Skip to main content
Log in

Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of sludge intermetallic particles on the mechanical properties of a secondary AlSi9Cu3(Fe) die-casting alloy have been studied. Different alloys have been produced by systematically varying the Fe, Mn, and Cr contents within the composition tolerance limits of the standard EN AC-46000 alloy. The microstructure shows primary α-Al x (Fe,Mn,Cr) y Si z sludge particles, with polyhedral and star-like morphologies, although the presence of primary β-Al5FeSi phase is also observed at the highest Fe:Mn ratio. The volume fraction of primary compounds increases as the Fe, Mn, and Cr contents increase and this can be accurately predicts from the Sludge Factor by a linear relationship. The sludge amount seems to not influence the size and the content of porosity in the die-cast material. Furthermore, the sludge factor is not a reliable parameter to describe the mechanical properties of the die-cast AlSi9Cu3(Fe) alloy, because this value does not consider the mutual interaction between the elements. In the analyzed range of composition, the design of experiment methodology and the analysis of variance have been used in order to develop a semi-empirical model that accurately predicts the mechanical properties of the die-cast AlSi9Cu3(Fe) alloys as function of Fe, Mn, and Cr concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.N. Crepeau: AFS Trans., 1995, vol. 103, pp. 3616-6.

    Google Scholar 

  2. L.F. Mondolfo: Aluminium alloys: structure and properties, Butterworths, London, 1976, p. 897.

    Google Scholar 

  3. S. Seifeddine and I.L. Svensson: Mater. Des., 2010, vol. 31, pp. S6-S12.

    Article  Google Scholar 

  4. S. Seifeddine and I.L. Svensson: Metall. Sci. Technol., 2009, vol. 27, pp. 11-20.

    Google Scholar 

  5. S. Seifeddine, S. Johansson and I.L. Svensson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 385-90.

    Article  Google Scholar 

  6. Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty and S. Valtierra: Mater. Sci. Eng. A, 2008, vol. 490, pp. 36-51.

    Article  Google Scholar 

  7. A.M.A. Mohamed, A.M. Samuel, F.H. Samuel and H.W. Doty: Mater. Design, 2009, vol. 30, pp. 3943-57.

    Article  Google Scholar 

  8. A.M.A. Mohamed, F.H. Samuel, A.M. Samuel and H.W. Doty: Mater. Design, 2009, vol. 30, pp. 4218-29.

    Article  Google Scholar 

  9. S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289-98.

    Article  Google Scholar 

  10. L. Backerud, G. Chai and J. Tamminen: Solidification Characteristics of Aluminum Alloys, vol. 2: Foundry Alloys, Stockholm, AFS-Skanaluminium, 1990, pp. 71–84.

  11. J.A. Taylor, G.B. Schaffer and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1643-50.

    Article  Google Scholar 

  12. C.M. Dinnis, J.A. Taylor and A.K. Dahle: Mater. Sci. Eng. A, 2006, vol. 425, pp. 286-96.

    Article  Google Scholar 

  13. L. Lu and A.K. Dahle: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 819-35.

    Google Scholar 

  14. S. Shankar and D. Apelian: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 465-76.

    Article  Google Scholar 

  15. M.M. Makhlouf and D. Apelian: Work Performed Under DOE Contract No. DEFC07-99ID13716, 2002, pp. 1–46.

  16. G. Gustafsson, T. Thorvaldsson and G.L. Dunlop: Metall. Trans. A, 1986, vol. 17A, pp. 45-52.

    Article  Google Scholar 

  17. P. Ashtari, H. Tezuka and T. Sato: Scripta Mater., 2005, vol. 53, pp. 937-42.

    Article  Google Scholar 

  18. J.Y. Hwang, H.W. Doty and M.J. Kaufman: Mater. Sci. Eng. A, 2008, vol. 488, pp. 496-504.

    Article  Google Scholar 

  19. M. Mahta, M. Emamy, A. Daman, A. Keyvani and J. Campbell: Int. J. Cast. Met. Res., 2005, vol. 18, pp. 73-79.

    Article  Google Scholar 

  20. S. Murali, K.S. Raman and K.S.S. Murthy: Mater. Charact., 1994, vol. 33, pp. 99-112.

    Article  Google Scholar 

  21. S.G. Shabestari, M. Keshavarz and M.M. Hejazi: J. Alloys Compd., 2009, vol. 477, pp. 892-99.

    Article  Google Scholar 

  22. Y.-H. Tan, S.-L. Lee and Y.-L. Lin: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1195-1205.

    Article  Google Scholar 

  23. G. Timelli and F. Bonollo: Mater. Sci. Eng. A, 2010, vol. 528, pp. 273-82.

    Article  Google Scholar 

  24. X. Cao, N. Saunders and J. Campbell: J. Mater. Sci., 2004, vol. 39, pp. 2303-14.

    Article  Google Scholar 

  25. S.G. Shabestari and J.E. Gruzleski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 999-1006.

    Article  Google Scholar 

  26. J. Gobrecht: Giesserei, 1975, vol. 62, pp. 263-6.

    Google Scholar 

  27. J.L. Jorstad: Die Casting Engineer, 1986, pp. 30–36.

  28. X. Cao and J. Campbell: AFS Trans., 2000, vol. 108, pp. 391-400.

    Google Scholar 

  29. H.Y. Kim, S.W. Han and H.M. Lee: Mater. Lett., 2006, vol. 60, pp. 1880-3.

    Article  Google Scholar 

  30. L. Ceschini, I. Boromei, A. Morri, S. Seifeddine and I.L. Svensson: J. Mater. Process. Technol., 2009, vol. 209, pp. 5669-79.

    Article  Google Scholar 

  31. J. Shouxun, Y. Wenchao, G. Feng, W. Douglas and F. Zhongyun: Mater. Sci. Eng. A, 2012, vol. 564, pp. 130–39.

    Google Scholar 

  32. E. Taghaddos, M.M. Hejazi, R. Taghiabadi and S.G. Shabestari: J. Alloys Compd., 2009, vol. 468, pp. 539-45.

    Article  Google Scholar 

  33. R. Dunn: Die Casting Engineer, 1965, pp. 8–30.

  34. P. Beeley: Foundry Technology, 2nd ed., Butterworth-Heinemann, Oxford, UK, 2001.

    Google Scholar 

  35. Standard EN 1706:2010: Aluminium and Aluminium Alloys—Castings—Chemical Composition and Mechanical Properties, 2010, pp. 1–26.

  36. G. Timelli, S. Ferraro, F. Grosselle, F. Bonollo, F. Voltazza and L. Capra: Metall. Ital., 2011, vol. 103, pp. 5-17.

    Google Scholar 

  37. D.C. Montgomery: Design and Analysis of Experiments, 5th ed., John Wiley & Sons, USA, 2012, pp. 170-422.

    Google Scholar 

  38. F. Grosselle, G. Timelli and F. Bonollo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3536-45.

    Article  Google Scholar 

  39. G. Berti, M. Monti and L. Salmaso: Introduzione alla metodologia DOE nella sperimentazione meccanica. Disegno sperimentale e superfici di risposta, 1st ed., Cleup, Padova, 2002, pp. 1–284.

  40. G.F. Vander Voort: Metallography—Principles and Practice, 2nd ed., ASM international, Materials Park, OH, 1999, p. 614.

  41. M. Warmuzek, W. Ratuszek and G. Sęk-Sas: Mater. Charact., 2005, vol. 54, pp. 31-40.

    Article  Google Scholar 

  42. H.I. Laukli, C.M. Gourlay, A.K. Dahle and O. Lohne: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 92-7.

    Article  Google Scholar 

  43. C.M. Gourlay, H.I. Laukli and A.K. Dahle: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1833-44.

    Article  Google Scholar 

  44. S. Otarawanna, C.M. Gourlay, H.I. Laukli and A.K. Dahle: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1645-59.

    Article  Google Scholar 

  45. G. Timelli, S. Ferraro and A. Fabrizi: Int. J. Cast. Met. Res., 2013, vol. 26, pp. 239-46.

    Article  Google Scholar 

  46. R.I. Mackay and J.E. Gruzleski: Int. J. Cast. Met. Res., 1997, vol. 10, pp. 131-45.

    Google Scholar 

  47. A. Fabrizi, S. Ferraro and G. Timelli: Mater. Charact., 2013, vol. 85, pp. 13-25.

    Article  Google Scholar 

  48. G. Timelli and F. Bonollo: Metall. Sci. Technol., 2008, vol. 26, pp. 2-8.

    Google Scholar 

  49. J. Campbell: Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 1st ed., Elsevier Butterworth-Heinemann, U.K., 2011, pp. 130-2.

    Google Scholar 

Download references

Acknowledgements

This work was developed with the financial support of Raffineria Metalli Capra SpA (Brescia, Italy). The authors would like to acknowledge the skillful contribution of Toolcast Snc (Brugine, Italy) for high-pressure die casting of the tensile test specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Timelli.

Additional information

Manuscript submitted March 2, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, S., Timelli, G. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys. Metall Mater Trans B 46, 1022–1034 (2015). https://doi.org/10.1007/s11663-014-0260-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0260-3

Keywords

Navigation