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In this article, the thermal history and cooling rate experienced by gas-atomized Al-based
amorphous powders were studied via numerical simulations. Modeling simulations were based
on the assumption of Newtonian cooling with forced convection, as well as an energy balance,
which involves gas dynamics, droplet dynamics, and heat transfer between gas and droplet. To
render the problem tractable, phase transformations, crystal nucleation, and growth were not
taken into account in the analysis of the solidification of Al droplets; instead, an energy balance
approach was formulated and used. The numerical results and associated analysis were used to
optimize processing parameters during gas atomization of Al-based amorphous powder. The
results showed that the cooling rate of droplets increases with decreasing powder size and can
reach in excess of 105 K/s for powder <20 lm in diameter. Gas composition has a more sig-
nificant influence on cooling rate than gas pressure, and 100 pct He has the highest cooling
effect. The results also showed that the cooling rate increases with increasing melt superheat
temperature.
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I. INTRODUCTION

THE unusual combination of engineering properties
and potential critical structural and functional applica-
tions of metallic glasses (MGs) have attracted the
interest of the scientific community. However, one of
the biggest stumbling blocks of making the best use of
MGs is their limited glass-forming ability (GFA), size,
and cost, which represent challenges that are far from
being adequately solved.[1,2] These factors have limited
widespread adoption of MGs as structural materials in
structural applications. Moreover, the high cooling rate
that is required for the formation of MGs, the cost, and
the limited available size have hindered the development
of industrial processes for mass production of these
unique materials.

High-strength and lightweight, cost-effective Al-based
alloys are of interest in weight-critical applications.
Accordingly, Al-based MGs, with their amorphous
microstructure, exhibit unique combinations of mechan-
ical properties, e.g., strength, toughness, and corrosion
resistance.[1,3,4] As a result of their low cost relative
to that of conventional MGs with multicomponent
chemistries, such as Zr-, La- and Pd-based MGs, and
because of their potential use in various applications,
Al-based MGs, such as Al90Gd7Ni2Fe1, were selected as
the target materials to be investigated in the present

study. One remarkable characteristic of most of this
class of MGs is that the alloys contain>85 at pct of the
base component Al.
MGs can be developed by cooling the melt fast

enough to prevent detectable crystallization. The ther-
modynamic and kinetics of MG formation are related
to controlling crystal nucleation and growth.[5] For
Al-based MG formation, the required cooling rate is
generally around 105 K/s,[1,4] and the possible rapid
solidification processes to attain the required cooling
rate include splat quenching,[6] twin-roller quenching,[7]

melt spinning,[8] and gas atomization (GA).[9] Melt
spinning and GA are most commonly used currently,[1]

and melt spinning is popular for preparing specimens
for scientific research because of easy process control.
However, melt spinning is unlikely to evolve into a
commercial process for large-scale engineering applica-
tions.[10] GA remains as an attractive approach and
represents a promising route because it is suitable for
large volume production.[1,11,12] Although the product
of gas atomization is in powder form and is small in
size, the amorphous powder can be further processed
through various powder metallurgical techniques into
engineering MG components.[12–15]

The thermal history experienced by atomized powder
is one of the key factors that affect the initial formation
and eventual retention of the amorphous phase. To
maximize cooling rate, and thereby maximize the extent
of amorphous fraction in atomized powders, controlla-
ble processing parameters that affect the cooling rate
and the solidification process of atomized droplets
require careful selection and control, particularly, if
optimized GA is the goal. In addition, to understand
the development of microstructure and properties in
Al-based amorphous alloys, knowledge of the thermal
history and cooling rate is required.
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During GA processing, powder experiences rapid
solidification, which occurs under nonequilibrium con-
ditions and is completed in a few milliseconds,[9] whereas
the heat is extracted at high rates from the liquid mass
via the smallest dimension. Recording temperature
variations over such a short time and small scale is
difficult. In particular, it is not possible to measure
directly the temperatures and cooling rates of droplets
during their residence in a high-velocity gas during GA.
Accordingly, it is customary to estimate the cooling rate
by numerical calculation of the droplet thermal histories
during GA.

Numerical simulation is a powerful tool for solving
these types of problems. The modeling results can be
used to provide fundamental insight in support of the
optimization of GA processing parameters. Inspection
of the technical literature reveals some excellent research
on numerical simulation of GA[16–19] and spray forming
(SF),[20–22] which were principally concerned with rele-
vant recalescence, crystal nucleation, and growth phe-
nomena of conventional crystal alloys during GA or SF.
A review of the scientific literature reveals that published
numerical studies on the thermal behavior and process
optimization of GA for metallic amorphous powders are
essentially nonexistent. The fact that MGs generally
have a higher melt viscosity than that of conventional
alloys, and there is no obvious phase transformation, as
well as no crystal nucleation and growth occurring
during droplet solidification, suggest that such a study
would be useful.

The primary technological goal of the work described
herein is to provide insight into the thermal behavior of
atomized Al MGs and to use this fundamental insight to
optimize the processing parameters. This goal will be
accomplished via a combination of numerical (part I of
this study) and experimental (part II) studies. The
scientific objective is to establish a fundamental under-
standing of the relationship between processing, thermal
behavior, and microstructure evolution of amorphous
Al powder during GA.

In this article, the thermal history and cooling rate
experienced by gas-atomized Al-based amorphous
powder were calculated based on the assumption of
Newtonian cooling with forced convection. The ratio-
nale for the assumptions used was rationalized in light
of available experimental data. The effects of processing
parameters, such as gas composition, gas pressure, melt
superheat temperature, and gas/melt flow ratios, on the
thermal history and cooling rate were numerical simu-
lated and analyzed. The complexities of the system
studied required several simplifying assumptions as well
as the use of empirical equations that will undoubtedly
lead to discrepancies between theory and experimenta-
tion. Accordingly, experimental validation was deemed
necessary and is reported in part II[23] of this study.

II. NUMERICAL FORMULATION

During the GA processing, a stream of molten metal
is disintegrated into micron-sized droplets by the impact
of high-energy gas jets.[9] The liquid breakup process

depends on the relative velocity between the liquid
and the atomization gas. Various breakup mechanisms
have been proposed for the formation of droplets during
GA, although experimental verification of these mech-
anisms remains limited.[9,24,25] It has been widely
accepted that three basic stages are involved in the
GA processing for the disintegration of an instable
liquid sheet into droplets.[25]

Because of the initial high relative velocity between
the droplets and the fast-moving cold gas stream during
GA, elevated cooling rates can be produced with
relatively high levels of undercooling. The cooling rates
depend on the heat exchange between the atomized
droplets and the surrounding medium via two types of
heat transfer mechanisms: One is radiation toward the
surrounding media and another is forced convection
into the moving gas. In the case of Al and other
low-melting-point metals, the latter is the predominant
mechanism. The cooling rate of the droplets depends on
several processing parameters, such as gas composition,
gas pressure, melt superheat temperature, and gas/melt
mass flow ratio.[9]

For the numerical simulations of thermal history and
cooling rate experienced by the droplets, the calculations
assume constant droplet acceleration and no overshoot
between different thermal regions over a time step dt. In
addition, it is assumed that Newtonian cooling occurs
with forced convection and that no nucleation occurs
before droplet temperature reaches the glass transition
temperature Tg. Simplified assumptions are listed as
follows: First, all droplets are spherical and formed
instantaneously at the impact point with the gas stream,
where the droplet velocity and flight distance is zero.
Second, all droplets travel along the axis of the chamber,
and subject the same gas velocity profile for all droplet
sizes considered. Third, no interactions occur between
droplets. Fourth, the fluctuation in the local gas velocity
caused by turbulence is ignored, and only the mean gas
flow is considered.
The primary modeling equations, including the energy

balance, gas dynamics, droplet dynamics, properties of
the alloy and atomization gas, and heat transfer between
gas and droplet, are summarized below.

A. Droplet Size Distribution

The droplet size distribution for gas-atomized various
alloys has been reported to follow a lognormal distri-
bution.[21,26–29] The mass probability density function
p(d) of the droplet-size distribution can be expressed
by[30–32]

pðdÞ ¼ 1
ffiffiffiffiffiffi

2p
p

ln rg

exp �ðln d� ln d50Þ2

2ðln rgÞ2

" #

½1�

where d is the droplet size. Generally, the powder size
distribution is represented in terms of a cumulative fre-
quency f(di), which is defined as the fraction of pow-
ders that fall in the size range that is smaller than di.
Another often used parameter for describing atomized
power size is the mass median diameter d50, which is
defined as the droplet size that corresponds to the 50
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pct cumulative frequency. d50 can be well predicted for
gas atomizing Al alloys powder by using a correlation
developed by Lubanska[27]:

d50 ¼ KdDn
gm

ggW
1þM

�

G
�

 !" #

1
2

½2�

where Kd is a constant, Dn is the melt stream diameter
(i.e., the nozzle diameter); gm (m2/s) and gg (m2/s) are
the kinematic viscosity of the melt and gas, respectively;

M
�

(kg/s) and G
�

(kg/s) are the melt and gas flow
rates, respectively; W is the Weber number; and W ¼
v2i qmDn=cm; where qm (kg/m3) and cm (J/m2) are the
density and surface tension of the melt, respectively.

rg is the geometric standard deviation characterizing
the spread of the droplet size distribution centered
around d50, and it can be estimated by the following
empirical equation[28,33]:

rg ¼ qd j
50 ½3�

where q and j are constants and the unit of d50 is
micrometer herein.

B. Gas Dynamics

1. Gas initial velocity vg0
The dependence of gas velocity on gas pressure is a

well-documented phenomenon that has been studied
thoroughly in fluid mechanics. With Mach number Ma

and sonic velocity vs (m/s), the gas velocity at the nozzle
exit (i.e., initial velocity of atomization gas) vg0 (m/s) is
given by[34]

vg0 ¼Mavs ½4�

In the case of the convergent–divergent atomizer used
in the current investigation, compressible fluid mechan-
ics, assuming steady state and isentropic flow for an
ideal gas, give the following equation to calculate the
Mach number (Ma) at the nozzle exit[35,36]:

Ma ¼ CM
2

c� 1

P0

Pe

� �

c�1
c

�1
" #( )1=2

½5�

where c is the ratio of constant pressure to constant
volume specific heat, CM is a correlation coefficient used
to take into account friction effects as well as the differ-
ence between the nozzle used and an ideal convergent-
divergent one, P0 (MPa) is the atomization gas
pressure, and Pe (MPa) is the atomization gas pressure
at the nozzle exit that approximates the chamber
pressure.

The sonic velocity vs (m/s) at the nozzle exit can be
calculated by[37]

vs ¼
cRTe

mmol

� �1=2

½6�

where mmol (kg/mol) is the molar mass of the atomiza-
tion gas and Te (K) is the atomization gas temperature

at the nozzle exit, which can be determined by the fol-
lowing equation[38]:

T0

Te
¼ 1þ c� 1

2
M2

a ½7�

where T0 (K) is the atomization gas temperature at the
stagnation point (i.e., atomization pressure).

2. Decay equation of gas velocity
Assuming the axial gas velocity decays exponentially

with the axial flight distance, the relevant equation is
given by[39]

vg ¼ vg0 exp �z=kð Þ ½8�

where vg (m/s) is the axial gas velocity, z (m) is the flight
distance, and k is the gas velocity decay coefficient
ðk ¼ 3:04� 10�4v1:24g0 Þ:

C. Droplet Dynamics

Following GA, each droplet is accelerated or decel-
erated because of the drag force that results from its
velocity difference with the local atomization gas. The
motion of an individual droplet along the spray-axis is
governed by the following equation[40,41]:

qdVd
dvd
dt
¼ Vd qd � qg

� �

g� 1

2
qgAsCd vd � vg

�

�

�

� vd � vg
� �

½9�

where vd (m/s), qd (kg/m3), Vd (m3), and As (m2) are
the velocity, density, volume, and cross-sectional area
of a droplet, respectively; qg (kg/m3) and vg (m/s) are
the density and velocity of the GA gas; and g (m/s2) is
the gravitational acceleration, respectively. Because the
gas-atomized droplets are treated as spherical in shape,
Vd ¼ p

6d
3 and As ¼ p

4d
2; where d (m) is the effective

droplet diameter. For a spherical droplet during GA,
the drag coefficient, Cd, can be estimated by[42]

Cd ¼ 0:28þ 6
ffiffiffiffiffiffi

Re
p

þ 21

Re
½10�

where Re is Reynolds number determined by

Re ¼
qgd vg � vd
�

�

�

�

lg

½11�

where lg (Ns/m2) is the gas dynamic viscosity.

D. Energy Balance Equations

During GA, there is a large temperature difference
between the molten metal droplets and the atomization
gas. During droplet flight, heat extraction from the
droplet surface occurs via radiative and convective
cooling. In the range of typical droplet sizes and GA
processing parameters, the heat conduction inside
the droplets can be ignored, and homogenous temper-
ature distribution within the droplet can be assumed
with Newtonian cooling conditions and with forced
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convection, because the magnitude of the Biot number,
Bi, of droplets relative to the droplet/gas interfacial heat
transfer is less than 0.1 and on the order of 10�3 to
10�2.[9,43] The Biot number is a measure of the heat
conduction in the liquid volume versus heat convection
at the interface. For a droplet, Bi= hcÆd/2kl, where hc is
the heat transfer coefficient at the droplet/gas interface,
and kl is the thermal conductivity of the droplet. For
small Bi values, the primary resistance to heat transfer
occurs at the droplet/gas interface, and heat conduction
within the droplet occurs relatively fast, resulting in
small temperature gradients within the droplet. The
temperature differential across the interior of the droplet
can be safely neglected when Bi< 0.1.[43]

In view of the fact that our experiments involved a
MG powder, we assumed that no nucleation occurs
before the droplet temperature reaches the glass transi-
tion temperature Tg. The droplet cooling during the
flight stage can be described by the following two
consecutive processes: liquid-phase cooling and solid-
phase cooling.

The energy conservation equation in a droplet is
described by

�hAd T� Tgas

� �

� Ader T4 � T4
gas

� �

¼ VdqdCpd
dT

dt
½12�

where T (K) is the droplet temperature, t (s) is time,
Tgas (K) is the temperature of the ambient atomization
gas, Cpd (Jkg�1 K�1) is the melt specific heat, Ad (m2)
is the droplet surface area Ad = pd2, e is emissivity,
r is the Stephan-Boltzmann constant, (5.671 9

10�8 Wm�2 K�4), qd (kg/m3) is the droplet density,

and h (Wm�2 K�1) is the convective heat transfer
coefficient between a droplet and the atomization gas.
This can be estimated by the following empirical
equation[44,45]:

h ¼ Kg

d
2þ 0:6Re

1
2Pr

1
3

� �

½13�

where Kg (Wm�1 K�1) is the thermal conductivity of
gas; Pr, the Prandtl number, is a nondimensional coef-
ficient, and is given by[45]

Pr ¼
lgCpg

Kg
½14�

where Cpg (Jkg
�1 K�1) is the gas specific heat.

Rewritten Eq. [13] is now as follows:

h ¼ Kg

d
2þ 0:6q

1
2
g vg � vd
�

�

�

�

1
2�C

1
3
pgl
�1

6
g K

1
3
g

� �

½15�

E. Gas/Melt Flow Ratio

The gas/melt flow ratio during GA was deter-
mined based on our experimental data, modeling
results, and published research results[9] and described
as follows:

For an ideal gas:

PV ¼ nRT ½16�

The gas density: q = W/V = nw/V fi n = qV/w

P = qRT/w, when T is constant q1/q2 = P1/P2

So, qHe = q1 PHe/P1 = 0.1624 PHe /0.101 MPa =
1.608 PHe kg/m

3

qN2 = q1 PN2/P1 = 1.12 PN2/0.101 MPa = 11.09
PN2 kg/m

3

When gas pressure is 6 MPa, according to Reference
9, the gas volume flow rate RN2’ = 0.065 m3/s and
RHe’ = 0.175 m3/s. The mass flow rate is as follows:

RN2 ¼ RN2’qN2 ¼ 0:065=6ð ÞPN2 � 11:09PN2

¼ 0:12ðPN2Þ2 kg=sð Þ
RHe ¼ RHe’qHe ¼ 0:174=6ð ÞPHe � 1:608PHe

¼ 0:047ðPHeÞ2 kg=sð Þ

When the mass flow rates of the two types of gas are
the same, RN2 = RHe, and other conditions remain the
same: PHe = (0.12/0.047)1/2 PN2 = 1.6 PN2.
The melt mass flow rate was calculated from our

actual experimental data; the weight of all the powder
collected is 280 g, whereas the atomization time is 30 s.

The melt flow rate is as follows: Rmelt = 280/30 =
9.33 g/s = 0.0093 kg/s
The He gas flow rate is as follows: RHe’’ = 0.047 PHe

2

(P in MPa)
Gas/melt flow ratio = 0.047 PHe

2 /0.0093 = 5.054 PHe
2

(P in MPa)

Based on the above calculations, the influence of gas/
melt flow ratio on cooling rate can be determined from
the effects of gas pressure on the cooling rate. A nozzle
diameter of 2.16 mm was used in our experiments, and
because the melt flow rate increases with increasing
nozzle diameter, this leads to a decrease in gas/melt flow
ratio and a corresponding decrease in cooling rate.

F. Properties of Atomization Gas and Model Alloy

The Al90Gd7Ni2Fe1 (at pct) alloy is selected as the
model material system, and He and Ar are selected as
atomization gases. The properties of gas mixtures (n)
can be estimated as a linear sum of the compositional
gases, as follows:

n ¼ fHenHe þ fArnAr ½17�

where fHe and fAr are the volume percentage of He and
Ar, respectively. nHe and nAr are the corresponding
properties of He and Ar, respectively.
On the basis of the above equations, the Ar vol pct in

the He-Ar gas mixture, which has a similar heat transfer
coefficient to that of 50 pct He-50 pct N2 (vol pct), can
be estimated. As shown in the Table I, Kg and Cpg of He
are much larger than those of N2 and Ar. When 50 pct
N2 is replaced by 50 pct Ar in He-N2 mixture, the
change of Kg and Cpg can be safely neglected. However,
lg and qg increase slightly because of the higher
exponent of qg. To counteract the increase of qg, the
Ar vol pct should be slightly lower than 50 pct.
Most of the physical parameters used in the calcula-

tions are listed in Tables I and II. In fact, the physical
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properties of the alloy do vary with temperature, but if
the variation is not significant, then some of them can be
approximately treated as a constant in the calculations.

The glass transition temperature Tg of Al-based alloys
can be taken to be the crystallization temperature for
a-Al in view of the fact that Al-based alloys do not
reveal a Tg, and are marginal glass formers, so that for
Al90Gd7Ni2Fe1 alloy, a glass transition temperature of
464 K is selected.[47]

The specific heat capacity, Cpd (J
.mole�1.K�1), can be

estimated for Al alloy from

Cpd ¼ 21:8þ 0:009T ½18�

where T (K) is the droplet temperature. Because there is
no phase transformation,[49] the difference of the specific
heat between liquid and solid is neglected during the
calculation of droplet thermal history.

The droplet viscosity lm (Ns/m2) and its relationship
with temperature can be calculated with Andrade’s
equation, as follows:

lmV
1=3 ¼ A expðC=VTÞ ½19�

where V (m3) is the specific volume, the volume
occupied by a unit of mass of a material. It is equal to
the inverse of density. T (K) is droplet temperature, the
temperature-independent parameters A = 2.353 9 10�3

and C = 581.2.[50] The glass viscosity is strongly com-
position and temperature dependent. In fact, the vis-
cosity of conventional Al alloys can be used to
approximate that of the amorphous Al90Gd7Ni2Fe1
(at pct) alloy. This approximation is acceptable for the
following reasons: (1) The concentration of the alloying
elements is only 10 at pct, and (2) superheat used herein
is higher than 623 K. Under such a high superheat, the
viscosity of a marginal amorphous forming alloy with a
fragile liquid behavior is comparable with that of a
conventional crystallized alloy,[51] which is also sup-
ported by the experimental result that the morphology
of the Al90Gd7Ni2Fe1 powder is spherical, as shown in
part II.[23] In contrast, the morphology of powder that
forms from alloys with a high melt viscosity and a strong
liquid behavior is highly irregular.

III. MODELING RESULTS AND ANALYSIS

The above-described numerical framework was used
to calculate the dynamic and thermal behavior of the
gas-atomized droplets with different processing param-
eters and the corresponding results are summarized in
Figures 1 through 13.

A. Dynamic of the Gas and Droplets

Figure 1 shows the gas and droplet velocity change
with gas pressure and flight time for a droplet of 20 lm
in size. The gas velocity reaches a maximum at the exit
of the atomizer nozzle, and it subsequently decreases
with an approximately exponential decay as the flight
distance increases. Because of the velocity difference
between the droplets and the impinging gas stream
during GA, the droplets are subjected to an accelerating
drag force. The velocity of atomized droplets increases
with increasing gas pressure.

Table I. Physical and Thermal Properties of He and Ar

Symbol Values Unit

gg, Ar 1.4 9 10�4 m2/s
gg, He 1.22 9 10�3 m2/s
gg, mixture gg, mixture = 1.4 9 10�4 xAr

+1.22 9 10�3 xHe

m2/s

mmol, Ar 40 g/mol
mmol, He 4 g/mol
mmol, mixture mmol, mixture = 40xAr+4xHe g/mol
lg, Ar 224.3 10�6ÆNsm�2

lg, He 198.6 10�6ÆNsm�2

Kg, Ar 0.0179 Wm�1 K�1

Kg, He 0.15015 Wm�1 K�1

Cpg, Ar 520.67 Jkg�1 K�1

Cpg, He 5278.0 Jkg�1 K�1

qg, Ar 1.5979 kgm�3

qg, He 0.1624 kgm�3

Table II. Constant, Physical, and Thermal Properties

of Alloy Al90Gd7Ni2Fe1 (at pct)

Symbol Values Unit Reference

Kd 73 — [46]

qm 3545 kgm�3 [47]

cm 0.914-3.5 9 10�4(T-911) Jm�2 [46]

q 0.517 — [46]

j 0.316 — [46]

CM 0.2165 — [46]

e 0.035 — [48]

Tg 464 K [47]

Tm 916 K [47]

T0 300 K Fig. 1—Velocity variation of gas and droplets (20 lm) under different
gas pressures.
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Figure 2 shows droplet velocity as a function of
droplet size and flight distance for a gas pressure of
2.76 MPa. Initially, the droplets were rapidly acceler-
ated to a maximum value (the gas velocity at that point)
because of the gas drag force. The maximum velocity for
20 lm droplets is about 950 m/s at a flight distance of
0.5 m from the atomizer. Once the gas velocity has been
exceeded, the velocity decreases monotonically because
of the retarding drag force from the gas. Small diameter
droplets (e.g., 5 lm to 20 lm) are readily accelerated,
whereas larger droplets (e.g., >40 lm) have a larger
inertia and hence resist the acceleration force.

B. Thermal History of the Droplets

The thermal behavior of the droplets is controlled by
the processing conditions, such as the atomizing gas
composition and pressure, gas/melt mass flow ratio, melt
superheat temperature, and alloy composition. The heat
removed by convection at a droplet’s surface can be
equated to the change in droplet temperature. As shown
in Figure 3, the cooling rate decreases with increasing
flight time during GA, and it also increases with
decreasing droplet size. Both the maximum and the
average cooling rate increase with decreasing droplet size.

Based on heat transfer considerations, the heat loss by
forced convection is about two orders of magnitude
greater than the loss by radiation.[17] To render the
problem tractable, and neglecting radiation from
Eq. [12], the cooling rate of the droplets can be
estimated from

T
�
¼

6 Tmelt � Tgas

� �

hi

Cpdd
½20�

where

hi ¼ 2
K

d
þ 0:6

u

d

� �1
2

K2Cpg

� �

1
3

qg

lg

 !1
6

½21�

where u is the relative gas/droplet velocity.

From the above equations, it is apparent that cooling
rate increases with increasing melt superheat tempera-
ture Tmelt and decreasing gas temperature Tgas. More-
over, the cooling rate in the liquid state is proportional
to 1/d2, which shows a strong dependence of cooling rate
on powder size d and thermal conductivity K.
Equations [20] and [21] also show that a higher

relative velocity will yield a higher cooling rate. As
shown in Figure 3, the cooling rate decreases as
droplets approach the gas velocity. The appearance
of the local minimum points in the cooling curves is
related to the change in droplet dynamics and corre-
sponds to the point of the relative velocity of zero
between the droplets and the gas as shown in Figure 2.
At this point, the cooling rate falls instantaneously to a
minimum value. Beyond this point, the cooling rate
increases, as a differential velocity is reestablished.

C. Effect of Processing Parameters on Cooling Rate

1. Gas Composition
Figure 4 shows the influence of gas composition on

the temperature profile for a 20-lm droplet, a gas
pressure of 2.76 MPa, and a melt superheat temperature
of 1373 K. It is evident that the temperature drops
rapidly with increasing volume percentage of He in the
atomization gas. This means that He is an efficient heat
sink for rapid solidification and that the cooling
efficiency of He is much higher than that of Ar. The
droplet temperature decreases most efficiently when
pure He used. In fact, because of He’s relatively low
molar (atomic) mass, both of its thermal conductivity
and specific heat capacity are greater than any other gas
except H2. Therefore, pure He has highest cooling effect
among all the gas compositions considered.

2. Gas Pressure
An increase in the atomization gas pressure can cause

an increase in the cooling rate of the droplets because of

Fig. 2—Velocity variation of atomization gas and droplets with
flight distance at a gas pressure of 2.76 MPa.

Fig. 3—Variation of droplet cooling rate during flight in gas atom-
ization.
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a shift of the droplet toward a smaller size distribution
and higher gas/droplet relative velocities. Figure 5
shows that the influence of gas pressure of 100 pct He
on the temperature profile of a 20-lm droplet (melt
superheat temperature of 1373 K). When gas pressure
increases from 1.21 to 10.34 MPa, the change in
temperature is not evident for a specific size droplet,
which suggests that the effect of gas pressure on cooling
rate is not simple.

The effect of gas pressure on the cooling rate can be
interpreted via changes in powder size, which in turn
influences cooling rate. Figure 6 shows that droplet
temperature decreases with decreasing powder size,
which indicates that the cooling rate is a strong function
of droplet size as shown in Figure 3. Figure 7 shows that
the cooling rate increases with increasing gas pressure,
and this trend is more apparent when gas pressure is
under 2.76 MPa. The effects of gas pressure on the
cooling rate of droplets with different sizes are shown in

the inset in Figure 7. The results show a strong
dependence of droplet size on cooling rate and a weak
dependence of gas pressure.
Figure 8 shows that the cooling rate increases with

increasing volume percentage of He in the gas compo-
sition. Using pure He gas can result in almost an order
of magnitude improvement in the cooling rate for a
given powder size. An analysis of the effect of atomiza-
tion pressure indicates that pressure has a secondary
influence on cooling rate. There is an apparent increase
in cooling rate with increasing pressure in the low gas
pressure range up to a certain value. Beyond this point,
the cooling rate curve becomes flat, which suggests a
weak dependence of cooling rate on gas pressure. Across
a wide pressure range, the increase in cooling rate
achieved is less than one order of magnitude. Compar-
ing Figure 7 and Figure 8 shows that it is more efficient
to increase cooling rate by increasing the He volume
percentage relative than by increasing gas pressure.

Fig. 6—Temperature variation as a function of droplet size.
Fig. 4—Influence of gas composition on temperature variation of a
20-lm droplet.

Fig. 5—Effects of gas pressure on temperature variation of a 20-lm
droplet.

Fig. 7—Effect of gas pressure on cooling rate.
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Figure 9 shows the effect of gas pressure and compo-
sition on droplet mass median size. The mass median
diameter, d50, decreases with increasing gas pressure,
and it evidently decreases with increasing volume
percentage of He. The effect of gas pressure on
decreasing of droplet size is also apparent when gas
pressure is under 2.76 MPa.

3. Melt Superheat Temperature
Melt superheat temperature has an influence on the

thermal characteristics of the gas-atomized droplets.
Figure 10 shows the influence of melt superheat tem-
perature on the variation of cooling rate for a 20-lm
droplet during GA with a gas composition of 100 pct He
and a gas pressure of 2.76 MPa. It indicates that the
cooling rate increases with increasing degree of melt
superheat temperature. This may be readily rationalized
if one considers that as melt superheat temperature is
increased, the thermal gradient between melt and gas
increases.

In addition, experimental evidence suggests that
increasing the melt superheat temperature significantly
promotes a finer powder size distribution because of a
decrease in melt density, melt surface tension, and
viscosity.[9,17] Moreover, if the amount of melt superheat
temperature is low, then there is a high probability that
the metal will solidify in the delivery nozzle in the close-
coupled confine atomizer, because of excessive heat
removal caused by the atomizing gas.

4. Gas/Melt Flow Ratio
The influence of gas-to-melt mass flow ratio on

the cooling rate of a 20-lm droplet is illustrated in
Figure 11. The processing parameters used in this
calculation correspond to the case of 100 pct He for
the atomization gas, an atomizer that consists of 18 jets,
and a nozzle diameter of 2.16 mm. The influence of
gas/melt flow rate on cooling rate is similar to that

Fig. 8—Effect of gas composition on cooling rate for different size
droplets.

Fig. 9—Effect of gas pressure and composition on droplet size.

Fig. 10—Influence of melt superheat temperature on cooling rate for
a 20-lm droplet.

Fig. 11—Effects of gas/melt mass flow ratio on cooling rate for a
20-lm droplet.
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of gas pressure, for the same nozzle size. The cooling
rate increases with increasing of gas/melt mass flow ratio
for a specific droplet, and this effect is more apparent
when the flow ratio is under about 5. Beyond this value,
the curve becomes flat, which indicates that the influence
of gas/melt flow ratio on cooling rate decreases rapidly
with increasing flow ratio beyond the value of 5. The
effects of gas/melt mass flow ratio on the cooling rate of
droplets of various sizes are also illustrated in Figure 11.

5. Influence of He vs Gas/Melt Flow Ratio
Increasing the gas/melt flow ratio can be achieved

by simply decreasing the nozzle orifice diameter.
In practice, however, a smaller nozzle orifice can lead
to premature metal solidification. In an effort to
minimize the possibility of premature solidification in
the nozzle as a result of the change in gas composition,
the nozzle size is increased to 3.05 mm from 2.64 mm,
and the gas composition is modified to 97 pct He+3 pct
Ar (vol pct) mixture gas from 85 pct He+15 pct Ar.
Figure 12 shows the calculation results of the average
cooling rate with the two sets of parameters for different
droplet sizes. The other processing parameters for both
of the cases are same with a gas pressure of 2.76 MPa
and a melt superheat temperature of 1100 �C. The
comparison of the calculation results indicates that
droplets experience a slightly higher mean cooling rate
with 97 pct He+3 pct Ar gas mixture and nozzle orifice
diameter of 3.05 mm than that with 85 pct He+15 pct
Ar gas mixture and 2.64 mm of nozzle orifice diameter.

Figure 13 indicates that the cooling rate experienced
by a 20-lm droplet with 97 pct He+3 pct Ar gas
mixture and 3.05 mm of nozzle orifice in size is slightly
higher than that with 18 pct He+15 pct Ar gas mixture
and 2.64 mm nozzle during the initial period of the
droplet flight. After that initial period, the cooling rate
with 97 pct He+3 pct Ar and 3.05 mm nozzle decreases
and becomes slightly lower than that with 85 pct
He+15 pct Ar gas and 2.64 mm. Increasing the He
volume percentage is more effective in terms of cooling

rate during the initial period of the atomization;
however, increasing gas/melt flow ratio is more effective
after the atomization has started.

IV. DISCUSSION

The numerical results presented in last section dem-
onstrate that there are two important factors that are
necessary to attain a high cooling rate: gas composition
and powder size. As the cooling media, gas composition
has a significant influence on cooling rate. The influence
of gas pressure on cooling rate is primarily to reduce the
powder size and increase the relative velocity between
gas and droplets. In fact, our experimental results in
part II[23] show that the measured mean powder size is
almost unchanged when gas pressure changes between
5.52 MPa and 2.62 MPa because of aspiration effects.
For a specific nozzle diameter, the influence of gas/melt
flow ratio on cooling rate is similar to that of the gas
pressure results.
Numerical analysis provides useful insight into the

thermal and momentum behavior of the atomized
droplet dispersion, even if the size distribution of
droplets is deduced from empirical data. For example,
numerical modeling provided useful information regard-
ing the complex interrelationships between the indepen-
dent atomization parameters, such as atomization gas
composition, gas pressure, melt superheat temperature,
and gas/melt mass flow ratio, and their influence on the
microstructure of solidification. Regarding the effects of
He volume percentage in the atomizing gas, the results
show that an increase in He content generally causes a
decrease in powder size because of its low density which
results in an increase in gas velocity, such as shown in
Figure 9. However, the cooling effects of He gas on the
melt viscosity also need to be considered for high
viscosity materials. The high cooling capacity of He gas
increases melt viscosity faster, as compared with N2, Ar,
and other gas mixtures. A rapid increase in viscosity

Fig. 12—Variation of cooling rate with droplet sizes for two sets of
parameters.

Fig. 13—Variation of cooling rate of a droplet with different gas
compositions.
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might have an adverse effect on the primary breakup of
melt, as well as on the secondary breakup mechanisms.
This might lead to an increase in the average powder
size. In addition, an increase in the atomization gas
pressure can generally cause a decrease in the powder
size distribution. However, the presence of aspiration
phenomena at the point of atomization can affect the
melt flow rate and shift the droplet distribution toward a
large size.[52] Such complex interactions, which are
common in GA, make it difficult to accurately predict
the overall cooling behavior of droplets. As a result,
calculated cooling rates are often overestimated.

The numerical framework described in this article
incorporates various empirical equations with several
simplifying assumptions, such as physical parameters of
the alloy, gas dynamics, and others, which may lead to
some discrepancies between the real values of temper-
ature or cooling rate and those obtained from numerical
predictions. Therefore, an experimental validation of the
calculated cooling rates is necessary and is described in
part II of this study.[23] Experimental validation of the
cooling rate experienced by the powders also shows that
the cooling rate can reach more than 105 K/s order for
powder size of <20 lm. The results of modeling
calculation are consistent with the values of our exper-
imental validation to a reasonable degree.

V. SUMMARY

In terms of the influence of processing parameters, the
numerical results described in this article predict some
trends, which are summarized below:

1. Gas composition is more effective than gas pressure
on influencing cooling rate for a specific droplet size,
and 100 pct He provides the highest cooling rate.

2. The cooling rates experienced by the atomized
droplets increase with decreasing size, and the cool-
ing rate can reach more than 105 K/s for a <20-lm
powder.

3. Droplet size decreases with increasing gas pressure.
The effect of increasing gas pressure on the cooling
rate is marked when gas pressure is<2.76 MPa.

4. Gas/melt flow rate shows a similar effect to that of
gas pressure on cooling rate when the nozzle orifice
size is constant, and the cooling rate increases with
increasing gas/melt mass flow ratio.

5. The cooling rate also increases with increasing melt
superheat temperature. When the melt superheat
temperature increases from 1373 K to 1473 K, the
cooling rate can increase 7 9 104 K/s.

6. Based on the modeling results and analysis, the opti-
mized processing parameters for GA of Al-based glass
powder are atomization gas composition of 100 pct
He, atomization pressure approximately 2.76 MPa,
and melt superheat temperature of 1373 K.
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