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Incorporating Dislocation Mechanisms
into a Phenomenological Cyclic Plasticity Model
for Structural Alloys

KWAI S. CHAN

This article presents an approach to incorporating dislocation mechanisms into a phenomeno-
logical cyclic plasticity model that describes the cyclic hardening and softening response of
structural alloys in the low cumulative plastic strain (microplastic) and high cumulative plastic
strain (macroplastic) regimes. The cyclic constitutive model extends an existing microstruc-
ture-based Ramberg–Osgood type model, called MicroROM, for representing the stress-strain
curves of Ni-based superalloys subjected to monotonic loading to cyclic loading by
considerations of pertinent dislocation mechanisms in face-centered cubic (fcc) alloys and
metals. The dislocation mechanisms considered include multipole trapping of dislocation
pileups on parallel slip planes and its breakdown by cross slip, leading to the formation of
low-energy dislocation structures by multiple slip. These considerations of the various
dislocation mechanisms lead to a Ramberg–Osgood type constitutive model that describes
the strain hardening response associated with single slip in the low cumulative plastic strain
regime (before macroscopic yielding at 0.2 pct plastic strain offset), the strain hardening
response during multiple slip in the high cumulative plastic strain regime (beyond macroscopic
yielding at greater than 0.2 pct plastic strain offset), and the evolution of cyclic hardening to
cyclic softening induced by the onset of shear localization. Applications of the extended cyclic
plasticity model to several fcc metals and Ni-based superalloys are presented.
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I. INTRODUCTION

THE safe and efficient utilization of metallic mate-
rials in engineering structures subjected to cyclic loading
requires an accurate cyclic plasticity model for repre-
senting the fatigue response including strain localiza-
tion, crack initiation resistance and damage tolerance.
One of the constitutive models that is commonly used in
structural analyses and life-prediction assessment is the
Ramberg–Osgood (RO) constitutive model,[1] which is
given by

Det
2

¼ Dee
2

þ Dep
2

½1�

where the total strain amplitude is taken to be com-
prised of the sum of the elastic strain amplitude, as
given by

Dee ¼
Dr
E

½2�

and a plastic strain amplitude, Dep/2. The plastic strain
amplitude is related to the stress amplitude, Dr/2,
according to a power-law, which can be expressed as

Dr
2

¼ k
Dep
2

� �n

½3�

where n is the strain hardening exponent and k is the
strength coefficient. Both k and n are empirical con-
stants. For monotonic loading, k and n are evaluated by
plotting stress, r, and plastic strain, ep, in a double
logarithmic plot. For cyclic loading, the empirical
constants are evaluated by plotting the stress amplitude
and the plastic strain amplitude of the stable hysteresis
loops at cyclic saturation in a double logarithmic plot to
obtain the slope, n, and the stress intercept, k. In case of
cyclic softening, the stress amplitude and the plastic
strain amplitude at the half fatigue life are used instead
of the hysteresis loops. The RO model does not contain
any internal variable so that integration of evolution
equations of the internal variables is not necessary. As
such, the RO model can be applied easily and efficiently.
The Ramberg–Osgood model is implemented in a
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probabilistic life-prediction software, DARWIN�,[2] for
performing structural analyses and life-prediction
assessments of aero-engine components.

Recently, there has been a lot of interest in developing
physics-based yield stress and constitutive models[3–7]

for predicting the onset of yielding as well as predicting
the stress-strain response of Ni-based superalloys as
functions of grain size as well as microstructural
variables such as the volume and size of primary,
secondary, and tertiary c� precipitates. One particular
physics-based constitutive model is the microstruc-
ture-based Ramberg–Osgood Model, MicroROM,[7]

which describes the stress-strain response of Ni-based
superalloys under monotonic loading conditions. One of
the significant features of MicroROM is the use of two
strain hardening regimes[7,8]: (1) self-hardening (n1) of
the operative slip plane in the low plastic strain regime
(before macroscopic yielding at less than 0.2 pct plastic
strain offset under monotonic loading), and (2) latent
hardening of multiple slip systems (n2) in the high plastic
strain regime (beyond macroscopic yielding at greater
than 0.2 pct plastic strain offset under monotonic
loading) for describing the hardening response of
Ni-based superalloys. In MicroROM,[7,8] the strain
hardening exponents, which are n1 and n2, are correlated
with microstructural variables such as the volume
fractions and sizes of primary, secondary, and tertiary
c¢ precipitates. The observation of two hardening
regimes was also made in Ni-based superalloys subjected
to cyclic loading.[9,10] Furthermore, cyclic softening has
also been treated and incorporated into a RO-type
constitutive model.[9] According to this RO-type power-
law, the stress amplitude, ra, is governed by a power-law
of the cumulative plastic strain according to

ra ¼ k Nepa
� �n ½4�

where N is the number of fatigue cycles and epa is the
plastic strain amplitude. Since Nepa represents the
cumulative plastic strain, the low and high plastic
strain regimes correspond to low and high cumulative
plastic strain regimes, respectively. The strain harden-
ing exponent, n, is given by the slope of a double plot
of log ra vs log epa, resulting in

n ¼ d log rað Þ
d log Nepa

� � ¼ d log rað Þ
d log Nð Þ ½5�

since the imposed plastic strain amplitude is typically a
constant for cyclic loading under an applied strain
amplitude. The power-law approach is different from
the relation of linear strain hardening, dr/dep, vs stress
that is often used for analyzing the strain hardening
behaviors of fcc metals and alloys.[11] It is important to
note that Eqs. [3] and [4] are different and can lead to
different n values after the onset of cyclic softening. In a
previous study,[9] Chan showed that for Ni-based
superalloys, Eqs. [3] and [4] provided similar n values
prior to cyclic softening but led to different n values
after the onset of cyclic softening and shear localization

due to shearing of c¢ precipitates by dislocations.
Therefore, Eqs. [3] and [4] can be expected to result in
different n values for fcc alloys after the onset of cyclic
softening and shear localization.
The onset of cyclic softening in Ni-based superalloys

has been shown to arise from two different dislocation
mechanisms: (1) shearing of the ordered c¢ phases (L12
structure) by {111} slip into two halves, and (2)
interaction of {111} slip with forest dislocations at the
c/c¢ interface.[9,10] Despite these advances, the origin of
the variability of strain hardening response in the low
and high cumulative plastic strain regimes remains
unclear. The dislocation mechanisms that control the
transition of strain hardening in the low plastic strain
regime (before macroscopic yielding) to those in the high
plastic strain regime (beyond macroscopic yielding)
remains elusive. To address these unresolved questions,
an investigation has been undertaken to elucidate the
cyclic hardening and softening mechanisms in face-cen-
tered cubic (fcc) metals and alloys for the purposes of
identifying the dislocation processes operative in the low
and high cumulative plastic strain regimes, with partic-
ular attention focused on the transition of self-harden-
ing of single slip to latent hardening of multiple slip
systems. Single-phase fcc metals and alloys have been
selected for detailed examination and mechanistic mod-
eling because considerable information on the disloca-
tion mechanisms are available in the literature. In
addition, the dislocation mechanisms in the single-phase
fcc metals and alloys are not as complicated as those
found in two-phase Ni-based superalloys, which contain
shearable c¢ precipitates (L12 structure) dispersed in the
fcc c matrix. Slip processes in the two-phase Ni-based
superalloys are also complicated by cross slip from the
{111} planes to {010} planes to form incomplete and
complete Kear–Wilsdorf (K-W) locks.[12]

The objective of this article is to present the results of
an investigation focused on the formulation of a cyclic
plasticity model that is capable of treating the strain
hardening and softening response of structural alloys on
the basis of the dislocation mechanisms and structures
associated with the underlying slip processes so that the
sources of possible variability of cyclic strain hardening
behavior can be identified and quantified. The frame-
work of the cyclic plasticity model is motivated by cycle
hardening and softening response and dislocation mech-
anisms reported for single-phase fcc metals and alloys in
the literature.[13–29] These experimental observations are
highlighted in Section II. Formulation of the Ram-
berg–Osgood (RO) type cyclic plasticity model is pre-
sented in Section III. The proposed Ramberg–Osgood
type model treats cyclic hardening in the low and high
cumulative plastic strain regimes, as well as the onset of
cyclic saturation followed by cyclic softening. Experi-
mental evidence for the support of the proposed cyclic
plasticity model is presented in Section IV. Model
applications for several fcc metals and a Ni-based
superalloy are presented in Section V, followed by
Discussion and Conclusions

3432—VOLUME 54A, SEPTEMBER 2023 METALLURGICAL AND MATERIALS TRANSACTIONS A



II. CYCLIC HARDENING AND SOFTENING
IN FCC METALS AND ALLOYS

An extensive collection of cyclic hardening and
softening curves have been reported by Li et al.[13] for
[�1 4 14]-oriented Ag single crystals tested at ambient
temperature under fully reversed plastic strain-con-
trolled conditions at a strain ratio, Re, of � 1.
Figure 1 presents a double logarithmic plot of shear
stress amplitude vs fatigue cycles for two shear strain
amplitudes, which can be individually analyzed on the
basis of Eqs. [4] and [5]. Three cyclic hardening/soften-
ing regimes can be discerned in Figure 1: (1) a small
strain hardening exponent (n1) in the low cumulative
plastic strain regime, (2) a larger strain hardening
exponent (n2) in the high cumulative plastic strain
regime, and (3) a negative strain hardening exponent
(n3) in the cyclic softening regime. The changes from n1
to n2 and from n2 to n3 are rather large, signifying
substantial changes in the underlying dislocation struc-
tures during strain cycling. It should also be worthwhile
to point out that the extent of the low cumulative plastic
strain regime may be reduced by strain cycling at a
higher strain amplitudes, as shown in Figure 1. As
reported previously by Li et al.,[13] the low cumulative
plastic strain regime was dominated by single slip on a
primary {111} slip plane. The high cumulative plastic
strain regime was the results of the activation and
interaction of intense primary and secondary slip. The
cyclic softening regime corresponded to the onset of the
formation of persistent slip bands (PSBs)[14–17] and the
dislocation ladder structure. Similar behaviors have
been observed in Cu[14–17] and Au[18] single crystals.

The cyclic hardening behaviors of Cu-30 pct Zn
(a-brass) single crystals, a planar slip materials, tested
under fully reversed strain-controlled conditions (Re =
� 1) are presented in Figures 2(a) and (b) for low and
high plastic strain amplitudes, respectively. At high

plastic strain amplitudes of Dc/2> 1.5 9 10�4, the
relation between shear stress amplitude, sa, and fatigue
cycle, N, in a double logarithmic plot is typically linear,
as shown in Figure 2(a). At a lower plastic strain
amplitude (Dc/2 = 3.8 9 10�5), however, the relation
between log sa vs N is bilinear and shows an apparent
cyclic saturation in the second stage. The n1 value is high
initially with n1 = 0.1099, but decreases to almost to
zero (n1 = 3.67 9 10�4) with increasing fatigue cycles,
as shown in Figure 2(a). Both slopes are labelled as n1
because the cumulative plastic strain is well below that
for macroscopic yielding (NDc/2< 3.8 9 10�3). The
dislocation structure in this regime has been character-
ized as dislocation patches with segments of multi-
poles.[19–21] The change of the n1 value observed at this
plastic strain amplitude is not well understood but the
apparent cyclic saturation suggests a possible break-
down of multipoles and PSB formation. At high plastic
strain amplitudes (above Dc/2 = 6 9 10�4), bilinear
cyclic hardening curves are observed with a low n1 value
(n1< 0.0461) that transitions to a higher n2 value

Fig. 1—A double logarithmic plot of shear stress amplitude vs
fatigue cycles for [�1 4 14]-oriented Ag single crystal[13] tested under
fully reversed plastic strain-controlled conditions (Re = � 1)
showing: (1) a low cumulative plastic strain regime with a small
strain hardening exponent (n1), (2) a high cumulative plastic strain
regime with a larger strain hardening exponent (n2), and (3) a cyclic
softening regime with a negative strain hardening exponent (n3).

(a)

(b)

Fig. 2—Cyclic hardening curves of Cu–30 pct Zn[19,20] tested under
fully reversed strain-controlled conditions (Re = � 1): (a) low plastic
strain amplitudes (below Dcp/2 = 3 9 10�4), and (b) high plastic
strain amplitudes (above Dcp/2 = 6 9 10�4).
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(n2> 0.3578) during strain cycling, as shown in
Figure 2(b). The transition was caused by a massive
multiplication of dislocations as the results of primary
and secondary slip.[19–21]

The cyclic hardening/softening curves of [�5 7 9]-ori-
ented Al single crystal,[22] a wavy slip material, and
those of polycrystalline 3003 Al[23] are also available in
the literature. Both alloys show a plateau region in the
cyclic hardening curve similar to that observed in Cu-30
pct Zn[19,20] and Cu single crystals.[14,15] The plateau
region has been attributed to the formation of a
two-phase dislocation structure[14,15] consisted of a
ladder structure amid a structure of dislocation patches,
loops, and veins.

Figures 3(a) and (b) show the cyclic hardening and
softening curves of [�1 2 3]-oriented (single slip-ori-
ented) Ni crystals[24] and polycrystalline Ni,[25] respec-
tively. Both were tested under fully reversed
strain-controlled conditions (Re = � 1). Figure 3(a)
shows that the Ni single crystals exhibit a low strain
hardening exponent (n1 = 0.0157) in the low cumula-
tive plastic strain regime but transition to higher strain
hardening exponents as the fatigue cycles and the

corresponding accumulated plastic strains are increased
at both 292 K and 433 K. Cyclic softening is seen to
commence as fatigue cycling exceeds 2 K to 3 K cycles.
According to Bretschneider et al.,[24] the dislocation
structure associated with the cyclic softening regime was
the ladder structure of persistent slip bands. In
Figure 3(b), the cyclic hardening and softening curve
of polycrystalline Ni shows a high cumulative plastic
regime with a strain hardening exponent of n2 = 0.3176
without a low n1 and the absence of a low cumulative
plastic strain regime. The cyclic softening region com-
mences at about 1 K cycles with an n3 value of about
� 0.00794. The onset of the cyclic softening regime
started with the formation of the ladder structure and
persistent slip bands.[25] The slip band spacing in
polycrystalline Ni200 has also been shown to decrease
with increasing cyclic straining.[26]

The cyclic hardening and softening curves of several
single-phase structural alloys, which include Hastelloy
C-22HS,[27] 316L stainless steel (SS),[28] and Alloy 617[29]

tested under fully reversed strain-controlled conditions
(Re = � 1), are presented in Figure 4. For all three alloys,
the strain hardening exponents are relatively low, typically

(a)

(b)

Fig. 3—Cyclic hardening and softening curves of single crystal Ni[24]

and polycrystalline Ni[25]: (a) [�1 2 3]-oriented Ni crystals, and (b)
polycrystalline Ni.

(a)

(b)

Fig. 4—Cyclic hardening and softening curves of Hastelloy
C-22HS,[27] 316L SS,[28] and Alloy 617[29] tested under fully reversed
strain-controlled conditions (Re = � 1): (a) Hastelloy C-22HS and
316L SS, and (b) Alloy 617.
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of those encountered in the low cumulative plastic strain
regime. A higher strain exponent (n2) typically that of the
high cumulative plastic strain regime is absent in these
alloys. Instead, all three alloys exhibit cyclic softening with
a negative n3 value ranging from almost zero (n3 =
8.37510�3) to n3<� 0.021. The cyclic softening regimes
in the three alloys have been identified to arise from the
formation of the ladder structure and persistent slip bands,
as well as the presence of intrusions and extrusions on the
fatigued surfaces.[27–29]

A summary of the strain hardening exponents in the
low cumulative plastic strain regime and in the high
cumulative plastic strain regime for single-phase fcc
single crystals and polycrystalline alloys is presented in
Figure 5, which plots the n1 and n2 values as a function
of the plastic strain amplitudes. The mean value of n1 is
0.049 ± 0.087, while the mean value of n2 is about
0.322 ± 0.250. The ± values that follow the mean
values are the standard deviations. These mean values
and the standard deviations can be utilized to derive the
distributions of the n1 and n2 values. The ranges of n1
and n2 are also indicated in Figure 5 to show the large
variability of the n1 and n2 values. There is a small
overlap between the low and the high plastic strain
regimes at n1 = n2 = 0.18-0.20. These n1 and n2 values
are similar to those previously reported for Ni-based
superalloys with the c + c¢ microstructure.[7–10]

III. PROPOSED RO-TYPE CYCLIC
CONSTITUTIVE MODEL

The proposed cyclic plasticity model is an extension of
MicroROM[7] to treating cyclic loading conditions. The
approach is to replace stress and plastic strain in the

power-law relation in MicroROM with the correspond-
ing stress amplitude (Dr/2) and the cumulative plastic
strain, NDep/2, leading to a RO-type constitutive model
given by[9]

Dr
2

¼ k NDep=2
� � NDep

2

� �n NDep=2ð Þ
½6�

where k is the strength coefficient, n is the strain hard-
ening exponent, and N is the number of fatigue cycle.
The cumulative strain is given by NDep/2. As evi-
denced by the experimental data presented in
Figures 1, 2, 3 and 4, the presence of multi-linear rela-
tions between stress and fatigue cycles in the double
logarithmic plot results in the variation of the stress
intercepts, which represent the strength coefficients at
various plastic strain regimes. Thus, k(NDep/2) can be
taken to evolve with plastic deformation according
to[9]

k NDep=2
� �

¼ k1 þ k2 � k1ð Þ 1� exp �b1N
Dep
2

� �� �
½7�

where k1 is the strength coefficient in the low cumulative
plastic strain regime and k2 is the strength coefficient in
the high cumulative plastic strain regime. In addition, a
k3 term, which is the strength coefficient of the cyclic
softening regime, is also necessary for treating cyclic
saturation and cycling softening. In Eq. [7], b1 is an
empirical constant that controls the rate of change of k
from k1 to k2 with increasing cumulative plastic strains.
The value of k3 is not described by Eq. [7] but is
determined by the stress at the onset of cyclic saturation
or softening.
The experimental data shown in Figures 1, 2, 3, and 4

suggest that the strain-hardening exponent (n) can be
taken to be[8,9]

n NDep=2
� �

¼ n1 þ n2 � n1ð Þ 1� exp �b2N
Dep
2

� �� �
½8�

where n1 is the strain-hardening exponent in the low
cumulative plastic strain regime, and n2 is the strain
hardening exponent for the high cumulative plastic
strain regime. Like the k3 term, an n3 term, which is the
cyclic strain softening exponent, is not described by
Eq. [8], but is dependent on the cyclic saturation or
softening mechanism. Both Eqs. [7] and [8] are of the
Voce-type,[30] which describe the evolutions of n and k
from initial values of n1 and k1 to asymptotic values of
n2 and k2 with increasing cumulative plastic strains,
respectively. These parameters of ki and ni (i = 1, 2, and
3) are illustrated in Figure 6. Based on the experimental
evidence highlighted in Figures 1 through 4, the low
cumulative plastic strain regime is dominated by the
single slip or mostly single slip, while the high cumula-
tive plastic strain regime is dominated by slip on
multiple slip systems. In contrast, cyclic softening
represents the onset of the formation of the ladder
structure and persistent slip bands with the occurrence
of intrusions and extrusions on surface grains. Formu-
lations of the mechanistic models for strain hardening

Fig. 5—Plot of n1 and n2 vs plastic strain amplitude for single-phase
fcc single crystals and polycrystalline alloys. The n1 and n2 values
were determined from experimental data reported in the
literature.[13,19,20,22–29]
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and softening in the low and high cumulative plastic
strain regimes are presented in the sections below.

A. Strain Hardening in the Low Cumulative Plastic
Strain Regime

The small n1 value in in the low cumulative plastic
strain regime has been observed in single crystals
oriented for single slip, e.g., in the [�1 2 3] orientation
located at the center of the standard stereographic
triangle. The dislocation structure is generally described
as patches or veins. There is only one operative slip
plane with dislocations with one Burgers vector.[31] The
dislocation patches and veins are comprised mostly of
multipoles on parallel slip planes.[31] Theoretical calcu-
lations by Neumann[32] on the interactions of a free
dislocation with dipoles and subsequent computations
by Hazzledine[33] on interactions of multipoles on
parallel slip planes have shown that there are four types
of dislocation interactions, including: (1) interchange,
(2) destruction, (3) equilibrium, and (4) passing, depend-
ing on the relative positions of free dislocation with
respect to the dipoles or multipoles. Under certain
circumstances, the dipoles and multipoles can be unsta-
ble and be destroyed by the interacting dislocations. In
contrast, multipoles on parallel slip planes can cause
dislocation trapping[34] that results in work hardening
under monotonic loading. The analysis by Hazzledine[34]

showed that coplanar trapping of multipoles on parallel
slip planes resulted in a power-law with a strain
hardening exponent of 1/3, as given by[34]

s ¼ sk þ
Gb

8p 1� mð Þ
18

7bLas

� �1=3

c1=3p ½9�

where sk is the friction stress of the slip system, G is
shear modulus, m is Poison’s ratio, b is magnitude of
Burgers vector, Las is the mean distance between active
dislocation sources, and cp is the plastic shear strain.
The 1/3 exponent in Eq. [9] is the result of a random
distribution of active dislocation sources that leads to a

quadrupling of the number of dislocations from these
sources per stress increment.[34] The mean distance, Las,
is related to the density of active dislocation sources.[34]

The multipole trapping model of Hazzledine[34] is
extended to treat cyclic hardening in the low cumulative
plastic strain regime where single slip is operative. A
multipole of dissociated dislocations formed on two
parallel slip planes under cyclic loading is shown
schematically in Figure 7(a). At a distance less than
that for passing, the dislocation loops on the two
parallel slip planes are trapped and resist further slip
unless the applied stress range is increased, thereby
providing self-hardening for single slip. For cyclic
loading, Eq. [9] can be modified to obtain

Dr
2

¼M2=3 Dsk
2

� �
1þ Gb

4p 1� mð ÞDsk
18

7bLas

� �1=3
" #

Dep
2

� �1=3

½10�

when Dr is stress range, Dep is the plastic strain range,
and M is the Taylor factor. It is noted that the relations
of Dr = MDsk and Dep = Dcp/M

[35] are invoked and
substituted into Eq. [9] to obtain Eq. [10]. According to
this model, the strain hardening exponent is 1/3, which
is higher than those observed experimentally in the low
cumulative plastic strain regime. The reason for the
overprediction is due to the fact that the separation
distance between the multipoles may not always be
favorable for trapping, as trapping is only one of the

(a)

(b)

Fig. 7—Self-hardening of dislocation multipoles on parallel slip
planes in the low cumulative plastic strain regime: (a) schematics of
dislocation multipoles on parallel planes, (b) strain hardening
exponent (n1) and interaction probability (Ip) as a function of
normalized distance y/yc.

Fig. 6—Plot of cyclic stress amplitude vs cumulative plastic strain
depicts: (1) n1 and k1 in the low cumulative plastic strain regime, (2)
n2 and k2 in the high cumulative plastic regime, and (3) n3 and k3 in
the cyclic softening regime.
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four possible types of dislocation interactions. Beside
trapping and interchange, other interactions include
destruction, equilibrium, and passing. Destruction can
lead to softening, while equilibrium and passing lead to
a strain hardening of zero. Thus, only trapping can lead
to a positive strain hardening exponent. The overall
level of strain hardening depends on the probability of
occurrence for these four types of interactions. These
interaction probabilities were computed previously by
Hazzledine[33] as a functions of friction stress, and the
relative distance y, defined in Figure 7(a), of a disloca-
tion pile-up normalized by the critical distance, yc, for
multipole breakdown due to cross slip. A slip line is
created when a dislocation passes through the slip plane
at distance y, thus the distance y can be referred as the
slip line spacing, as commonly done in the literature.
Table I summaries the interaction probability, Ip, for
multipole trapping as a function of the ratio of y/yc for
both low and high friction stresses. The product of Ip
and the strain hardening exponent for trapping nt = 1/3
gives the overall value for the strain hardening exponent
n1, which is dependent on the ratio of y/yc. These results
of computed n1 values are tabulated in Table I and
presented in Figure 7(b), which shows n1 and Ip as a
function of y/yc in a double logarithmic plot. The results
show clearly that the n1 and Ip values are essentially
independent of the value of the friction stress, sk, and
depend mainly on the y/yc ratio, which represents the
relative distance of a multipole compared to the critical
distance for maximum trapping prior to multipole
breakdown due to cross slip.

The multipole configuration is not always stable.[31–33]

The stability of a multipole configuration depends on
the spacing of the multipoles, ls. According to Saada,[36]

the dislocations of the multipoles experience an attrac-
tive stress, which is given by[36]

rat ¼ �Gb

ls
½11�

where rar is the attractive interaction stress. The
attractive stress is, however, resisted by the stress from
the forest dislocations, given by[36]

rf ¼ af
Gb

lf
½12�

where af is a constant and lf is the spacing associated

with the forest dislocation. Equilibrium of the disloca-
tions in the multipoles requires that

ls
lf
¼ a�1

f ½13�

The value of af ranges from 0.3 to 0.5.[36] Thus, the ls/
lf ratio is between 2 and 3, as shown in Figure 7(b). The
result indicates that the multipoles may become unsta-
ble when y/yc is less than 3. At y/yc< 3, the attractive
stress on the dislocations in the multipoles can cause one
or more dislocations to cross slip, which in turn lead to
the collapse of the multipoles. Based on these consid-
erations, the range of n1 values that can be achieved by
single slip via the multipole trapping mechanism in the
low plastic strain regime is from 0 to 0.165. This range of
n1 values is in agreement with the experimental data
shown in Figure 5. Thus, the variability of the n1 value
in the low cumulative plastic strain regime originates
from a variation in the slip line spacing (y) from the
critical distance for maximum trapping (yc).
Previously, Chan has shown the strain hardening

exponent of Ni-based superalloys is given by[7]

n1 ¼
qsk
qf

½14�

where qsk is the density of superkinks in a dislocation
forest of density, qf. For single-phase fcc alloys, the
counterpart of the superkink density is the sum of the
mobile kink density, qmk, and cross-slip dislocation
density, qxs. Thus,

n1 ¼
qmk 1þ vsð Þ

qf
½15�

with

vs ¼
qxs
qmk

½16�

where the ratio of qmk=qf in Eq. [15], which can be
taken to be the strain hardening contributed by dislo-
cation trapping, is given by

qmk

qf
¼ 0:3

y

yc

� ��0:908

½17�

based on the results presented in Figure 7(b). Eq. [16]
is the ratio of cross-slip dislocation density to the
mobile kink density. In the absence of cross slip and
near the point of instability, the strain hardening expo-
nent decreases from 0.111 to 0.090 for y/yc ratios
increasing from 3 to 4, as shown in Figure 7(b). In
addition, Figure 7(b) also shows that the strain hard-
ening exponent further decreases from 0.09 to 0 when
the y/yc ratio increases from 4 to ¥. Within the sin-
gle-slip region, the qmk=qf ratio shows an average value
of n1 = 0.051 at y/yc = 7.0, while the onset of
cross-slip may be set at y/yc = 4 so that n1 = 0.09,
leading to qxs=qf = 0.039 and vs = 0.765. The critical
value yc is defined by the breakdown of the multipoles
that occurs when cross slip allows dislocations to

Table I. A Summary of Interaction Probability (Ip) and
Computed n1 Value for Multipole Trapping. Values of Ip and

nt (= 1/3) are Taken from Hazzledine[33]

y/yc Ip (low sk) ntIp (low sk) Ip (high sk) ntIp (high sk)

1 1 0.333 1 0.333
2 0.54 0.162 0.55 0.165
4 0.29 0.087 0.31 0.093
6 0.20 0.060 0.21 0.063
8 0.15 0.045 0.15 0.045
¥ 0 0 0 0
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escape from the pile-up of multipoles. According to
Wang,[20] the expression for yc is given by[20]

yc ¼
Gb sin f 1� cos fð Þ
2psk /p � /c

� � ½18�

where sk is the yield or friction stress in shear, f is the
angle between the primary slip plane and the cross-slip
plane, and /p and /c are the Schmid factors of the
primary slip and the cross-slip systems, respectively. On
the other hand, the propensity of a material to cross-slip
depends on the stacking fault energy,[20] dislocation core
effects leading to splitting and the formation of partial
dislocations,[37] and the ability of a screw segment to
constrict and cross-glide onto a cross-slip plane.[38] The
critical distance, yc, is therefore expected to vary with
the stacking fault energy and types of partial disloca-
tions as both affect the ease of cross slip.

The strength coefficient, k1, for the low cumulative
plastic strain regime can be obtained from Eq. [10] by
accounting for an n1 value that can range from 0 to 0.33,
leading to

k1 ¼ M2=3sk 1þ 3n1Gb

8p 1� mð Þsk
18

7bLas

� �1=3
" #

½19�

where the material parameters include the friction stress
(sk), the shear modulus (G), the magnitude of the
Burgers vector (b), and the mean distance between active
dislocation sources (Las).

B. Strain Hardening in the High Cumulative Plastic
Strain Regime

Single slip in the low cumulative plastic strain regime
can transition to multiple slip in the high cumulative
plastic strain regime when the flow stress is increased.
Multiple slip can arise from activation of secondary slip
and/or cross slip. While cross slip can maintain the same
Burgers vector as that involved in the primary slip,
secondary slip would require the activation of a second
Burgers vector. When a dislocation line on the primary
slip plane comes into contact with a dislocation from an
intersection secondary slip or cross slip, the two inter-
section dislocations would react to form three possible
characteristic segments[37,39,40]: (1) a mobile dislocation
segment (kink), (2) a sessile segment (an immobile
dislocation lock), and (3) a cross-glide segment. The
cross-glide segment may not occur if a cross slip plane
does not intersect with the primary slip plane. The three
dislocation segments or junctions are illustrated
schematically in Figure 8(a). Most of the dislocations
in the dislocation forest in fcc materials are split into
partials on the {111} planes.[37,40] Since dislocation
dissociation on either of the two possible {111}
close-packed planes is equally probable for a given
Burgers vector, formations of mobile, sessile, and
cross-glide junctions are equally probable, leading to a
maximum of one-third each for these three types of
attractive intersections.[40] The densities of mobile,
sessile, and cross-glide dislocations are expected to
evolve due to dislocation interactions during plastic

deformation. Furthermore, the mobility of these inter-
section junctions are distinctly different. The mobile
dislocation segment can expand, multiply, and propa-
gate on the primary slip plane via the Frank-Reed
mechanism.[41] The sessile segment is immobile and
resist further dislocation motion, but it contributes to
the forest dislocation density. These sessile segments can
be the Hirth locks,[42] the Lomer-Cottrell locks,[43–45]

multi-junctions,[46] and collinear dislocation configura-
tions,[47,48] in the order of increasing junction
strengths.[48] The Hirth lock is formed as the result of
the interaction of two Shockley 1/6< 1 2 1> partial
dislocations to form a 1/3< 0 1 0> sessile disloca-
tion.[42] The Lomer-Cottrell lock is formed as the
reaction of two 1/6< 1 2 1> partial dislocations to
form a 1/2< 1 0 1> sessile dislocation on a {0 0 1}
plane, which is not a slip plane. In contrast, the
cross-glide segment is of the screw dislocation type that
can cross slip onto a cross-slip plane when it becomes

(a)

(b)

Fig. 8—(a) Schematics of dislocation intersections forming mobile
junction, sessile junction, and cross-glide junction, and (b) strain
hardening exponents n1 and n2 in the low and high cumulative
plastic strain regimes, respectively. The n1 and n2 values were
evaluated based on experimental data reported in the
literature.[13,19,20,22–25]
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constricted, depending on the stacking fault energy, and
the presence of any dissociations into partials at the
dislocation core. The cross-glide segment can cause
significant strain hardening by rapid multiplication of
dislocation via the double cross-slip mechanism.[49,50]

Dynamic high-voltage transmission electron microscopy
(TEM) observations by Fujita and Yamada[51] have
confirmed that work hardening in Al occurs by dislo-
cation multiplications via the Frank-Reed mechanism[41]

in the micro-plastic strain regime but proceeds via the
double cross-slip mechanism[49,50] near the onset of
macro-plastic deformation (yielding). In fcc metals such
as Cu and Al, a cell structure is formed when the three
Burgers vectors on a {111} slip plane are all activated so
that formation and rotation of the cell structure is
feasible.[16,17] For multiple slip in the high plastic strain
regime, the strain hardening exponent, n2, that results
from latent hardening of multiple activated slip systems
can be expressed as

n2 ¼ Nsn1 ¼
Nsqmk 1þ vsð Þ

qf
½20�

where Ns is the number of slip systems activated. For
polycrystalline materials, five independent slip systems is
required for plastic compatibility among grains. Thus,
Ns = 5; as a result, n2 has an average value of 0.255 and
an upper bound (UB) value of 0.45, based on the
corresponding values of 0.051 and 0.09 for n1. The
predicted n2 values are presented in Figure 8(b), which
are generally in agreement with the experimental data.
The variability of the n2 value originates from the
inherent variability of n1 as well as variations in the
number of slip systems activated.

The strength coefficient, k2, for the high plastic strain
regime is likely determined by one or more of several
low energy dislocation structures that are formed during
cyclic loading of fcc metals and alloys. In particular, it is
well-documented that the dislocation patches and the
vein structure formed in the low cumulative plastic
strain regime are replaced by a two-phase structure[14]

containing dislocation veins and the ladder structure.
Depending on the crystal or grain orientation and strain
amplitude, other low-energy dislocation structures that
include the walled structure, the labyrinth or maze
structure, and the cell structure are possible.[13,16,31] A
generic expression for the strength coefficient, k2, for the
high cumulative plastic strain regime is[37,51]

k2 ¼ aGb
ffiffiffiffiffi
q2

p ½21�

where a is a function of the volume fraction of the ladder
structure and the ratio of the flow stress of the ladder
structure to that of the dislocation patches, and q2 is the
forest dislocation density associated with the high
cumulative plastic regime, which may be correlated with
the density of an equilibrium two-phase dislocation
structures containing PSBs in a matrix of dislocation
patches or veins.[14] The expression for a, which is
available in the article by Saada and Veyssiere,[37] is
functions of material parameters related to the disloca-
tion structure and mobility. Similarly, k1 can also be
expressed in terms of Eq. [21] by replacing q2 with q1

where q1 is the forest dislocation density associated with
the low cumulative plastic regime.
The forest dislocation density, qf, can be considered to

evolve during plastic cycling from an initial value, q1, to
the saturated value, q2, by the expression given by[7]

qf ¼ q1 þ q2 � q1ð Þ 1� exp �b3N
Dep
2

� �� �
½22�

where b3 is an empirical constant. Besides the forest
dislocation density, the strength coefficient can also be
related to the slip line spacing, k, or the dislocation
cell size, lf. Previously, Chan has shown that the slip
line spacing is given by[8]

k ¼ Dg
ko
k2

� �2 Dep
2

� ��2n2

: ½23�

where ko is an empirical constant related to the Hall–-
Petch constant and Dg is the grain size. As reported
earlier, the slip line spacing may exhibit a critical lower
limit, k*, given by[8]

k� ¼ alb
k2

¼ 0:286 lm ½24�

based on a = 0.3, l = 8.156 9 10+4 MPa, and
b = 2.8 9 10�10 m. The critical lower bound limit is
likely determined by the relevant dislocation structure
and represents the mean dislocation cell size.

C. Cyclic Softening

Experimental evidence indicates that the onset of
cyclic softening in fcc metals and alloys commences with
the formation of the ladder structure from dislocation
patches in the vein structure to form a two-phase
dislocation structure.[14] The volume fraction of the
ladder structure increases with increasing plastic strain-
ing and eventually results in a predominantly ladder
structure when all of the dislocation patches are
transformed to the ladder structure.[24] The cyclic
softening regime can be described in terms of the
expression given by

Dr
2

¼ k3
NDep
2

� �n3

½25�

where k3 is the strength coefficient and n3 is the cyclic
softening exponent. The value of n3 can be determined
using Eq. [5] and the k3 value can be obtained as the
stress intercept. These model parameters (k3 and n3) are
defined in Figure 6. The n3 value is typically negative for
cyclic softening, but can also be zero when cyclic
saturation occurs. A negative n3 value can generally be
attributed the onset of the formation of the ladder
structure for both single crystal[13–18,24] and polycrys-
talline materials[25,27–29] and a zero value of n3 can be
attributed to the formation of cyclic saturation in the
form of a stable cell size such as those found in single
crystal Al[22] and in a polycrystalline Al alloy.[23] The
strength coefficient k3 can be related to the critical stress
for the onset of the ladder structure, which is also the
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critical stress for the instability of the dislocation patch
structure. The transition from strain hardening due to
multiple slip in the high cumulative plastic strain regime
to the cyclic softening regime has yet to be formulated
since numerous dislocation mechanisms are involved
and the effort is reserved for future work.

IV. EXPERIMENTAL EVIDENCE
AND SUPPORTS FOR THE PROPOSED MODEL

Experimental data from the literature are utilized to
support the cyclic plasticity model. Figure 9 shows a
verification of the evolution of the strain hardening
exponent n, Eq. [8], as a function of cumulative plastic
strain for Cu-30 pct Zn (a-brass).[19,20] The n1 values
were determined from the low cumulative plastic strain
regimes, while the n2 values were evaluated from the
high cumulative plastic strain regimes for various plastic
strain amplitudes in the plots shown in Figures 2(a) and
(b), which show the determination of the n1 and n2
values according to Eq. [5] over the range of relevant
fatigue cycles. The specific n values are plotted in
Figure 9 as a function of the cumulative plastic strains
which were obtained as the product of the number of
fatigue cycles and the plastic strain amplitudes. In
Figure 9, the various symbols depict the cumulative
plastic strain values over which the n values are
obtained. The results show that the n1 values occur at
low cumulative plastic strains, while the n2 values occur
at high cumulative plastic strains. Based on these results,
Eq. [8] was fitted to the experimental data in Figure 9
using n1 = 0.03 (dashed curve) or n1 = 0.04 (solid
curve), n2 = 0.36, and b2 = 0.05. The general trend of
the experimental data is well described by Eq. [8], but
there is considerable scatter in the n1 values compared to
the n2 values.

The evolution of dislocation density in Hastelloy
C-22HS, a single phase Ni-based alloy, subjected to
monotonic and cyclic loading at room temperature was
measured by in-situ neutron diffraction measurements
by Huang et al..[27] For monotonic loading, the speci-
men was tested under a controlled strain rate and was
periodically held under prescribed strain levels where
in-situ neutron diffraction measurements were per-
formed for the entire stress-strain curve. Figure 10(a)
presents the dislocation density as a function of plastic
strain reported by Huang et al.[27] for monotonic
loading (filled circles). For cyclic loading, the fatigue
specimen was tested under fully reverse condition
under ± 1.0 pct strains and 0.5 Hz. The in-situ neutron
diffraction measurements were performed at 7 intervals
within a fatigue cycle at periodic cycles up to 1500
cycles. The dislocation density data for the cyclic case
are plotted vs cumulative plastic strain and are shown in
Figure 10(a) as filled diamonds. The dislocation density
for the cyclic case is in agreement with the monotonic
case initially at low cumulative plastic strains, but
diverge at higher cumulative plastic strains. The cyclic

Fig. 9—The evolution of the strain hardening exponent, n, as a
function of cumulative plastic strain showing its increase from n1 to
n2. The n values were determined on the basis of experimental data
from the literature.[19,20]

(a)

(b)

Fig. 10—Dislocation density (a) and dislocation cell size (b) as a
function of plastic strain (montonic loading) or cumulative plastic
strain (cyclic loading) for Hastelloy C-22HS. The experimental data
are from Huang et al.[27]
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dislocation density appears to saturate at 2.5 9 10+8 #/
cm2, while the dislocation density for the monotonic
case is considerably higher without exhibiting a distinct
saturation limit. Eq. [22] was fitted to the dislocation
density data with an initial density q1 = 1 9 106 #/cm2

and a saturation limit of q2 = 3.5 9 10+9 #/cm2. It is
noted that dislocation density expressed in terms of
number per unit area is equivalently to that expressed in
terms of line per unit volume. Both units are commonly
in the literature to describe dislocation density. The
dislocation density results of Huang et al.[27] were
presented in #/cm2, which is adapted in this paper.
The general trend of the dislocation density measure-
ments is captured by Eq. [22]. It should also be noted
that the low plastic strain regime exhibiting the n1 value
lies well below the yield region (< 0.002 plastic strain).
The yield stress of Hastelloy C-22HS is 370 MPa.[27]

The dislocation spacing measurements reported by
Huang et al.[27] for Hastelloy C-22HS for monotonic
and cyclic loading are presented in Figure 10(b), which
shows the dislocation spacing as a function of plastic
strain. For monotonic loading, the initial dislocation
spacing (i.e., cell size) is essentially constant prior to the
onset of macroscopic yielding. In this case, the disloca-
tion spacing is about 20 lm, which is smaller than the
average grain size of 90 lm. Beyond macroscopic
yielding (0.2 pct plastic strain offset), the dislocation
cell size decreases with increasing plastic strains with a
slope of � 0.9089, which is in agreement with Eq. [23]
and the previous result observed in a Ni-based super-
alloy.[8] For cyclic loading, the dislocation spacing is in
agreement with that of the monotonic case prior to
yielding, but appears to show a saturation level that is
different from that of the monotonic case. It is possible
that the cyclic loading case is different because the
applied plastic strain range was limited to ± 1 pct and
the number of fatigue cycles was limited to 1500 cycles
only so that the limiting cell size could not be reached
within the applied fatigue cycles.

One of the potential applications of the cyclic
plasticity model is in the prediction of fatigue crack
nucleation, which is signified by the onset of softening
followed the formation of fatigue crack formation. The
number of fatigue cycles, N*, at which the onset of cyclic
softening occurs has been identified for various fcc
alloys.[13,18,24,25,27] The plastic strain range in shear is
shown as a function of N* in a double logarithmic plot
in Figure 11. A regression fit for Ag single crystals
results in a slope of � 0.6, which defines the onset cyclic
softening. TEM evidence indicates that the onset of
cyclic softening corresponds to the onset of persistent
slip band (PSB) formation.[14] The plot in Figure 11,
which is reminiscent of that of plastic strain amplitude vs
fatigue life cycle, shows that N* corresponds to the
formation of PSBs and the event can be viewed as the
precursor for the onset of fatigue crack formation. Also
shown in Figure 11 are the data points for Au SC, Ni
SC, polycrystalline Ni, and polycrystalline Hastelloy
C-22HS.[27] The results of these metals and alloys are

generally in agreement with the Ag data and the
regression line.

V. MODEL APPLICATIONS

A. Single-Phase Metals and Alloys

The key equations of the proposed constitutive model
include Eqs. [6] through [8]. The key variables are the
strain hardening exponent, n, and the strength coeffi-
cient, k, which have been described in terms of mobile
dislocation density and forest dislocation density
through Eqs. [14], [20], and [21]. Since the appropriate
dislocation densities were not available, applications of
the proposed model therefore were focused on Eqs. [6]
through [8] using experimental data of n1, n2, k1, and k2
that were available from this study, as presented in
Figures 1 through 4. The metals selected for model
applications included Ag, Cu-30wt pct Zn, and Ni single
crystals, as well as polycrystalline Ni. The inputs to the
model were the n1, n2, k1, and k2 values determined from
the experimental data.[13,19,20,24,25] These parameters
were used in conjunction with Eq. [6] to compute the
cyclic stress vs cumulative plastic strain response for
various metals and alloys. The empirical constants b1
and b2 in Eqs. [7] and [8] were obtained by fitting the
calculated stress amplitude to cumulative plastic strain
curves to the experimental data. The calculations
encompassed the low cumulative plastic strain regime
and the transition regime until the calculated curves
merged with the high cumulative plastic strain regime.
Thus, the calculated stress amplitude vs cumulative
plastic strain curves are not independent model predic-
tions, but merely fitted to the experimental data. For the
onset of cyclic softening, Eq. [25] was utilized and fitted
to the experimental data to determine the k3 and n3
values. The values of ki, ni, b1, and b2 for these model
calculates are listed in Table II.

Fig. 11—Plot of shear strain amplitude vs the number of fatigue
cycles for Re = � 1 at the onset of cyclic softening and PSB
formation. Experimental data are from the literature.[13,18,24,25,27]
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Figure 12(a) presents the calculated cyclic shear stress
amplitude vs cumulative plastic shear strain curve
compared to the experimental data for Ag single
crystals.[13] The good agreement indicates that Eqs. [7]
and [8] provide adequate representations of the evolu-
tion of n and k values with increasing cumulative shear
strains when b1 and b2 are properly chosen. In addition,
the cyclic softening curve is adequately represented by
Eq. [25]. Similarly, the results for Cu-30wt pct Zn single
crystals[19,20] and Ni single crystals[24] are presented in
Figures 12(b) and (c), respectively. In the transition
from the low to the high cumulative plastic regime, the
flow stress increases with increasing cumulative plastic
shear strains due to increases in the n and k values. For
both metals, the evolution of n and k with cumulative
plastic strains are well represented by Eqs. [7] and [8],
respectively. The cyclic softening regime is absent for
Cu-30wt pct Zn because such data had not been
reported by the original authors[19,20]. Figure 12(d)
presents the calculated results for polycrystalline Ni.[25]

There is a good fit of the hardening response for the high
cumulative plastic strain regime and the cyclic softening
regime. The low cumulative plastic strain is absent for
this alloy because the original authors[25] did not report
the stress-plastic strain response in this regime. For Ag
single crystals, Ni single crystals, and polycrystalline Ni,
the transition from cyclic hardening to cyclic softening
occurs rather abruptly at the peak stress.

B. Ni-Based Superalloys

The applicability of the proposed RO-type model to
treat the cyclic stress-strain behaviors of single-phase fcc
alloys and Ni-based superalloys with the c/c¢microstruc-
ture canbe elucidatedby considering the characteristics of
the various model parameters for the two groups of
structural alloys, which are summarized in Table III. For
both types of alloys, the low cumulative plastic strain
regime is dominated by single slip with self-hardening
being controlled by multipole trapping.[34] The transition
from the low to the high cumulative plastic strain regime is
influenced by cross slip either by mobile ordinary dislo-
cation kinks or superkinks.[7–10] The high cumulative
plastic strain regimes in single-phase fcc alloys and
two-phase superalloys are both dominated by multiple
slip with latent hardening and the n2 values being
controlled by dislocation intersections to form mobile
kinks and sessile dislocation locks. The strength coeffi-
cient is related to the strength of the Lomer-Cottrell
locks[43,44] in fcc alloys, but is controlled by the strengths
of incomplete and complete K-W locks[12] in Ni-based
superalloys. For cyclic softening due to localized slip, the
softening mechanism is related to the formation of the
ladder structure[14,15] and/or the cell structure,[16,17,31]

while it is shearing of the c¢ precipitates in Ni-based
superalloys. By virtues of these similarities, Eqs. [6]
through [8] and multipole hardening are likely applicable
to treat the deformation behavior of the Ni solid solution
matrix (c phase) in c/c¢Ni-based superalloysmechanisms.
The k and n parameters in the proposedmodel, Eq. [6], are
formulated to evolve with the cumulative plastic strain
from initial values of k1 and n1 to asymptotic values of k2

and n2 according to Eqs. [7] and [8], respectively. In
contrast, the k and n parameters in the traditional RO
model are based on the stable hysteresis loops at cyclic
saturation. Thus, the k and n parameters in the ROmodel
correspond to k2 and n2 in the current model, Eq. [6], with
N = 1 for the cyclic strain-strain curves at saturation. In
addition, the current study has also identified conditions
where the low plastic strain regime and the high plastic
regime can overlap such that k1 = k2 and n1 = n2. The
overlapped region of n1 and n2 is shown in Figure 8(b),
which also depicts the corresponding variabilities. For
illustration purposes, the cyclic plasticity model has been
incorporated with MicroROM for predicting the cyclic
stress-strain response ofNi-based superalloys. The result-
ing model, dubbed Cyclic MicroROM, has been applied
to predicting the cyclic stress-strain response of a pow-
der-metallurgy (PM) Ni-based superalloy called ME3
with the supersolvus microstructure subjected to fatigue
cyclic under strain-condition at a strain ratio of Re = 0.
The grain size is 24 to 34 lm. The volume fractions and c¢
sizes are 0.56 and 0.294 lm for secondary c¢ precipitates
and they are 9.659 10�5 and 4.29 10�3 lm for tertiary c¢
precipitates, respectively. The values of n1 and n2 were
calibrated to be 0.15 and the values of k1 and k2 were
calibrated to be 2914 MPabyfittingmodel calculations to
experimental data. Other pertinent material constants for
ME3 can be found in earlier publications.[7,8] The
calculated stress range and mean stress for ME3 at
977 K are presented in Figure 13(a), while the corre-
sponding plastic strain range are presented as a function
of total strain in Figure 13(b), respectively. The calculated
stress range, mean strain, and plastic strain range are
compared against experimental data of ME3 from
NASA.[53,54] Figures 13 (a) and (b) show that the
agreement between model calculations and experimental
data are good for the stress ranges in Figure 13(a) and for
the plastic strain ranges in Figure 13(b). The computed
mean stress values agree with experimental data at low
total strain ranges, but are too high at larger total strain
range (>0.5 pct). The higher mean stresses were reduced
by a shakedown scheme that lowered the mean stress
value, rm, with increasing plastic strain ranges according
to an exponential decay law, as given by

rm ¼ rmo exp �c1Dep
� �

½26�

where rmo is the initial elastic mean stress and c1 is an
empirical constant. The rate of decay is controlled by
the empirical constant, c1. The shakedown scheme re-
duced the mean stress values to match the experimental
data, as shown in Figure 13(a). The shakedown
scheme requires an accurate prediction of the plastic
strain ranges in the micro-plastic regime, as shown in
Figure 13(b). An inspection of the results indicates that
an n1 value of 0.15 is located at the boundaries between
single slip in the low cumulative plastic strain regime
and multiple slip in the high cumulative plastic strain
regime, despite the applied total strain range is less than
0.8 pct. This finding indicates that the low and high
plastic strain regimes might be overlapped and justifies
the conditions of setting n1 = n2 = 0.15 and using
k1 = k2 = 2914 MPa. The shakedown of mean stresses
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occur at stress amplitudes of 500-750 MPa. These
stresses compare favorably with the critical stress for
cross slip in Ni-based superalloys, which is about
542 MPa.[8] Thus, the shakedown of mean stresses
appears to correspond to the activation of cross slip
and lies beyond the stability limit of multipole trapping
associated with self-hardening of single slip plane by
multipole hardening.

VI. DISCUSSION

One of the significant results of this investigation is
the demonstration of the applicability of the power-law
hardening formulation in the RO-type model for repre-
senting the cyclic hardening behavior of fcc metals and
alloys. To the author’s knowledge, this is the first time
that the different strain hardening values (n) in the low
and high cumulative plastic strain regimes have been

Table II. Summary of the Model Constants Utilized in the Calculations of Cyclic Stress Amplitude—Cumulative Plastic Strain

Curves for Selected fcc Metals and a Ni-Based Superalloy

Metals/alloys k1, MPa k2, MPa k3, MPa n1 n2 n3 b1 b2

Ag SC 8.65 24.0 29.22 0.0421 0.4081 � 9.782 9 10�3 0.35 0.35
Cu-30 pct Zn SC 19.33 120 — 0.03 0.3637 — 0.018 1 9 10�6

Ni SC 20.75 135.0 68.18 0.0157 0.2754 � 0.03067 0.42 0.36
Poly. Ni — 261.41 217.37 — 0.3106 � 7.941 9 10�3 — —
ME3 2914 2914 — 0.15 0.15 — — —

(a)

(b)

(c)

(d)

Fig. 12—Comparisons of the calculated and experimental data of stress amplitude vs cumulative plastic strain: (a) Ag single crystals, (b) Cu-30wt
pct Zn single crystals, (c) Ni single crystals, and (d) polycrystalline Ni. The calculated curves are fitted to experimental data from the
literature.[13,19,20,24,25]
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identified, evaluated, correlated, and linked to the
underlying operative dislocation mechanisms in sin-
gle-phase fcc metals and alloys. It is noted that none of
the original authors in the literature had analyzed their
experimental data in this manner[13–29] nor in the review
of this subject manner.[31] In particular, this investiga-
tion shows that the strain hardening exponent (n) can be
related to the ratio of the mobile dislocation density to
the total forest dislocation density and the strength
coefficient (k) is directly linked to the total forest
dislocation density raised to the 1/2 power. The rela-
tionship between strength coefficient and dislocation
density is supported by the well-known relationship
between flow stress and dislocation density reported in
the literature.[37,52] In contrast, the treatment of strain
hardening response under either monotonic or cyclic
loading is fundamentally different from the approach
that relates the strain hardening rate, dr/dep, to
decreasing stress that is frequently applied to fcc metals
and alloys.[11] Thus, the proposed approach offers a new
perspective and understanding of the cyclic strain
hardening behavior of fcc metals and alloys. When
two intersection dislocations react during plastic strain-
ing, the mobile segment forms in conjunction with a
sessile segment and a potential cross-slip seg-
ment.[37,39,40] Each of these segments is at most one
third of the total intersection dislocation line.[40] Thus,
the value of the mobile dislocation density is expected to
be a fraction of the total forest dislocation density. As
shown previously by Chan,[7] the strain hardening
exponent can be derived by considering the dislocation
multiplication process and is given by the ratio of the
mobile dislocation density to the total forest dislocation
density.[7] Instead of performing dislocation density
measurements, the strain hardening exponent can be
measured from a double logarithmic plot of stress vs
plastic strain curve for monotonic loading[7] and from a
double logarithmic plot stress amplitude vs cumulative
plastic strain curve for cyclic loading.[8,9]

By analyzing the cyclic stress—cumulative plastic
strain data in the literature,[13–29] this investigation has
revealed that a low n1 value in the low cumulative plastic
strain regime (i.e., the micro-plastic region) originates
from slip on a single slip system in a single crystal or
grains in polycrystalline alloy that are oriented for single
slip with one activated Burgers vector.[31] Self-hardening
of the slip plane is caused by trapping of multipoles
located on parallel slip planes.[34] The level of self-hard-
ening increases with decreasing distances between the
slip planes.[33,34] The strain hardening exponent (n1) in
the low cumulative plastic strain regime has a small
value when the slip line spacing is large such that
multipoles trapping is weak or non-existent. As
microplastic straining continues, the slip bands harden
and force activation of slip on parallel slip planes with
decreasing spacing, thereby promoting higher levels of
multipole trapping and increasing strain hardening.
Single slip continues until the activation of slip on the
cross slip and/or secondary slip plane,[13,16–26] which
leads to multiple slip with two or more activated Burgers
vectors in the transition to the high cumulative plastic
strain regime. A dislocation cell structure is formed in

fcc metals and alloys when the three Burgers vectors on
a {111} slip plane are all activated to enable rotation of
the cell structure around the< 111> axis.[16,17] The
high cumulative plastic strain regime, therefore, involves
multiple slip on five independent slip systems. This
sequence of cyclic hardening processes has been mod-
eled in Eqs. [7] and [8] using the strain hardening (n) and
the strength coefficient (k) as internal variables, which
variations during the plastic strain process are described
in appropriate evolution equations, without the need to
identify or specify the exact dislocation variables or
structures.
Using experimental values of ni and ki (i = 1, 2 and 3)

evaluated for several fcc metals, the proposed RO-type
model, Eq. [6] and the evolution equations for n, Eq. [7],
and k, Eq. [8], were utilized to compute the cyclic stress
amplitude vs cumulative plastic strain curves for Ag,
Cu-30 pct Zn, and Ni single crystals, as well as that for
polycrystalline Ni by calibrating the empirical constants,
b1 and b2, in Eqs. [7] and [8] to fit the model to the
experimental data. The calculated curves, presented in
Figure 12, indicate that the increase in the calculated
cyclic stress amplitude in the low and high cumulative
plastic regimes including the transition region are in
good agreement with the experimental data. Thus, the
calculated curves are consistent with the experimental
observations that single slip is dominant in the low
cumulative plastic strain regime, multiple slip is domi-
nant in the high cumulative plastic regime, and a
transition from single slip to multiple slip occurs with
increasing cumulative plastic strains. This finding is also
consistent with Eqs. [15] and [20] which correlate the
values of n1 and n2 with the number of slip systems
activated. It is also important to point out that in
Figure 5, the range of n1 in low cumulative plastic strain
regime overlaps with the range of n2 in the high plastic
strain regime. Within the overlapped region, n1 = n2
and k1 = k2 so that Eq. [5] can be reduced to the
traditional RO model with both n and k being constant
and independent of plastic strains or fatigue cycles
because of cyclic saturation.
By virtues of Eqs. [15], [20], and [21], the cyclic

plasticity model depicted in Eq. [6] can be expressed in
an alternative form as given by,

Dr
2

¼ aGb qf½ �1=2 NDep
2

� �qm=qf
½27�

which indicates that the proposed RO-type cyclic
plasticity model is fully described by the evolutions of
forest dislocation density and the ratio of mobile density
to the forest dislocation density. The first term on the
right-hand side (RHS) of Eq. [27] is well established in
the literature,[37,52] while the second term on the RHS of
Eq. [27] is a finding that is deduced from Eqs. [15], [20]
and the model calculations shown in Figure 12. Eq. [27]
is also consistent with the experimental data shown in
Figure 12, which show different cyclic hardening behav-
iors in the low and high cumulative plastic regimes. The
functional forms of n and k in the evolution equations,
Eqs. [7] and [8], are also consistent with the experimental
data presented in Figures 9 and 10, respectively. In
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particular, Figure 9 shows that the Voce equation[30]

with two asymptotic values of n1 and n2 represents a
good description of the strain hardening response of
Cu–30 pct Zn. The higher n2 value supports that notion
that the higher cumulative plastic regime involves
dislocation intersections on multiple slip systems as
postulated in Eq. [20], and the n1 values is consistent
with single slip in the lower cumulative plastic regime as
given in Eq. [15]. Thus, Eq. [9] is fully supported by the
experimental data presented in Figure 8(b). Further-
more, Figure 10 shows that the measured dislocation
density in cyclically deformed Hastelloy is adequately
represented by the Voce equation[30] with two asymp-
totic values of q1 and q2 for the low and high plastic
regimes, respectively. This finding is consistent with the
notion that q1 may be associated with forest dislocation
density formed by multipole hardening by single slip,[34]

while the larger q2 is consistent with the formation of
low-energy dislocation structures by slip on multiple slip
systems.[14,31,36,37]

Another finding of this investigation is that the
dislocation spacing is essentially constant in the low
cumulative plastic strain regime (plastic strain< 0.04 –
0.05), as shown in Figure 10(b) for Hastelloy. In
contrast, the dislocation spacing (i.e., cell size) decreases
with increasing plastic strains in the high cumulative
plastic strain regime (plastic strain> 0.04 – 0.05) due to
the activation of multiple slip. In the low cumulative
plastic strain regime, the dislocation spacing is deter-
mined by the spacing of the active dislocation
sources[55,56] and single slip occurs via the Frank-Reed
mechanism.[41] On the other hand, the dislocation
spacing in the high cumulative plastic strain regime is
determined by multiple slip via the double cross-slip
mechanism,[49,50] depending on the propensity to cross-
slip based on stacking fault energy and dislocation core
effects. Furthermore, the mean distance or spacing, Las,
between active dislocation sources can be related to the
anelastic modulus and the density of active dislocation
sources.[55,56]

The current cyclic plasticity model is formulated on
the basis of dislocation mechanisms pertinent in sin-
gle-phase fcc metals and alloys. As such, the cyclic
plasticity model has the same framework and share
many characteristic as the previous model for two-phase
Ni- based superalloys.[7–10] For both single-phase Ni-al-
loys and two-phase Ni-based superalloys with the c/c¢
microstructure, the strain hardening exponent is deter-
mined by the ratio of the mobile dislocation density to
the forest dislocation density. Mobile kinks are relevant
in the fcc c-alloys, while superkinks are pertinent in the
Ni-based superalloys with the c/c¢ microstructure.[7–10]

Self-hardening of (111) slip in single-phase Ni-alloys is
facilitated by multipole trapping. In Ni-based superal-
loys, (111) slip first occurs in the c phase and then (111)
slip penetrates the c¢ phase via a pair of superdisloca-
tions separated by an antiphase stacking fault. Based on
this consideration, it appears that multipole trapping
that occurs in the c phase should also contribute to
self-hardening of (111) slip in the c¢ phase in Ni-based
superalloys as (111) shearing of the c¢ phase also occurs
on parallel planes and it should induce dislocation
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trapping in c¢ since cross slip is more difficult in the c¢
precipitates than in the c phase. The identification of
dislocation trapping during planar slip in Ni-based
superalloys is another important finding since this
particular hardening mechanism has not been consid-
ered or appreciated in earlier studies.[3–10] In a previous
study,[8] it has been shown that the strain hardening
exponent, n1, in the low plastic strain regime of Ni-based
superalloys is given by

n1 ¼
6x
p

f21 þ f22
	 


½28�

where f1 and f2 are the volume fractions of primary and
secondary c¢ precipitates in the Ni-based superalloys,
respectively; x is the average number of superkinks per
unit number of forest dislocation per c¢ precipitate.
Previously, the x parameter has been evaluated by using
experimental values of n1, f1, and f2, and x was
determined to be about 0.1168 by fitting to experimental
data.[8] By recognizing that the n1 value in the c phase
and the c¢ phase is essentially the same when multipole

trapping occurs, the n1 value may be computed via
Eqs. [15] through [17] in the absence of cross slip. The
resulting n1 value may then be used in conjunction with
Eq. [28] to evaluate the value of x based on experimen-
tal values of f1 and f2. On this basis, the x parameter can
be considered as a measure of strain hardening value
arising from multipole trapping of super-dislocation
pairs in the ordered c¢ phase. The value of x = 0.1168 is
consistent with the upper bound value for n1 for fcc
metals and alloys shown in Figure 5, providing potential
support that multipole hardening may be similar in both
the c and the c¢ phases.

VII. CONCLUSIONS

Dislocation mechanisms have been incorporated into
a phenomenological cyclic plasticity model based on the
Ramberg–Osgood type formulation to describe the
evolution of the strength coefficients and strain harden-
ing exponents in the low and high cumulative plastic
regimes of fcc metals and alloys. The evolution laws
provide new perspective and understanding for analyz-
ing the cyclic stress-strain response of this class of alloys.
The conclusions reached as the results of this investiga-
tion are as follows:

1. The strain hardening behavior of single-phase fcc
metals and alloys has been shown to exhibit a
bilinear strain hardening behavior manifesting a
small strain hardening exponent (n1) in the low
cumulative plastic strain (microplastic) regime and a
higher strain hardening exponent (n2) in the high
cumulative plastic strain (macroplastic) regime. The
value of n2 is typically about 5x of the n1.

2. The small n1 value in the low plastic strain regime
can be attributed to arise from single slip in grains
or crystals that are oriented for easy slip. The
variations in the n1 value can be attributed to
variations in the slip line spacing and cyclic hard-
ening due to multipole trapping of dislocation
arrays on parallel slip planes with the same Burgers
vector. The upper limit of the n1 values in the low
plastic strain regime is affected by the breakdown of
multipole trapping resulting from cross slip and/or
secondary slip.

3. The high n2 value in the high cumulative plastic
strain regime in single-phase fcc metals and alloys
has been shown to correlate with multiple slip that
are known to increase with increasing the number of
slip systems activated and the formation of mobile,
sessile, and/or cross-glide junctions.

4. An extended cyclic plasticity model of the Ram-
berg–Osgood type is formulated to incorporate
dislocation mechanisms that exert an influence on
material parameters such strain hardening exponent
(n) and strength coefficient (k). The model is
capable of representing the cyclic hardening (n1
and n2) and softening (n3) behaviors exhibited by
single-phase fcc metals and alloys. Model calcula-
tions for Ag, Cu–30 pct Zn and Ni single crystals
revealed that the evolutions of the n and k values

(a)

(b)

Fig. 13—Comparison of calculated and measured stress-strain
response of ME3 subjected to strain-controlled cycling at Re = 0 at
977 K: (a) stress range and mean stress vs total strain range, and (b)
plastic strain range vs total strain range. Experimental data are from
NASA.[53,54]
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with plastic straining are consistent with experi-
mental observations of single slip in the low
cumulative strain regime, multiples slip in the high
cumulative plastic strain regime, and a transition
from low n1 to high n2 values with increasing
number of activated slip systems with increasing
cumulative plastic strains.
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