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Coarsening within the mushy zone during continuous directional solidification experiments was
studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy
allowed images to be taken in-situ during solidification. Transient conditions were present
during directional solidification. Under these conditions, solute-rich settling liquid flow affects
the dendritic array and thus coarsening. Coarsening was studied by following the secondary
dendrite arm spacing (SDAS) of a developing dendrite at different local solidification times
according to the mush depth and instant interface velocity. Solute enrichment and liquid flow
cause deceleration and acceleration of the solidification front, which in turn influences both the
mush depth and local growth and coarsening due to variations in solutal gradients and thus
local undercooling. In addition, spacing between neighboring dendrites (i.e., primary dendrite
arm spacing), which determines permeability within the mushy zone, affects the development of
high-order branches.

DOI: 10.1007/s11663-008-9166-2
� The Authors(s) 2008. This article is published with open access at Springerlink.com

I. INTRODUCTION

THE final solidified microstructure of alloys depends
on the development of solid-phase morphology and
segregation. During continuous solidification, growth
and coarsening (i.e., dissolution of crystals or dendrite
branches and growth of others) develop simultaneously.
The final properties of an alloy are determined, in part,
by the morphological evolution of the solid phase, which
most often solidifies dendritically. The evolution of such
ramified structure also influences microsegregation,
which again affects the final properties of the solidified
alloy.[1–3]

Coarsening of high-order branches is driven by
compositional and geometrical gradients. These gradi-
ents cause material transport, i.e., solvent transport in
the liquid from highly curved regions to regions with low
curvature and vice versa for the solute element in the
alloy. Different coarsening mechanisms have been
described: (1) radial dissolution of weak dendrites arms
and thickening of large ones;[4] (2) dissolution of the root
of weak arms (i.e., fragmentation);[4–6] (3) dissolution of
weak dendrites from the tip toward the root;[7] and (4)
coalescence between neighboring dendrite arms.[8]

For dendritic solidification, coarsening can be
described in terms of secondary dendrite arm spacing
(SDAS). During coarsening, the spacing between sec-
ondary dendrite arms and high-order branches would
tend to become larger in relation to the coarsening
mechanisms mentioned previously. ‘‘SDAS character-
ization’’ has been well accepted in the metallurgical and
material science community, and it is a term usually
related to the mechanical properties of the alloy. A finer
microstructure, i.e., low SDASs, usually improves the
mechanical properties (e.g., yield strength). Both the
cooling rate and composition show profound influence
over the SDAS. For example, a finer microstructure is
achieved by increasing the cooling rate.[1,2]

A well-established relationship between SDAS and
local solidification time ts is given by SDAS ~ Ats

n, where
A and n are constants.[9] It was found that n is between
0.28 and 0.5 for most metallic alloys.[4,9–13] This corre-
lation enables analysis of the dependence of SDAS with
the cooling rate, which is inversely proportional to ts.
Coarsening in secondary dendrite arms has been well
documented in the literature, where n is considered to be
constant.[1–4,7–13] However, much of the analysis in
coarsening made in the past, for metallic-opaque sys-
tems, was done over postsolidified samples. By this
means, it is not possible to observe local velocity
fluctuations and real-time evolution of microstructure.
Many of the experimental studies reported in the past
were also carried over steady-state solidification condi-
tions.[9] In real cast processes, solidification will most
often involve transient growth velocities due to thermal
gradients existing according to the cast dimensions and
shape. Transient solidification conditions have proven
to influence microstructure. In addition, the solidifica-
tion direction (with respect to gravity) influences liquid
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flow and thus the development of dendrites.[14,15] It has
been found that the primary dendrite arm spacing
becomes larger when solidifying upward due to solute
accumulation between dendrites.[16–18] Drainage or
enrichment of rejected solute during growth depends
on the direction of growth.[17] Also, this depends on the
density of rejected solute;[18] e.g., drainage occurs during
downward solidification for the case of alloys with high
density solute elements.[17] Liquid flow due to transient
conditions and the direction of solidification may not
only affect the primary spacing but also the development
of high-order branches deep in the mush.[17]

The present study was based on downward continu-
ous directional solidification experiments. In-situ anal-
ysis of coarsening during simultaneous development of
coarsening and growth of a dendrite is presented.
Moreover, inherent transient solidification conditions
occurring during growth permit us to study the effect of
such conditions on coarsening.

II. EXPERIMENTAL PROCEDURE

Downward (i.e., parallel to gravity) directional solid-
ification experiments were done by using a Bridgman-
like furnace system. The solidification of an Al-30 wt pct
Cu alloy was studied. Samples were rectangular slices
with dimensions of 1.5 9 3.0 cm2 and 200-lm thickness.
The slices were preoxidized at 720 K for 2 hours, and
then spray coated with boron-nitride. The sample was
placed in the furnace system after being encapsulated
between 100-lm-thick quartz glass plates.

Experiments were done at the European Synchrotron
Radiation Facility (ESRF) at beam line ID22 under
code HS-1332. A flux density at the sample of 5Æ1012

photons/(mm2Æs) was achieved by using monochromatic
X-ray energy of 15 KeV. Detector dead time of
0.15 seconds and exposure time of 0.3 seconds permit-
ted image acquisition every 0.45 seconds (i.e., grabbing
rate of 2.22 s-1). In total, a sequence of 120 images was
taken. The field of view of such images was 1.35 9
1.35 mm2.

Solidification was facilitated by slowly translating the
molten sample upward (opposite to gravity) at a
constant pulling velocity vsp = -22.5 lm/s, from the
hot section into the cold section of the furnace system.
Downward solidification (solid-liquid interface displace-
ment parallel to gravity) was achieved by these condi-
tions. A thermal gradient GT = 27 K/mm was imposed
during solidification. Images were recorded as soon as
the solidification front appeared in the field of view (at
texp = -9.0 s). A detailed explanation of the current
experiment can be found in Reference 19. For other
relevant information concerning the experimental setup
and X-ray microscopy, refer to Reference 20.

Coarsening of the secondary dendrite arms developing
during continuous solidification was characterized by
measuring the SDAS parallel to the main dendrite trunk
at different local solidification times determined accord-
ing to the depth in the mush. This was done considering
four regions within the mushy zone. The average SDAS
was then measure over the secondary dendrite arms

contained between the limits of the selected region at
each image. Error estimation of such measurements was
obtained statistically according to the deviation of the
measurements within the region.
The local solidification time ts was determined from[2]

ts ¼
a

vsl
½1�

where a corresponds to the depth within the mush and
vsl the velocity of the primary dendrite tip. The average
local solidification time was estimated for each of the
four regions delimited within the mush, taking into
consideration the instant velocity of the selected den-
drite (central primary dendrite in Figure 1). Error
measurements of the average ts were estimated based
on its deviation according to the local solidification
times at the boundaries of the region according to a
where the SDAS were measured.

III. RESULTS

Figure 1 shows some of the images taken at different
times texp. For the present investigation, the central
primary dendrite from the field of view in Figure 1 was
studied. Regions of interest (ROIs) were made around
this dendrite in order to perform the SDAS measure-
ments. Figure 2 demonstrates four of the ROIs taken at
texp = -5.4, 0.9, 4.05, and 6.3 seconds from those
shown in Figure 1.
Velocity fluctuations were observed during the exper-

iment. The corresponding solidification front velocities
were determined previously for the three primary
dendrites trunks observed in the center of the field of
view (Figure 1).[19] In the present analysis, the velocity
changes of the central primary dendrite (Figure 1) were
employed for the estimation of ts. The sequence of

Fig. 1—Fields of view taken at texp = -5.4, 0.9, 4.05, and 6.3 s.
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images considered corresponds to deceleration
~-4.9 lm/s2 and acceleration of the solidification front
~13.7 lm/s2. These transient conditions occur natu-
rally during solidification. Mathiesen and Arnberg[19]

explained these fluctuations to occur during growth due
to the continuous solute pileup at the solidification front
and settlement at a certain accumulation. High-density
solute-rich liquid settles down due to gravity and a
cleaner melt enables development of a new boundary
layer.

Figure 3 demonstrates the SDAS as a function of the
local solidification time ts. Coarsening and growth
occurred simultaneously during solidification. There
was a difference in coarsening kinetics at the left and
right sides of the primary dendrite trunk. Therefore,
SDAS measurements were done at the left and right
sides of the primary dendrite during deceleration and
acceleration. Figure 3(a) shows similar kinetics of grad-
ual spacing development at both sides during deceler-
ation. In this case, the SDAS close to the eutectic front is
~43 lm (ts = 11 seconds). It was observed that during
deceleration, the coarsening mechanism is dissolution
from tip to root of some secondary dendrite arms and
thickening of others. This coarsening mechanism
occurred moderately. On the other hand, the right side
of the dendrite presented more pronounced coarsening

by dissolution, having some dendrite arms left behind
while others continue growing. Also, a moderate growth
of tertiary dendrite arms was observed. Moreover, at
both sides, no complete dissolution within the mushy
zone was observed in those arms that were left behind.
On the other hand, during acceleration (Figure 3(b)),

the kinetics of the SDAS development differ strongly
from one side to another, and from the kinetics found
during deceleration. During acceleration, at the left side,
at ts between 2 and 5 seconds, the slope is moderate, and
then a sudden steeper change is shown after 5 seconds
(dotted line in Figure 3(b)). This abrupt change is due to
the coarsening mechanism, which is dissolution from the
tip toward the root of neighboring secondary dendritic
arms, being quite severe near the eutectic front. Dendrite
arms that tend to dissolve are left behind and are no
longer considered during the SDAS measurements, and
then only surviving neighboring dendrite arms are taken
into account. In contrast, the right side shows a more
prominent growth of tertiary dendrite arms, and dis-
solving secondary arms become enclosed by these
developing branches (Figure 4). In addition, the SDAS
is larger than the SDAS at the left side and the SDAS
during deceleration. Furthermore, during acceleration,
both sides have prominent coalescence between second-
ary dendrite arms that collapse as the dendrite continues
developing.

Fig. 2—ROIs taken around the central primary dendrite at texp =
-5.4, 0.9, 4.05, and 6.3 s.

Fig. 3—SDAS as a function of solidification time ts during (a) decel-
eration and (b) acceleration of the solidification front.
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From the corresponding curves in Figure 3, a corre-
lation between the SDAS and ts was estimated. Linear
regression analysis was used to determine the relation-
ship SDAS ~ ts

n. During deceleration, the SDAS ~ ts
0.4

at both sides of the dendrite trunk. On the other hand,
during acceleration, the SDAS ~ ts

0.28 at the left side of
the primary dendrite at ts between 2 and 5 seconds, and
then changes abruptly to SDAS ~ ts

0.4, whereas the
SDAS ~ ts

0.5 at the right side during acceleration.

IV. DISCUSSION

The average total mush depth, from the tip of the
dendrite to the eutectic front, adjusts in length with the
velocity of the solidification front. During deceleration,
the mush depth diminishes gradually from a starting
measured depth of ~440 lm (texp = -5.4 seconds). At
the end of the deceleration stage (texp = 0.9 seconds),
the mush depth is ~335 lm; then it increases gradually
when acceleration starts. During acceleration, the mush
length adjusts at the end to ~390 lm (texp = 6.3 sec-
onds). The equilibrium mush depth, according to the
equilibrium freezing range DT0 and GT, can be calcu-
lated from aeq = DT0/GT, where DT0 = m(C0–Ce),
m = -4.9 K/wt pct Cu is the equilibrium liquidus slope
obtained from the Al-Cu diagram, C0 is the nominal
composition (30 wt pct Cu), and Ce is the eutectic
composition (33.1 wt pct Cu).[2] The calculated equilib-
rium depth is aeq = 560 lm, compared to the maxi-
mum depth observed before deceleration starts
(~440 lm), Da = (aeq–a) = 120 lm; the difference is
quite large. This highlights the effect of downward
solidification and transient solidification conditions over

the microstructure. It should be noted, however, that this
analysis was done considering roughly the length of the
primary dendrite, and the purpose of such analysis is only
to relate its particular development to transient condi-
tions and comparison with aeq. The transient develop-
ment of neighboring primary dendrites would affect the
local mush depth at the left and right sides of the central
primary dendrite. An average local depth analysis at both
sides of the central dendrite would demonstrate the effect
of primary spacing and velocity growth fluctuations with
the microstructure (not presented here).
The solidification time is affected by these fluctuations

in a similar manner, where the local solidification time
becomes shorter during acceleration than during decel-
eration (Figure 3). Accordingly, it should be expected
that more coarsening will occur at longer solidification
times. This is evident in Figure 3(a), where the SDAS is
larger at both sides of the dendrite compared to the left
side of the same dendrite during acceleration. On the
other hand, the right side, during acceleration, has a
larger SDAS to that found during deceleration. During
acceleration, it is evident that both sides of the dendrite
behave differently. From the observations of the
sequence of images (Figure 1), the spacing with neigh-
boring primary trunks is different. The neighboring
dendrite at the left side is a little farther away compared
to the neighboring dendrite at the right side. The
distance between dendrite trunks influences liquid flow.
During downward growth, solute rejection and flow of
the solute-rich liquid deep in the mush toward the
solidification front (settlement) is easier at the left side
(more permeable) than at the right side (less permeable)
due to spacing between neighboring dendrites. This may
explain the different solidification behavior at both sides
of the central primary dendrite trunk. Deceleration
occurs due to solute pileup at the front. The underco-
oling required for growth at the solidification front is
diminished due to dissipation of solute gradients.
Solute-rich liquid accumulates at both sides. A high-
solute environment promotes coarsening by material
transport due to curvature differences at both sides.
After certain saturation, solute-rich liquid settles due to
gravity and vacates the mushy region with an unsatu-
rated melt, as described by Mathiesen and Arnberg.[19]

During this evacuation, a solute gradient again builds
up, causing acceleration of growth at the front. At the
left side (permeable region), evacuation of the solute-
rich liquid from the mushy zone dissipates solutal
gradients and thus undercooling. Solute-rich liquid
displacement toward the solidification front drags the
undercooling at the front; this is why the front tends to
accelerate its growth. On the other hand, the mushy
zone between the central primary dendrite and right side
primary dendrite is less permeable. Thus, during growth
and solute rejection, solute-rich liquid becomes trapped
by the developing dendrite branches. Solute enrichment
occurs, promoting a solutal gradient, which enables
growth. This is why growth of tertiary dendrite arms is
largely observed at the right side. Moreover, coarsening
at this region may be enhanced due to solute enrich-
ment. However, growth may be the dominating factor
for the increase in the SDAS. Whereas high permeability

Fig. 4—Magnification over image taken at texp = 3.6 s, which devel-
ops during acceleration, demonstrating the distinct coarsening mech-
anism operating during solidification.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 40B, JUNE 2009—315



at the left side enables replacement of a clean melt,
which diminishes coarsening and growth, this is another
cause (apart from a lowering in ts) for the SDAS to be
lower during acceleration. The sudden increase in slope
at this region in the SDAS (Figure 3(b), left side) may be
due to the solute that accumulated between the large
secondary dendrite arms near the eutectic and did not
flow. This enrichment near the eutectic causes coarsen-
ing of dendrite arms.

V. CONCLUSIONS

In-situ analysis of coarsening was done on an Al-30 wt
pct Cu alloy during continuous directional solidification
experiments. Fluctuations in the solidification front
velocity occurred naturally due to accumulation and
settlement of solute-rich liquid. These fluctuations
permitted the analysis of coarsening during deceleration
and acceleration of the solidification front. The SDAS
measurements were used to characterize coarsening
during solidification. It was found that during deceler-
ation, the SDAS increases gradually as SDAS ~ ts

0.4. In
the current observations, the proximity of neighboring
dendrites (or primary dendrite arm spacing) has no
effect on the SDAS during deceleration. In contrast,
during acceleration, the dendritic arrangement affects
coarsening. In this case, it was found that secondary
dendrite arms coarsen more and develop tertiary den-
drite arms when they are close to a neighboring dendrite
(less permeable region). This is probably due to solute
accumulation, which causes coarsening, and the build
up of solute gradients that promote the necessary
undercooling for growth. Under these conditions, it
was found that the SDAS ~ ts

0.5. On the other hand, a
more permeable region enables drainage of solute-rich
liquid, diminishing solute accumulation and coarsening.
Also, dissipation of solute gradients at this region
diminishes undercooling, thus lowering growth. The
liquid flow and dendritic arrangement affect the solidi-
fication process by altering the local undercooling within
the mush and therefore the local growth dynamics.
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