.
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To determine J and B; we must solve Maxwell’s
equations in the magnetohydrodynamic (MHD)
approximation, which consist of the following:

� the magnetic field constraint,

r � B ¼ 0; ½11�
� Ampere’s law,

J ¼ r�H; ½12�

where H is the magnetic field strength, which is related
to B by B ¼ gH, where g is the magnetic permeability;
� Faraday’s law,

r� E ¼ � @B

@t
; ½13�

where t is the time and E is the electric field;
� Ohm’s law,

J ¼ r Eþ v� Bð Þ; ½14�

where r is the metal electrical conductivity, which we
take to be constant, and v is the velocity vector,
vr; vh; vzð Þ:
Manipulating [12] through [14], we arrive at
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whence, on using Eqs. [1] and [11], we obtain
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note, however, that this must still be solved together
with Eq. [11].

The above may be simplified in a self-consistent way
by taking vr � 0; vz � 0; vh ¼ vh rð Þ; p ¼ p rð Þ; Bz ¼ 0; and

@=@z ¼ 0 in Eqs. [1] through [4], [11], and [16]. We find
that [1] and [4] are satisfied automatically, whereas [2]
and [3] become
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Equation [18] is the same as that given by Tacke and

Schwerdtfeger,[7] which can be solved first for vh; after
which [17] it can be solved for p. Also, Br and Bh satisfy
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The boundary conditions for vh are then just

vh ¼ 0 at r ¼ rb; ½23�

vh ¼ 0 at r ¼ 0; ½24�

Also, the only boundary condition prescribed on the
magnetic field quantities is that for Br at the edge of
the melt,[2,7]

Br ¼ B0 cos xt� nhð Þ at r ¼ rb; ½25�

where n is the number of poles. In addition, however,
we require

Br finite at r ¼ 0: ½26�

Note that no conditions are set for Bh:

III. NONDIMENSIONALIZATION

It is ultimately more instructive to nondimensionalize
the equations, and we do this throughFig. 2—Horizontal cross-section of the geometry in Fig. 1.
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where V is a velocity scale that has to be determined.
Equations [17] and [18] become
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where Ha;Re; and Rem denote the Hartmann, Rey-
nolds, and magnetic Reynolds numbers, respectively,
and are given by
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for completeness, we show in the Appendix how V can
be determined. On the other hand, Eqs. [20] through
[22] become
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where X ¼ frgr2b: Note here that the related quantity

xrgr2b was defined by Tacke and Schwerdtfeger[7] as
the magnetic Reynolds number Rem, but that the latter
is generally defined as in Eq. [30].[10,11] We note also
that, although magnetohydrodynamic flows are in gen-
eral characterized by Ha and Re; and in particular by

the combination Ha2=Re; Re plays a secondary role in
this particular configuration and serves only to adjust
the radial pressure gradient after Vh has already been
determined.

Boundary conditions [23] through [26] are now

Vh ¼ 0 at R ¼ 1; ½34�

Vh ¼ 0 at R ¼ 0; ½35�

BR ¼ cos 2ps� nhð Þ at R ¼ 1; ½36�

BR finite at R ¼ 0; ½37�

respectively.

IV. ANALYSIS

A. Earlier Solution[2,7]

We first consider what happens when Rem � 1; so
that, on using [31], Eq. [32] can be rewritten as
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The second condition is necessary; otherwise, BR will
not be finite at R ¼ 0:

Thence, solving Eq. [40], subject to [41] and [42], gives
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where Jn Rð Þ is a Bessel function of the first kind, satis-
fying
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B. Anomaly
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Bh ¼ �Re ei 2ps�nhð Þ da
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where / is a function of R and s; which was omitted
entirely in earlier work[2,7]; hence, since
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using Eqs. [39] and [46] to simplify the resulting
expression, we have
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A further point omitted in earlier work[2,7] was
whether [46], even without / R; sð Þ; would satisfy [33].
Substituting [39] and [46] into [33], we obtain
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Thus, if / ¼ 0; [33] would be satisfied as a conse-
quence of [40]; otherwise, we are left with
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and there appears to be no more information available
to determine /:
To gain further insight, consider a formulation in

terms of a magnetic vector potential, A ¼ 0; 0;Að Þ: To
cut down on the algebra, we revert briefly to Cartesian
(X, Y) coordinates, so that BX;BY; 0ð Þ ¼ curlA and
A ¼ A X;Yð Þ with

X ¼ R cos h; Y ¼ R sin h; ½58�

however, for later use, we note that
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The nondimensionalized versions of the X- and
Y-components of Eq. [16] give, in the small Rem
limit,
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leading, on integrating with respect to Y and X,
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where c1 and c2 are functions to be determined; how-
ever, since X and Y are independent variables, clearly
c1 and c2 can only be functions of s with c1 ¼ c2 ¼ cð Þ:
We can write A ¼ �Aþ 1

X

R s c t0ð Þdt0; so that [62] and
[63] both give
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Reverting back to (R; h) coordinates, this becomes
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with [36] now being given by
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which can be integrated with respect to h to give
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where A	 sð Þ is a function of s that would need to be
determined. We should also expect that

�A finite at R ¼ 0:

Setting �A ¼ �A1 þ �A2; the original problem for �A is
broken up into two problems, one for �A1 and one for
�A2: The problem for �A1 is given by
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while the problem for �A2 is given by
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It is worth pointing out that the decomposition of a
problem for the function of interest, in this case �A;
into a sequence of simpler subproblems in this way is
an established mathematical procedure; see, for exam-
ple, the book by Carslaw and Jaeger.[20] In the current
context, we can note also that boundary condition [69]
for �A1 can be set without knowing details about �A2:

For the �A1-problem, setting
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we have
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and
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Notice also that �a satisfies the same differential equa-
tion as a, i.e., [40], although the boundary condition
at R ¼ 0 is less constrained. Nevertheless, although Yn;
the Bessel function of the second kind, would also sat-
isfy [40], it is unbounded at R ¼ 0; which is why it was
omitted earlier. Nevertheless, Eq. [75], although less
constraining than [42], does not permit Yn as a viable
solution either, and the solution for �a is in effect the
same as that for a earlier.
However, we are still left with the �A2-problem,

consisting of Eqs. [70] and [71]. Note that even if
c 6¼ 0; BR can still satisfy [40]. Moreover, it is still
possible that �A2 6¼ 0; which will ultimately mean that Bh
is not uniquely determined.

C. New Solution

Now consider what happens if we replace [25] by a
boundary condition on the tangential component of B;
Bh; instead; we can easily demonstrate that there will be
a unique solution for �A and hence for BR and Bh: To see
this, we replace [25] by

Bh ¼ cos 2ps� nhð Þ at R ¼ 1; ½76�

which leads to [66] being replaced by

@ �A

@R
¼ � cos 2ps� nhð Þ at R ¼ 1; ½77�

we will relate this new problem to the original problem
shortly, although it is a natural replacement: if BR

exhibits periodic behavior at R ¼ 1; we would expect
Bh also to have periodic behavior. Note that built into
Eq. [76] is the assumption that the maximum value for
Bh at the edge of the domain is the same as the maxi-
mum value for BR; this is not an unreasonable starting
point, since it corresponds to using the characteristic
value, B0; that has presumably been obtained from an
experiment. Furthermore, from a mathematical point
of view, it is also well established that with [77] as a
boundary condition for [65], there will be a unique
solution for �A, provided that an initial condition for �A
is prescribed; see, for example, the book by Protter
and Weinberger.[21] In the present case, where we seek
periodic solutions for �A; we do not set an initial condi-
tion for �A; but use an ansatz for �A of the type used in
Eq. [72]; although the resulting solution is only unique
up to a constant, this is still enough to give unique
solutions for BR and Bh; since these are obtained by
taking the spatial derivatives of �A:
To demonstrate these ideas more concretely, we set

about solving [65] subject to [77] directly. First of all,
note that if �A is a solution of these equations, then so is
�Aþ C	; where C	 is an arbitrary constant; this is the
constant mentioned in the previous paragraph, and
henceforth we set it to zero, as it does not affect the
analysis. Then, setting

�A ¼ Re aei 2ps�nhð Þ
� �

; ½78�

where once again a ¼ a Rð Þ; Eq. [65] gives
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hold.
The solution for a is now given by

a ¼
Jn R

ffiffiffiffiffiffiffiffiffi
2pX

p
e3pi=4

	 

ffiffiffiffiffiffiffiffiffi
2pX

p
e3pi=4J0n

ffiffiffiffiffiffiffiffiffi
2pX

p
e3pi=4

	 
 ; ½82�

with the prime denoting differentiation with respect to
R, and, having found a, we obtain

Table I. Model Parameters

Parameter Value

B0 0.02 T
f 50 Hz
p 1
rb 0.1 m
g 1.2566 9 10�6 V s A�1 m�1

l 0.006 kg m�1 s�1

q 7200 kg m�3

r 7.14 9 105 A V�1m �1
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Fig. 4—Im að Þ as a function of R: (a) earlier solution[2,7] and (b) new solution.
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Fig. 3—Re að Þ as a function of R : (a) earlier solution[2,7] and (b) new solution.
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BR ¼ � 1

R
Re niaei 2ps�nhð Þ

� �
; Bh ¼ �Re

da

dR
ei 2ps�nhð Þ

� �
:

½83�

This time, it is clear that the solutions for BR and Bh
are unique.

By this stage, it has become evident that using [76] is
certainly sufficient in order to obtain Br and Bh
uniquely. However, it is certainly not a necessary
condition: applying the result from Protter and Wein-
berger,[21] it is evident that a unique solution for �A; and
hence Br and Bh; can be obtained if �A satisfies a
boundary condition of the form

a h; sð Þ �Aþ b h; sð Þ @
�A

@R
¼ d h; sð Þ ½84�

at R ¼ 1; for functions a; b; d: In particular, if a � 0;
this simply reduces to a condition on Bh once again.
However, one motivation for using [76] as an alterna-
tive boundary condition for the problem was that it
permitted instructive analysis that contrasts starkly
with that which results when prescribing a boundary
condition on Br: Secondly, as we see next, it permits
the original solution from earlier work[2,7] to be recov-
ered in a time-averaged sense.

V. RESULTS

It is of interest to compare this new solution with the
one from earlier work,[2,7] although this needs to be done
carefully for the comparison to be meaningful; we have,
after all, replaced one boundary condition with another.
In order to fix ideas, we use input data from earlier
work[7]; this is given in Table I.

First of all, it makes sense to compare a Rð Þ and this is
done in Figures 3 and 4 for Re að Þ and Im að Þ;

respectively, for three different values of X; these values
correspond to f ¼ 10; 30; 50 Hz, which covers the range
considered by Tacke and Schwerdtfeger.[7] Not surpris-
ingly, in view of the differing boundary conditions at
R ¼ 1; the profiles are entirely different.
Noting now that the functional forms of expressions

for �FR and �FH are the same as before, i.e., [53] and [54]
with �FR ¼ �FH ¼ 0, Figures 5 and 6 show �FR and �FH as
the functions of R for the same three values as shown in
Figures 3 and 4. It is readily apparent that the earlier
and new solutions for a lead to profiles for �FR and �FH
that each differ simply by a multiplicative constant;
however, the constant is different for each value of X:
To understand this, we express a 1ð Þ for the new

solution as

a 1ð Þ ¼ Rae
iw; ½85�

where

Ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 a 1ð Þð Þ þ Im2 a 1ð Þð Þ

q
; w ¼ tan�1 Im a 1ð Þð Þ

Re a 1ð Þð Þ

� �
:

½86�

Thence, we find

BRð ÞR¼1¼ nRa cos 2ps� nh� p
2
þ w

� �
; ½87�

which implies that the new solution has a phase shift
of w� p

2 ; as compared to the earlier solution, and that
BRð ÞR¼1 will have a maximum value of nRa; however,
both w and nRa will depend on X; and these depen-
dencies are shown in Figures 7 and 8, respectively.
This means that if the value of B0 in the earlier solu-
tion is replaced by B0=nRa for the new solution, the
two solutions would have identical behavior at R ¼ 1,
save for the shift in w� p=2; however, this shift is
without consequence as regards �FR and �FH; since these
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Fig. 5— �FR as a function of R: (a) earlier solution[2,7] and (b) new solution.
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are calculated as time averages over one period of
oscillation. Thus, a comparison of the profiles in
Figures 5(a) and 6(a) with those in Figures 5(b) and

6(b), divided by nRað Þ2; would yield identical results.

VI. DISCUSSION

Thus, so far, we have found that the expressions for
�FR and �FH are the same as those found in earlier work
when Rem ¼ 0; this might have been expected from the
discussion given after Eq. [77] concerning the identical
spatial and temporal periodicity of BR and Bh; and the
same scaling with the imposed magnetic flux density B0:
In this sense, it might be argued that the original
assumption that / R; sð Þ ¼ 0 was in fact correct; how-
ever, it needs to be remembered that this is not the case
if Rem 6¼ 0; and even if Rem ¼ 0 the actual expressions
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Fig. 7—w as a function of f.
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Fig. 8—nRa as a function of f.
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Fig. 9—k as a function of Rem for different values of X.
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for Br and Bh are different to those in earlier work, as
seen in the differences in a shown in Figures 3 and 4.

Now, if Rem 6¼ 0; the equations for a and Vh will be
coupled, and in the form

0 ¼ 1

R2

d

dR
1þ �lTð ÞR2 dVh

dR
� Vh

R

� �� �

þ Ha2

Rem

� �
Xpn
R

Re að Þ2þIm að Þ2
� �

;

½88�

d2a

dR2
þ 1

R

da

dR
� i 2pX� Remn

Vh

R

� �
þ n2

R2

� �
a ¼ 0: ½89�

This time, we have a coupled nonlinear system of ordi-
nary differential equations, and there is no reason to
expect our modified problem to give the same expres-
sions for �FR and �FH as the original one. This leads to
a wider issue: if it is only Brð Þr¼rb

that can be used as

input data from an experiment, how can these data be
used to obtain a unique solution? Solving [88] and
[89], subject to [34], [35], [80], and [81], would once
again give a 1ð Þ; and thence Ra; with the maximum
value of BRð ÞR¼1 being nRa: However, instead of
replacing the original value of B0 by B0=nRa this time,
we should modify Eq. [80] to give

da

dR
¼ �k at R ¼ 1; ½90�

where k is a real constant to be determined, and iterate
for k until nRa ¼ 1: In general, k will depend on Rem;
as well as X: This is a fairly straightforward numerical
task and we omit the details. Instead, we show in
Figure 9 the obtained values of k as a function of Rem
for the three values of X used earlier. Note that, on
using Figure 8, we find that k ¼ 1=nRa when Rem ¼ 0;
as expected. Furthermore, we see that k takes its great-
est value when Rem ¼ 0 and then decreases, before
starting to increase again at around Rem ¼ 40:

VII. CONCLUSIONS

This paper has revisited some early, yet still often-
cited, mathematical models for electromagnetic stirring
in continuous casting[2–7] and has found that the
solutions obtained originally were not unique. Detailed
analysis for the case of a round billet under rotary EMS
shows how to avoid this behavior, whilst still making
use of the experimental data that motivated the original
models. Moreover, although the current results are for a
round billet, they are of relevance for rectangular
strands, in that they indicate that it is the tangential
component of the magnetic flux density that must be
prescribed at the boundary of the melt region, not the
normal one. The issue seems to be linked to the fact that
it was easier to measure the normal component of the
field experimentally, and that it was therefore used as a
boundary condition in the models[2,3,7]; however, the

theory requires the tangential component for a unique
solution. There are therefore, at least, two remedies:

� to measure the tangential component, if possible;
� to set an unknown tangential component in the model

and iterate on it to find the experimentally obtained
normal component.

For a round billet, we have shown how the second
option can be implemented. However, the simplicity of
this advice depends on the axisymmetric geometry, and
new results will be needed for rectangular billet and
bloom geometries undergoing either rotary EMS or
linear traveling EMS. Nevertheless, it should be noted
that the theorem from Protter and Weinberger[21] that
was used in discussing possible necessary and sufficient
conditions for the round billet case is actually valid for
more general boundaries. Indeed, if [64] holds on a
domain C which is bounded by a curve @C on which �A
satisfies

a s; sð Þ �Aþ b s; sð Þ @
�A

@m
¼ d s; sð Þ; ½91�

where s is the arc length around @C and @=@m is any
directional derivative in an outward direction on @C;
then the solution for �A; and hence BX and BY; will be
unique. Furthermore, if a � 0; then [91] reduces simply
to a condition on the tangential component of the
magnetic field at @C. In addition, if @C is a square or
a rectangle, then it is clear that a billet or bloom
geometry is being considered. At this stage, it is evi-
dent that the analysis is limited to the case of rotary
EMS leading to a planar magnetic field that can be
expressed in terms of a single function �A: Further
work is needed to consider the situation when linear
traveling EMS is used, as is the case for slabs, but also
for blooms and billets; in this case, all three compo-
nents of the magnetic vector potential may be
nonzero.
The results obtained are of significance for a number

of reasons. First, as detailed in the analysis, correct use
of the experimentally measured normal component at
the boundary in the model leads to a phase shift in time,
as compared to the way that this component was
originally used. As we have seen, this difference does not
alter the time-averaged Lorentz force when the magnetic
Reynolds is small enough and only one inductor
frequency is used. However, in modulated EMS,[22–24]

magnetic fields of different frequencies are applied and it
is the intention that the resulting Lorentz force should
have a constant time-averaged and a time-varying
component; in this case, posing the correct boundary
conditions for the magnetic field is vital for obtaining
meaningful results from modeling.
Furthermore, although current-day software pack-

ages are in principle able to couple the fluid dynamics
and electromagnetics and solve numerically for both the
strand and the surrounding core, so that the issue
regarding this boundary condition appears less relevant,
it is nevertheless important if one is seeking to develop
more fundamental models for understanding the effects

408—VOLUME 49B, FEBRUARY 2018 METALLURGICAL AND MATERIALS TRANSACTIONS B



of EMS on the mushy zone, for example dendrite
fragmentation[25,26] and white band formation.[6,27–30] In
this context, having to include a model for the sur-
rounding core in order just to avoid this issue is clearly
an inconvenience.
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APPENDIX

To determine the velocity scale, V, in Eq. [29], we
note first that �lT 
 1; since we expect the turbulent
viscosity to be much greater than the dynamic viscosity.
Moreover, the viscous and stirring forces must balance,
so that

�lT � Ha2

Rem
: ½A:1�

To demonstrate the idea, we take one of the simplest
forms for lT, which comes from adopting the Prandtl
mixing length hypothesis for the turbulent viscosity;
thus, we set

lT ¼ ffiffiffiffiffiffiffiffi
qsrh

p
lm; ½A:2�

where the quantity lm is Nikuradse’s mixing
length,[7,31]

lm ¼ r	 0:14� 0:08
r

r	

� �2

�0:06
r

r	

� �4
� �

½A:3�

with r	 being the radius of the liquid.
Now, [A.1] implies that

�lT �
0:14

ffiffiffiffiffiffiffiffi
qlTV
rb

q
r	

l
¼

0:14
ffiffiffiffiffiffiffiffiffiffi
ql�lTV

rb

q
r	

l
; ½A:4�

from which we extract

�lT � 0:0196qVr	
2

rbl
: ½A:5�

Thence, we need

0:0196qVr	
2

rbl
� B2

0rb
lgV

; ½A:6�

leading to

V � B0rb

0:14q1=2g1=2r	
; ½A:7�

whence

�lT � 0:14q1=2B0r
	

lg1=2
: ½A:8�

Using the data in Table I, and setting r	 ¼ rb; we
obtain V � 1:5 m s�1; whereas �lT � 3:5� 103: The
former is in line with the order of magnitude obtained
by Tacke and Schwerdtfeger,[7] even though a simpler
description has been used for the turbulence; the latter
is in line with the expectation that �lT 
 1:
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