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An Improved Model for Molar Volumes of Ti-Carbide,
Ti-Nitride and Ti-Carbo-Nitride

HUAQING ZHANG, YONG DU, and GEORGE KAPTAY

Molar volume of titanium carbonitride is modelled as function of composition and temperature
by two-sublattice model Ti1(C, N, Va)1. Deviations from the ideal solution model in Ti–TiX
sections were modelled by regular solution model between X atoms and vacancies in the (X, Va)
sublattice. The combined binary models can describe molar volumes of ternary Ti carbonitrides
reasonably well without introducing any ternary parameters, proving a good physics behind the
binary models.
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TITANIUM carbide, titanium nitride and titanium
carbo-nitride (TiX with X = N and/or C) are of interest
due to their high melting point, high hardness, low
density, high flexure strength, superior chemical and
thermal stability, and excellent wear resistance.[1–12]

Molar volume is an important starting parameter to
describe thermodynamic, kinetic and transport proper-
ties and phenomena such as grain growth,[13] interfacial
energies,[14,15] thermal conductivity,[16,17] viscosity,[18]

etc. In this paper such a model is presented.
The homogeneity ranges of TiXz compounds with

0<z<1 are extended only into the Ti-rich region of the
phase diagrams.[19–24] That is why their structural[12,21]

and thermodynamic[25–27] descriptions are based on the
two-sub-lattice model Ti1(X, Va)1. The same model is
used here to model molar volume of TiXz crystals.

The only paper modeling the volume of the
Ti-carbo-nitride before is due to Frisk et al.,[27] who
applied 8 semi-empirical parameters at 298 K. Our goal
is to develop an improved model with a smaller number
of parameters, taking into account new experimental
data.

The stoichiometry of TiXz crystals is expressed
through the atomic ratio of X atoms to Ti atoms[28–32]

denoted as z. The amounts of atoms in the crystal: nTi ¼
1 mol/mol-TiXz and nX ¼ z mol/mol-TiXz with
0.41 £ z £ 1.[25,26]

Two independent data should be given to characterize
the composition of ternary carbo-nitride Ti1(C, N, Va)1:
the site fractions of C and N in the sub-lattice (C, N,
Va), denoted by yC and yN. Then, parameters z and yVa
follow as:

z ¼ yC þ yN ½1a�

yVa ¼ 1� yC � yN ¼ 1� z ½1b�

One can also use the mole fractions xC and xN in
Ti1(C, N, Va)1 neglecting vacancies, with the mole
fraction of Ti written as:

xTi ¼ 1� xC � xN ½1c�

Then, neglecting the role of the vacancies, parameter z
follows as:

z ¼ xC þ xN
1� xC � xN

½1d�

The site fraction of component C: yC ¼ nC=1 ¼ nC,
where nC is the amount of component C in 1 mol of
Ti(C, N)z. The mole fraction of component C in Ti(C,
N)z: xC ¼ nC=ð1þ zÞ where (1 + z) is the total amount
of atoms in 1 mole of Ti(C, N)z. Substituting nC ¼ yC
from the previous equation into the latter equation:

yC ¼ xC � 1þ zð Þ ½1e�

Similarly:

yN ¼ xN � 1þ zð Þ ½1f�

Experimental data for TiCz are given in References
28–30 and 33–36. Due to some impurities the data in
Reference 28 differ significantly from the results of
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References 29, 30, and 34–36. Experimental data for
TiNz are given in References 30, 36, and 37 The
estimated data in Reference 31 differ significantly from
experimental results.[30,36,37] Experimental data for the
ternary Ti(C, N)z crystals were measured in References
38 and 39.

The following model equation is applied for the molar
volume of TiXz crystals, taking into account the
structural model Ti1(X, Va)1:

Vm;TiXz
¼ VTi þ z � VTiX � VTið Þ þ LX�Va � z � 1� zð Þ

½2a�

where VTi is the molar volume of the Ti1 sub-lattice,
VTiX is the molar volume of the stoichiometric TiX
crystal, LX�Va is the interaction volume between atoms

X and the vacancies in the (X, Va) sub-lattice. In
Eq. [2a] the molar volumes of 1 mole of Ti1 sub-lattice
and z moles of the (X, Va) sub-lattice are added, the
latter estimated as the difference between the molar
volumes of TiX and Ti, while the deviations from ide-
ality within the (X, Va) sub-lattice is modelled by the
regular solution model due to interaction between the
X atoms and the vacancies. Eq. [2a] is re-arranged as:

Vm;TiXz
¼ VTi þ z � VTiX � VTi þ LX�Vað Þ � LX�Va � z2

½2b�

If Vm;TiXz
is plotted as function of z and fitted as a

quadratic polynomial (Vm ¼ aþ b � zþ c � z2), the three
semi-empirical parameters (VTi, VTiX and LX�Va) follow
from the fitted parameters a, b and c as:

VTi ¼ a ½2c�

LX�Va ¼ �c ½2d�

VTiX ¼ aþ bþ c ½2e�

Equation [2e] follows from the equality:
b ¼ VTiX � VTi þ LX�Va, after Eqs. [2c] and [2d] are
substituted into it as: b ¼ VTiX � a� c. Using the molar
volume data for TiCz

[29,34,35,38] and TiNz,
[30,36–38] the

above semi-empirical parameters were optimized for the
two cases, treating parameter a identical, i.e. the
consistency of parameter VTi was ensured in molar
volume models of TiCz and TiNz. The semi-empirical
parameters given in Figures 1 and 2 are substituted into
Eqs. [2c] through [2e] and the final results at T = 298 K
are given in the captions to Figures 1 and 2.
For the temperature dependence of the parameters in

Figures 1 and 2 our earlier model for fcc metals[40] was
combined with the experimental data[38] as:

Fig. 1—The molar volume of TiCz at T = 298 K plotted against
parameter z, using the experimental data[29,34,35,38] (data[28] are
excluded as they differ significantly). Parameters found from here
(cm3/mol): VTi = 10.88, VTiX = 12.19, LX�Va = 1.65.

Fig. 2—The molar volume of TiNz at T = 298 K plotted against
parameter z, using the experimental data[30,36–38] (data[31] are
excluded as they differ significantly). Parameters found from here
(cm3/mol): VTi = 10.88, VTiX = 11.47, LX�Va = 0.308.

Fig. 3—Temperature dependences of the model parameters
calculated by Eqs. [3a] through [3c].
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VTi ¼ 10:85þ 2:712 � 10�6 � T1:618 ½3a�

VTiN ¼ 11:43þ 9:979 � 10�6 � T1:468 ½3b�

VTiC ¼ 12:14þ 2:050 � 10�5 � T1:360 ½3c�

Equations [3a] through [3c] are developed by us for
pure fcc metals and reproduce their measured molar
volumes from T = 0 K to their melting points with an
accuracy of 0.2 pct or better. Equations [3a] through
[3c] also obey the boundary condition that the thermal
expansion coefficient becomes zero at T = 0 K. We
found Eqs. [3a] through [3c] to work with smaller
number of fitting parameters compared to alternative
models.[41–46]

Equations [3a] through [3c] are presented graphically
in Fig. 3 together with literature data.[30,34–38] Good
agreement can be seen. Let us note that the molar
volumes of hcp-Ti and bcc-Ti at 298 K are 10.55 and
10.59 cm3/mol respectively.[41] As follows from Fig. 3,
our values for Ti-sublattices within the TiXz crystals are
somewhat larger. This is due to the small (less than by
3 pct) expanding influence of the non-metallic
sub-lattices.

According to the structural model of titanium
carbo-nitride Ti1(C, N, Va)1 its model for molar volume
is written as extension to Eq. [2a]:

Vm;Ti C;Nð Þz ¼ VTi þ z � yC
yC þ yN

� VTiC � VTið Þ

þz � yN
yC þ yN

� VTiN � VTið Þ

þLC�Va � yC � 1� yC � yNð Þ
þLN�Va � yN � 1� yC � yNð Þ

½4�

In principle, further parameters could be taken into
account in Eq. [4], such as the interaction volume
between components C and N,[27] or even ternary
interaction volumes. However, these additional param-
eters are not needed to reproduce the experimental data
by Eq. [4] (see Tables I and II). Indeed, the maximum
difference in Table I between the experiments and our
model values is ± 0.02 cm3/mol, while the same is
± 0.04 cm3/mol in Table II. This agreement confirms
the good physical bases of our models.
The only previous paper in which the molar volume of

Ti(C, N)z was modeled[27] applied 8 semi-empirical
parameters at T = 298 K. As follows from Figures 1
and 2 and Eq. [4], the same goal was achieved here using
only 5 binary semi-empirical parameters without any
further ternary parameter. Moreover, our model also
describes the temperature dependence of molar volume
of Ti(C, N)z. Our model is simple and robust enough to
be used in modelling further thermophysical properties
of Ti(C, N)z crystals.

Table I. Compositions and Molar Volumes for Six Samples Measured by Aigner et al. [38]

No. xC xN z yC yN yVa

Vm,298 K

Exp./Model
Vm,1473 K

Exp./Model

1 0.486 0.005 0.965 0.955 0.010 0.035 12.19/12.19 12.56/12.56
2 0.390 0.101 0.965 0.766 0.199 0.035 12.04/12.05 12.42/12.42
3 0.295 0.199 0.976 0.583 0.393 0.024 11.90/11.90 12.29/12.28
4 0.198 0.299 0.988 0.394 0.594 0.012 11.75/11.75 12.15/12.15
5 0.103 0.381 0.938 0.200 0.738 0.062 11.62/11.61 12.02/12.00
6 0.005 0.492 0.988 0.010 0.978 0.012 11.48/11.47 11.88/11.88

Parameters z and y are calculated by Eqs. [1d] through [1f] and [1b], model values (in cm3/mol) are calculated by Eq. [4].

Table II. Compositions and Molar Volume Measured for Eight Samples by Saringer et al. [39]

No. xC xN z yC yN yVa

Vm,298 K

Exp./Model
Vm,1273 K

Exp./Model

1 0.05 0.45 1 0.10 0.90 0 11.57/11.54 11.91/11.87
2 0.10 0.40 1 0.20 0.80 0 11.64/11.61 11.97/11.93
3 0.15 0.35 1 0.30 0.70 0 11.73/11.69 12.05/12.00
4 0.25 0.25 1 0.50 0.50 0 11.82/11.83 12.13/12.14
5 0.30 0.20 1 0.60 0.40 0 11.92/11.90 12.20/12.21
6 0.35 0.15 1 0.70 0.30 0 11.97/11.97 12.26/12.28
7 0.40 0.10 1 0.80 0.20 0 12.02/12.04 12.33/12.35
8 0.45 0.05 1 0.90 0.10 0 12.09/12.12 12.39/12.42

Parameters z and y are calculated by Eqs. [1d] through [1f] and [1b], model values (in cm3/mol) are calculated by Eq. [4].
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