Experimental Investigation and Thermodynamic Description of the Co–Nb–Zr System

JIAXING SUN, CUIPING GUO, CHANGRONG LI, and ZHENMIN DU

The liquidus surface projection and isothermal sections at 1100 and 1000 °C of the Co–Nb–Zr system were constructed by analyzing the solidification morphology of as-cast alloys and annealed microstructure of the equilibrated alloys and diffusion couples. Six primary solidification areas were obtained in the liquidus surface projection, and four primary solidification areas were deduced from the binary phase diagram. Additionally, three three-phase regions at 1100 °C and five three-phase regions at 1000 °C were determined in the isothermal sections. Based on the experimental information, a thermodynamic description of the Co–Nb–Zr system was established using the CALPHAD (CALculation of PHAse Diagram) method. The thermodynamic models of intermetallic phases $Co_{11}Zr_2$, $Co_{23}Zr_6$, $CoZr_2$, Co_7Nb_2 , λ_1 , λ_2 and λ_3 , were described as $(Co)_{11}(Nb,Zr)_2$, $(Co)_{23}(Nb,Zr)_6$, $(Co,Zr)(Nb,Zr)_2$, Co_7Nb_2 , $(Co,Nb)_2(Co,Nb)$, $(Co,Nb,Zr)_2(Co,Nb,Zr)$ and $(Co,Nb)_2(Co,Nb)$, respectively. CoZr₃ and μ were modeled as $(Co,Zr)(Co,Zr)Zr_2$ and $(Co,Nb,Zr)_1(Nb,Zr)_4(Co,Nb,Zr)_2(Co,Nb,Zr)_6$. Moreso, CoZr with the structure of B2 was described as an ordered phase of bcc_A2. Thus, a reasonable thermodynamic description of the Co–Nb–Zr system was obtained, and the experimental information was well reproduced.

https://doi.org/10.1007/s11661-023-07089-7 © The Minerals, Metals & Materials Society and ASM International 2023

I. INTRODUCTION

Co-BASED alloys can be widely used in critical industrial materials such as magnetic materials and superalloys due to the addition of Nb, Ta, Mo, Ti, Zr, V, and other elements.^[1–5] Additionally, Nb improves the stability of γ' and increases the volume fraction of $\gamma'(L1_2)$ -precipitates.^[6] Moreover, Nb can precipitate granular MC-type carbide at grain boundaries, improving the alloy's lasting strength.^[7] However, acicular or flaky secondary carbides are precipitated at the grain boundaries by adding Nb, which decreases the alloy's plasticity and durability.^[8] Additionally, Zr segregates at grain boundaries to reduce defects, thereby improving the strength and ductility of as-cast alloys.^[9] Zr can also form MC-type carbides in Co-based superalloys, effectively strengthening the alloy matrix.^[10] Notably, the atomic radii of Zr and Nb are close, and Nb and Zr with the same bcc structure can form an infinite solid solution bcc(Nb, Zr). Thus, alloys containing Nb and Zr have excellent corrosion resistance.^[11] Therefore, it is essential for the phase relationships of the Co–Nb–Zr system to understand the phase stability and transformation in Co-based alloys with the addition of Nb and Zr.

The current work mainly investigates the phase relationships at 1100 and 1000 °C and the liquidus surface projection. The CALPHAD (CALculation of PHAse Diagram) method^[12] is one of the efficient ways of material design. A thermodynamic description of the Co–Nb–Zr system by CALPHAD was performed, and the experimental information was reproduced with the obtained thermodynamic parameters. Importantly, the reasonable thermodynamic description of the Co–Nb–Zr system is integral to constructing a multicomponent thermodynamic database of Co-based superalloys.

II. LITERATURE INFORMATION

A. The Co-Nb System

In the Co–Nb system, there are five intermetallics Co₇Nb₂, Co₃Nb (λ_3), Co₂Nb (λ_2), Co₁₆Nb₉ (λ_1), and Co₇Nb₆ (μ).^[13] Stein *et al*.^[14] studied the Co–Nb system from 800 to 1380 °C utilizing diffusion couples and equilibrium alloys, and found that the compositions of Nb in the Laves phases of λ_3 , λ_2 , and λ_1 ranged from 24.5 to 25.5 at. pct, 26 to 35.3 at. pct, and 35.8 to 37.4 at. pct, respectively. Subsequently, several scholars

JIAXING SUN, CUIPING GUO, CHANGRONG LI, and ZHENMIN DU are with the Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China. Contact e-mail: duzm@ustb.edu.cn, cpguo@ustb.edu.cn

Manuscript submitted February 7, 2023; accepted May 3, 2023. Article published online May 28, 2023

Fig. 1—Binary phase diagrams: (a) Co–Nb system^[19]; (b) Co–Zr system modified in this work; (c) Nb–Zr system.^[29] Reprinted from Refs. [19] and [29] with permission from Elsevier.

System	Phase	Strukturbericht	Person symbol	Space group	Prototype	References
Co–Nb	Co ₇ Nb ₂		<i>m</i> S36	<i>mC</i> 18	Ni ₇ Zr ₂	[14]
	λ_1	C14	hP12	$P6_3/mmc$	$MgZn_2$	[13]
	λ_2	C15	cF24	Fd-3m	Cu ₂ Mg	[13]
	λ_{3}^{-}	C36	hP24	$P6_3/mmc$	MgNi ₂	[13]
	μ	$D8_a$	hR39	R-3m	Fe_7W_6	[13]
Co–Zr	$Co_{11}Zr_2$			Pcna	_	[20]
	$Co_{23}Zr_6$	$D8_a$	<i>cF</i> 116	Fm-3m	$Mn_{23}Th_6$	[20]
	Co_2Zr	C15	cF24	Fd-3m	Cu ₂ Mg	[20]
	CoZr	B2	cP2	Pm-3m	CsCl	[20]
	$CoZr_2$	C15	cF96	Fm-3m	Ti ₂ Ni	[20]
	$CoZr_3$	D0 ₁₉	hP2	$P6_3/mmc$	Mg ₃ Cd	[20]

Table I. Crystallographic Data of Individual Compounds in the Co-Nb-Zr System

conducted the thermodynamic optimization of the Co–Nb binary phase diagram.^[15–19] Furthermore, the thermodynamic optimization of the Co–Nb system was re-evaluated while evaluating the ternary system Co–Nb–Ti by Wei *et al.*,^[19] which was able to match the Co-based superalloy thermodynamic database, and adopted in this work. The calculated Co–Nb phase diagram is exhibited in Figure 1(a).

B. The Co-Zr System

The Co–Zr phase diagram was first studied by Pechin et al.,^[20] and they identified five compounds Co₁₁Zr₂, Co₂₃Zr₆, Co₂Zr (λ_2), CoZr, and CoZr₂. Bataleva et al.^[21] investigated the Co–Zr system and found the existence of CoZr₃ by using metallography, EPMA, and XRD methods. More recently, Liu et al.^[22] found that the temperature of peritectoid reaction bcc(Zr) + CoZr₂ \leftrightarrow CoZr₃ was about 985 °C by using DTA (Differential

	Measur sit	ed Alloy ions (at. I	Compo- Pct)		Phase Compositions (at. Pct)			
No.	Со	Nb	Zr	Primary Solidification Phases	Co	Nb	Zr	Solidification Paths
a1	91.2	2.1	6.7	fcc(Co)	98.8	1.1	0.1	$\lim_{n \to \infty} \frac{1}{2} \int \frac{1}$
a2	90.4	4.3	5.3	fcc(Co)	97.4	2.3	0.3	$liq. \rightarrow fcc(Co) + Co_{23}Zr_6$ $liq. \rightarrow fcc(Co)$ $liq. \rightarrow fcc(Co) + Co_{23}Zr_6$
a3	92.7	5.6	1.7	fcc(Co)	96.4	3.5	0.1	$liq. \rightarrow fcc(Co)$
a4	79.8	3.3	16.9	λ_2	76.5	3.2	20.3	$\begin{aligned} & \text{liq.} \to \text{fcc(Co)} + \lambda_2 \\ & \text{liq.} \to \lambda_2 \\ & \text{liq.} + \lambda_2 \to C_2 - Z_2 \end{aligned}$
a5	82.8	5.9	11.3	λ_2	76.5	7.7	15.8	$\begin{aligned} & \text{liq.} + \lambda_2 \Rightarrow \text{Co}_{23}\text{Zr}_6 \\ & \text{liq.} + \lambda_2 \Rightarrow \text{Co}_{23}\text{Zr}_6 \\ & \text{liq.} + \lambda_2 \Rightarrow \text{Co}_{23}\text{Zr}_6 \\ & \text{liq.} \Rightarrow \text{Co}_{23}\text{Zr}_6 \end{aligned}$
a6	81.9	8.5	9.6	λ_2	75.8	13.0	11.2	$liq. \rightarrow licc(Co) + Co_{23}Zr_6$ $liq. \rightarrow \lambda_2$ $liq. \rightarrow fcc(Co) + \lambda_3$
a7	82.1	5.9	12.0	λ_2	76.7	15.2	8.1	$\begin{aligned} & \text{liq.} \rightarrow \lambda_2 \\ & \text{liq.} \rightarrow \lambda_2 \\ & \text{liq.} + \lambda_2 \rightarrow \text{Co}_{23}\text{Zr}_6 \\ & \text{liq.} \rightarrow \text{Co}_{23}\text{Zr}_6 \end{aligned}$
a8	81.7	3.1	15.2	λ_2	78.4	17.5	4.1	$\begin{aligned} & \text{liq.} \to \text{fcc}(\text{Co}) + \text{Co}_{23}\text{Zr}_6 \\ & \text{liq.} \to \lambda_2 \\ & \text{liq.} \to \text{fcc}(\text{Co}) + \lambda_2 \\ & \text{liq.} \to \text{Co}_{23}\text{Zr}_6 \end{aligned}$
a9	80.3	18.6	1.1	λ_2	82.7	18.6	1.7	$\begin{aligned} & \text{liq.} \to \text{fcc(Co)} + \text{Co}_{23}\text{Zr}_6 \\ & \text{liq.} \to \lambda_2 \\ & \text{Vi} = \lambda_2 \end{aligned}$
a10	75.3	3.9	20.8	λ_2	75.8	4.2	20.0	$\begin{array}{l} \text{liq.} \rightarrow \text{fcc(Co)} + \lambda_2 \\ \text{liq.} \rightarrow \lambda_2 \end{array}$
a11	75.2	6.0	18.8	λ_2	71.7	7.0	21.3	$\begin{array}{l} \text{liq.} + \lambda_2 \to \text{Co}_{23}\text{Zr}_6\\ \text{liq.} \to \lambda_2\\ \end{array}$
a12	75.4	16.2	8.4	λ_2	72.0	18.6	9.4	$\begin{array}{l} \ln q. + \lambda_2 \to \operatorname{Co}_{23} Zr_6 \\ \ln q. \to \lambda_2 \\ \ln q. \to \int \operatorname{fac}(Cq) + \lambda_2 \end{array}$
a13	75.2	10.6	14.2	λ_2	75.5	10.2	14.3	$\begin{array}{c} \operatorname{liq.} \rightarrow \operatorname{lec}(\operatorname{CO}) + \lambda_2 \\ \operatorname{liq.} \rightarrow \lambda_2 \end{array}$
a14	74.9	9.1	16.0	λ_2	73.6	10.0	16.4	$\begin{aligned} & \lim_{\Omega_{1}} \to \operatorname{fcc}(\operatorname{Co}) + \lambda_{2} \\ & \lim_{\Omega_{2}} \to \lambda_{2} \\ & $
a15	75.4	5.4	19.2	λ_2	78.0	5.2	16.8	$\begin{array}{c} \operatorname{liq.} + \lambda_2 \rightarrow \operatorname{CO}_{23} \Sigma I_6 \\ \operatorname{liq.} \rightarrow \lambda_2 \end{array}$
a16	75.0	3.4	21.6	λ_2	76.5	3.4	20.1	$\begin{aligned} & \lim_{\Omega_{1}} \dots \to \text{fcc}(\text{Co}) + \lambda_{2} \\ & \lim_{\Omega_{2}} \dots \to \lambda_{2} \end{aligned}$
a17	56.6	3.6	39.8	λ_2	63.9	2.6	33.5	$\begin{array}{c} \operatorname{liq.} + \lambda_2 \to \operatorname{CO}_{23} \mathbb{Z} \mathbb{I}_6 \\ \operatorname{liq.} \to \lambda_2 \\ - \end{array}$
a18	58.2	6.5	35.3	λ_2	63.2	5.0	31.8	$\begin{aligned} & \text{liq.} \to \text{CoZr} + \lambda_2 \\ & \text{liq.} \to \lambda_2 \end{aligned}$
a19	65.0	21.1	13.9	λ_2	63.3	19.5	17.2	$liq. \rightarrow CoZr + \lambda_2$ $liq. \rightarrow \lambda_2$
a20	63.8	16.9	19.3	λ_2	63.3	15.4	21.3	$\begin{aligned} & \text{liq.} \to \mu + \lambda_2 \\ & \text{liq.} \to \lambda_2 \\ & \text{liq.} \to \mu + \lambda \end{aligned}$
a21	66.5	25.2	8.3	λ_2	57.0	27.5	15.5	$\begin{array}{c} \operatorname{liq.} \rightarrow \mu + \lambda_2 \\ \operatorname{liq.} \rightarrow \lambda_2 \end{array}$
a22	40.2	3.6	56.2	CoZr	48.2	2.0	49.8	$\begin{aligned} & \ln q. \to \mu + \lambda_2 \\ & \ln q. \to \text{CoZr} \\ & \ln q. \to \text{CoZr} \end{aligned}$
a23	40.0	5.9	54.1	CoZr	47.8	2.6	49.6	$\begin{array}{c} \text{liq.} \rightarrow \text{CoZr} + \text{CoZr}_2 \\ \text{liq.} \rightarrow \text{CoZr} \end{array}$
a24	39.5	10.6	49.9	CoZr	47.4	4.7	47.9	$liq. \rightarrow CoZr + CoZr_2$ $liq. \rightarrow CoZr$ $liq. \rightarrow CoZr$
a25	39.5	15.5	45.0	CoZr	48.1	6.8	45.1	$\begin{array}{l} \operatorname{inq.} \to \operatorname{CoZr} + \operatorname{CoZr}_2 \\ \operatorname{liq.} \to \operatorname{CoZr} \\ \operatorname{liq.} \to \operatorname{bcc}(\operatorname{Nb,Zr}) + \operatorname{CoZr} \\ \operatorname{liq.} \to \operatorname{bcc}(\operatorname{Nb,Zr}) + \operatorname{CoZr} + \operatorname{CoZr}_2 \end{array}$

Table II. Primary Solidification Phases and Their Solidification Paths of the Co-Nb-Zr As-Cast Alloys

Table II. continued

	Measured Alloy Com- positions (at. Pct)				Phase Compositions (at. Pct)					
No.	Со	Nb Zr Primar Phases		Primary Solidification Phases	Co Nb		Zr	Solidification Paths		
a26	40.0	20.0	40.0	CoZr	45.4	12.0	41.6	$liq. \rightarrow CoZr$ $liq. \rightarrow bcc(Nb,Zr) + CoZr$ $liq. \rightarrow bcc(Nb,Zr) + CoZr$		
a27	53.3	15.5	31.2	λ_2	65.3	8.4	26.4	$\begin{aligned} &\text{id}. \rightarrow \text{bec(Nb,21)} + \text{cozr} + \text{cozr}_2 \\ &\text{liq}. \rightarrow \mu \\ &\text{liq}. \rightarrow \text{CoZr} + \mu \end{aligned}$		
a28	51.9	17.8	30.3	λ_2	63.7	10.6	25.7	$\begin{aligned} & \text{liq.} \to \text{CoZr} + \lambda_2 + \mu \\ & \text{liq.} \to \mu \\ & \text{liq.} \to \text{CoZr} + \mu \\ & \text{liq.} \to \text{CoZr} + \mu \end{aligned}$		
a29	57.1	24.2	18.7	μ	36.5	33.2	30.3	$\begin{aligned} & \text{liq.} \rightarrow \text{CoZr} + \lambda_2 + \mu \\ & \text{liq.} \rightarrow \mu \\ & \text{liq.} \rightarrow \lambda_2 + \mu \end{aligned}$		
a30	56.4	33.4	10.2	μ	55.4	30.9	13.7	$\begin{array}{l} \lim_{n \to \infty} \lambda_2 + \mu \\ \lim_{n \to \infty} \lambda_2 + \mu \end{array}$		
a31	55.9	38.7	5.4	μ	59.2	36.5	4.3	liq. $\rightarrow \mu$		
a32	56.7	41.1	2.2	μ	50.4	48.3	1.3	$\begin{array}{l} \operatorname{liq.} \to \lambda_2 + \mu \\ \operatorname{liq.} \to \mu \\ \operatorname{liq.} \to \lambda_2 + \mu \end{array}$		
a33	45.9	39.8	14.3	μ	41.3	44.2	14.5	$\begin{array}{l} \lim_{n \to \infty} \mu \\ \lim_{n \to \infty}$		
a34	47.1	43.7	9.2	μ	41.6	30.9	27.5	$\begin{aligned} & \lim_{r \to 0} \mu \\ & \lim_{r \to 0} \mu \rightarrow bcc(Nb,Zr) + \mu \end{aligned}$		
a35	48.5	46.1	5.4	μ	41.0	34.5	24.5	$\lim_{n \to \infty} \mu$		
a30	38.3	40.5	13.2	μ	41.8	4/.4	10.8	liq. $\rightarrow \mu$ liq. $\rightarrow bcc(Nb.Zr) + \mu$		
a37	39.2	49.7	11.1	μ	42.3	50.6	7.1	$\begin{array}{l} \text{liq.} \rightarrow \mu \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} + \mu \end{array}$		
a38	39.2	53.3	7.5	μ	41.7	52.7	5.6	$\lim_{n \to \infty} h_{n} \to h_$		
a39	39.9	55.7	4.4	μ	41.9	54.3	3.8	$\begin{array}{l} \text{liq.} \rightarrow \text{bcc}(\text{Nb},\text{Zr}) + \mu \\ \text{liq.} \rightarrow \mu \\ \text{liq.} \rightarrow \text{bcc}(\text{Nb},\text{Zr}) + \mu \end{array}$		
a40	26.2	5.0	68.8	CoZr ₂	28.2	8.0	63.8	liq. \rightarrow CoZr ₂		
a41	26.9	9.5	63.6	CoZr ₂	27.9	10.5	65.6	$\begin{aligned} & \text{liq.} \rightarrow \text{bcc}(\text{Nb},\text{Zr}) + \text{CoZr}_2 \\ & \text{liq.} \rightarrow \text{CoZr}_2 \\ & \text{lig.} \rightarrow \text{bcc}(\text{Nb},\text{Z}) + \text{CoZr}_2 \end{aligned}$		
a42	21.0	16.6	62.3	bcc(Nb,Zr)	5.5	42.6	51.9	$liq. \rightarrow bcc(Nb,Zr) + CoZr_2$ $liq. \rightarrow bcc(Nb,Zr)$ $liq. \rightarrow bcc(Nb,Zr) + CoZr_2$		
a43	20.8	27.3	51.8	bcc(Nb,Zr)	3.7	69.8	26.5	$\begin{array}{c} \text{liq.} \rightarrow \text{bcc(Nb,Zr)} \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} \\ \end{array}$		
a44	19.7	36.3	44.0	bcc(Nb,Zr)	3.0	83.2	13.8	$liq. \rightarrow bcc(Nb,Zr) + CoZr_2$		
a45	18.5	50.2	31.3	bcc(Nb,Zr)	2.4	86.8	10.8	$liq. \rightarrow bcc(Nb,Zr) + CoZr_{2}$ $liq. \rightarrow bcc(Nb,Zr)$ $liq. \rightarrow bcc(Nb,Zr) + CoZr$ $liq. \rightarrow bcc(Nb,Zr) + CoZr$		
a46	15.9	65.2	18.9	bcc(Nb,Zr)	2.9	90.8	6.3	$liq. \rightarrow bcc(Nb,Zr) + coZr + coZr_2$ $liq. \rightarrow bcc(Nb,Zr)$ $liq. \rightarrow bcc(Nb,Zr) + u$		
a47	18.9	72.6	8.5	bcc(Nb,Zr)	4.8	91.1	4.1	$\begin{array}{l} \text{liq.} \rightarrow \text{bcc(Nb,Zr)} + \mu \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} + \mu \end{array}$		
a48	20.6	75.0	4.4	bcc(Nb,Zr)	5.8	93.5	0.7	$\begin{array}{l} \text{liq.} \rightarrow \text{bcc(Nb,Zr)} + \mu \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} \\ \text{liq.} \rightarrow \text{bcc(Nb,Zr)} + \mu \end{array}$		

Thermal Analysis). Subsequently, many researchers assessed the thermodynamic parameters of the Co–Zr system.^[23–27] Moreso, Durga and Kumar^[23] first adopted an order–disorder model to couple bcc_A2 and CoZr with B2 structure, thereby improving the thermodynamic parameters of the Co–Zr system. To make $G_{Co:Co}^{\lambda_2}$ in the Co–Zr system consistent with $G_{Co:Co}^{\lambda_2}$ in the Co–Zr system, the thermodynamic parameters of λ_2 in Reference 27 were re-optimized in this study. The

calculated Co–Zr phase diagram is shown in Figure 1(b).

C. The Nb–Zr System

Guillermet^[28] obtained the thermodynamic parameters of the Nb–Zr system based on analytical and experimental information. Recently, the thermodynamic parameters of the Nb–Si–Zr ternary system were

Fig. 2—BSE micrographs and XRD patterns of as-cast alloys: (a) and (b) a1; (c) and (d) a3.

evaluated by Li *et al.*^[29] and were used in this work. The calculated Nb–Zr phase diagram is displayed in Figure 1(c). Furthermore, the crystallographic information of each compound in the Co–Nb–Zr system is outlined in Table I.

III. EXPERIMENTAL PROCEDURES

A. Equilibrated Alloy Preparation

High-purity cobalt, niobium, and zirconium (99.99 wt. pct) were used as the raw materials for the as-cast and annealed samples. Each specimen of about 3 g was melted by arc melting (MTI MSM20-7) under the protection of a high-purity argon atmosphere. Pure titanium was used as an oxygen absorber and should be remelted thrice before smelting, and then the samples were smelted at least six times. Under the atmosphere of high-purity argon as the protective gas, the as-cast alloys were encapsulated in quartz tubes. The annealing times of alloys b1-b9, alloys b10-b17 and alloys b18-b23 were 40, 80 and 2 days at 1100 °C, respectively. Additionally, the annealing times of the alloys c1-c8, alloys c9-c17 and alloys c18-c23 were 50, 90 and 3 days at 1000 °C, respectively. Furthermore, the specimens were quenched into ice water following heat treatment.

B. Diffusion Couple Preparation

Even if a long heat treatment time was used, achieving equilibrium is difficult when some refractory elements are contained. The diffusion couple method has been used as an efficient method to study phase equilibrium based on the principle of local equilibrium.^[30] Therefore, to further verify the phase relationships of the Co-Nb-Zr system obtained with the equilibrium alloy at 1000 °C, the diffusion couple method was used. The as-cast Nb80Zr20 (at. pct) alloy obtained by smelting was cut into the blocks of 5 mm \times 5 mm \times 8 mm and annealed at 1200 °C for 108 hours. Subsequently, the contacting surfaces for Nb80Zr20 and Co were metallographically polished and tied together with Mo wire to form a block of diffusion couples. Moreso, the Nb80Zr20/Co diffusion couple was encapsulated in a guartz tube and then annealed at 1000 °C for 360 hours. Finally, the diffusion couple was quenched in ice water.

C. Sample Analysis

The heat-treated samples were subjected to metallographic analysis under a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) at an accelerating voltage of 20.0 kV to determine the microstructures and phase compositions. Additionally, an XRD instrument obtained the XRD

Fig. 3-BSE micrographs and XRD patterns of as-cast alloys: (a) and (b) a4; (c) and (d) a5; (e) and (f) a9.

patterns of the specimens. Notably, the diffraction pattern has a scan step size of 0.02 deg in the 2θ range from 20 to 90 deg. Furthermore, EPMA-1720H (Shimadzu, Japan) with a wave dispersive X-ray

spectrometer (WDS) was used to measure the phase equilibria between fcc(Co), λ_2 , μ , CoZr, and bcc(Nb, Zr) in the Nb80Zr20/Co diffusion couple.

Fig. 4—BSE micrographs and XRD patterns of as-cast alloys: (a) and (b) a17; (c) and (d) a19.

IV. RESULTS AND DISCUSSION

A. Liquidus Surface Projection

The primary solidification phase and the solidification paths of 48 alloys are displayed in Table II. The solidification paths of typical as-cast alloys are selected for discussion.

The primary solidification phase is fcc(Co) in alloys al to a3. Combined with the XRD pattern of alloy a1 in Figure 2(b), only two phases fcc(Co) and $Co_{23}Zr_6$ were determined. The black phase fcc(Co) as the primary solidification phase was observed in Figure 2(a). Moreso, fcc(Co) was first precipitated from the liquid phase, and the composition of the remaining liquid phase was at the univariate line of liq. \rightarrow fcc(Co) + Co₂₃Zr₆. The microstructure and XRD patterns of alloy a3 are displayed in Figures 2(c) and (d), where the black phase fcc(Co) as the primary solidification phase and a eutectic structure fcc(Co) + λ_2 were observed. Thus, there must be a monovariant line of liq. \rightarrow fcc(Co) + λ_2 between fcc(Co) and λ_2 in the liquidus surface projection. λ_2 as the primary solidification region was observed in alloys a4 to a21. However, the solidification structure is completely different due to the different solidification paths after λ_2 precipitation. Alloys a4, a10, a11, a14, and a16 have the same solidification path. The microstructure and XRD patterns of alloy a4 are exhibited in

Figures 3(a) and (b), where the phases λ_2 and $Co_{23}Zr_6$ were determined. λ_2 was first precipitated, and the liquid composition was at the univariate line of liq. + $\lambda_2 \rightarrow$ Co₂₃Zr₆. Notably, alloys a5, a7, and a8 have identical solidification paths. Three phases, λ_2 , Co₂₃Zr₆, and fcc(Co), were determined according to the XRD pattern of alloy a5, as shown in Figure 3(d). The light phase λ_2 , the grey phase Co₂₃Zr₆, and a eutectic microstructure fcc(Co) + Co₂₃Zr₆ are shown in Figure 3(c). λ_2 was first precipitated from the liquid phase, and the composition of the liquid was at the peritectic univariate line of liq. + $\lambda_2 \rightarrow Co_{23}Zr_6$. Then the remaining liquid phase moved to the monovariant line and transformed into $fcc(Co) + Co_{23}Zr_6$ microstructure. The solidification path can be surmised: liq. $\rightarrow \lambda_2$, liq. $+ \lambda_2 \rightarrow Co_{23}Zr_6$, liq. \rightarrow Co₂₃Zr₆ and liq. \rightarrow fcc(Co) + Co₂₃Zr₆. Moreso, alloys a6, a9, a12, a13, and a15 have identical solidification paths. The microstructure and XRD patterns of alloy a9 are exhibited in Figures 3(e) and (f). λ_2 was first precipitated from the liquid phase, and the composition of the liquid was at the univariate line of liq. \rightarrow fcc(Co) + λ_2 . As shown in Figure 4(b), CoZr and λ_2 were detected based on the XRD pattern of alloy a17. The dark phase λ_2 and the light phase CoZr were observed as shown in Figure 4(a). A eutectic microstructure CoZr + λ_2 was formed from the liquid phase after the precipitation of λ_2 . The microstructure and XRD

Fig. 5-BSE micrographs and XRD patterns of as-cast alloys: (a) and (b) a22; (c) and (d) a25; (e) and (f) a27.

patterns of alloy a19 are exhibited in Figures 4(c) and (d), where the black phase λ_2 and the light phase μ were observed. λ_2 was precipitated at the beginning, and then the remaining liquid phase moved to the monovariant line and transformed into $\lambda_2 + \mu$ microstructure.

Alloys a22 to a26 have the same primary solidification phase as CoZr. The microstructure and XRD patterns of alloy a22 are exhibited in Figures 5(a) and (b), where CoZr and CoZr₂ were observed. CoZr was first precipitated from the liquid phase, and the composition of the remaining liquid phase was at the univariate line of liq. → CoZr + CoZr₂. Only three phases, bcc(Nb, Zr), CoZr, and CoZr₂, were detected from the XRD patterns of alloy a25 in Figure 5(d). A eutectic microstructure bcc(Nb, Zr) + CoZr and a ternary eutectic microstructure bcc(Nb, Zr) + CoZr + CoZr₂ were observed in Figure 5(c). The solidification path can be conjectured: liq. → CoZr, liq. → bcc(Nb, Zr) + CoZr and liq. → bcc(Nb, Zr) + CoZr + CoZr₂.

The primary solidification region of μ was observed in alloys a27 to a39. The microstructure and XRD patterns of alloy a27 are displayed in Figures 5(e) and (f), where

Fig. 6—BSE micrographs and XRD patterns of as-cast alloys: (a) and (b) a35; (c) and (d) a36.

 μ and CoZr were observed. μ was first precipitated from the liquid phase. Additionally, the liquid phase moved to the monovariant line of liq. \rightarrow CoZr + μ , then the liquid composition was at the invariant transformation point liq. \rightarrow CoZr + λ_2 + μ . From the microstructure of alloy a35, single phase μ was observed as shown in Figure 6(a). It was further verified that only μ existed by the XRD pattern in Figure 6(b). So, the solidification path can be conjectured: liq. $\rightarrow \mu$. The black and white phases were μ and bcc(Nb, Zr) based on the analyses of the EDS and XRD patterns of alloy a36 in Figures 6(c)and (d). μ was first precipitated, then the liquid phase moved to the univariant line of liq. \rightarrow bcc(Nb, Zr) + μ . The microstructure and XRD patterns of alloy a40 are exhibited in Figures 7(a) and (b). $CoZr_2$ was solidified from the liquid phase, then the liquid composition was at the univariant line and transformed into bcc(Nb, Zr) + Co Zr_2 microstructure.

There were bcc(Nb, Zr), CoZr, and CoZr₂ from the microstructure and XRD patterns of alloy a45, as shown in Figures 7(c) and (d). bcc(Nb, Zr) was first precipitated, and the liquid phase was at the monovariant line and transformed into bcc(Nb, Zr) + CoZr microstructure. However, the content of CoZr was minimal. Thus, the eutectic structure bcc(Nb, Zr) +

CoZr loses the characterization of typical eutectic microstructure. Finally, the remaining liquid decomposed the ternary eutectic microstructure bcc(Nb, Zr) + CoZr + CoZr₂. The microstructure and XRD patterns of alloy a46 are demonstrated in Figures 7(e) and (f), where bcc(Nb, Zr) and μ were observed. bcc(Nb, Zr) was first precipitated and the liquid composition was at the univariant line and transformed into bcc(Nb, Zr) + μ microstructure.

B. Isothermal Section at 1100 °C

Twenty-four annealed specimens were analyzed using SEM/EDS and XRD patterns to construct the phase relationships of 1100 °C. The constituent phases and compositions are outlined in Table III.

On the Co-rich side, the two-phase microstructures, fcc(Co) + λ_2 in alloy b3 and Co₂₃Zr₆ + λ_2 in alloy b8, and a three-phase microstructure fcc(Co) + Co₂₃Zr₆ + λ_2 in alloy b5 were observed, as shown in Figure 8. The microstructure and XRD patterns of alloy b12 are displayed in Figures 9(a) and (b), where λ_2 and μ were observed. A three-phase equilibrium CoZr + λ_2 + μ was measured because of the microstructure and XRD patterns of alloy b14 in Figures 9(c) and (d).

Fig. 7—BSE micrographs and XRD patterns of as-cast alloys: (a) and (b) a40; (c) and (d) a45; (e) and (f) a46.

Additionally, the measured maximum solubilities of Nb in $\text{Co}_{23}\text{Zr}_6$ and CoZr were ~ 3.1 and ~ 11.9 at. pct, and the maximum solubility of Zr in μ was ~ 17.9 at. pct. The microstructures and XRD patterns of alloys b15 and b16 are demonstrated in Figures 9(e) and (f) and Figures 10(a) and (b), where two two-phase microstructures, $\text{Co}\text{Zr} + \mu$ and bcc(Nb, Zr) + μ , were observed.

The phase related to liquid can be observed based on the phase constituents of alloys b20, b21, and b22. The phase equilibria, CoZr + liquid, bcc(Nb,Zr) + CoZr + liquid, and bcc(Nb, Zr) + liquid, were determined following the microstructures of Figures 10(c) and (d) and 11. Furthermore, a threephase equilibrium bcc(Nb, Zr) + liquid + μ can be deduced according to the analyses of alloys b15 and b16.

According to the experimental results, the phase relationships of Co–Nb–Zr system were confirmed. Co₂Nb and Co₂Zr with the same C15 structure formed a continuous compound from Co₂Nb to Co₂Zr at 1100 °C. Three three-phase equilibria, fcc(Co) + Co₂₃Zr₆ + λ_2 , CoZr + λ_2 + μ , and bcc(Nb, Zr) + CoZr + liquid, were obtained, and a three-phase region bcc(Nb, Zr) + CoZr + μ was deduced. Moreso, the maximum solubilities of Nb in Co₂₃Zr₆ and

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Measured Alloy Compositions (at. Pct)			Phase compositions (At. Pct)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	Со	Nb	Zr	Equilibrated Phases	Со	Nb	Zr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b1	85.4	13.9	0.7	fcc(Co)	96.3	3.3	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					λ_2	74.0	25.3	0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b2	84.2	10.6	5.2	fcc(Co)	96.4	3.0	0.6
b3 84.2 9.9 5.9 fcc(Co) 97.5 2.1 0.4 λ_2 75.1 15.0 9.9 λ_2 75.1 15.0 9.9 λ_2 75.4 1.8 0.8 λ_3 75.4 13.1 11.5 0.9 9.5 λ_3 75.2 10.3 14.4 λ_3 75.2 10.3 14.5 λ_3 76.3 4.8 18.9 λ_3 75.2 75.2 10.3 14.5 λ_3 76.4 11.1 19.8 λ_3 76.5 7.3 4.8 18.9 λ_3 72.2 73.8 7.3 18.8 18.9 λ_3 74.1 11.1 19.8 λ_3 74.4 11.1 19.8 λ_2 73.6 65.3 33.1 11.6 λ_2 74.5 74.4 36.5 6.1 λ_2 72.2 65.3 23.1 11.6 19.2 11.5 7.4 36.5 6.1 λ_2 72.2 65.9 20.1 14.6 μ 91.1 35.7.6 28.6 13.8 λ_2 65.9 20.1 14.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 μ 91.1 45.5 7.4 λ_2 66.2 7.1 26.5 14.9 19.6 λ_3 11.9 35.8 λ_2 66.2 7.1 26.5 14.9 19.6 λ_3 11.9 35.8 λ_2 66.2 7.1 26.5 14.9 19.6 λ_3 11.9 35.8 λ_4 74.4 99.9 10.9 33.2 17.8 λ_2 66.2 7.1 26.5 14.9 19.6 λ_2 66.2 7.1 26.5 14.9 19.6 λ_3 11.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9					λ_2	77.1	15.3	7.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b3	84.2	9.9	5.9	fcc(Co)	97.5	2.1	0.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 4	0.4.1	0.0	7.0	λ_2	75.1	15.0	9.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b4	84.1	8.9	7.0	fcc(Co)	97.4	1.8	0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h5	857	1 9	0.5	λ_2 for (Co)	73.4	15.1	11.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	05	03.7	4.0	9.5	C_{0}	97.0 79.5	1.7	1.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						75.2	10.3	14.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b6	77.0	52	17.8	$C_{022}Zt_{c}$	79.0	2 3	18.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	//.0	5.2	17.0	λ_2	74.2	9.3	16.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b7	76.3	4.8	18.9	$Co_{23}Zr_6$	79.2	1.6	19.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					λ_2	73.8	7.3	18.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b8	76.1	4.1	19.8	$\tilde{co}_{23}Zr_6$	79.1	1.1	19.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					λ_2	72.9	7.0	20.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b9	75.7	3.4	20.9	$Co_{23}Zr_6$	78.8	0.6	20.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					λ_2	72.2	6.5	21.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b10	59.1	39.7	1.2	λ_2	65.3	33.1	11.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					μ	51.2	48.1	0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b11	57.4	36.5	6.1	λ_2	66.3	24.6	9.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10	50.0	21.0	0.0	μ	49.2	46.6	4.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b12	58.2	31.9	9.9	λ_2	65.9	20.1	14.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.12	57 (29.6	12.0	μ_{2}	50.8	43.0	6.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	013	57.0	28.0	13.8	λ_2	03.3	14.9	19.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h14	57.2	12.8	30.0	μ	49.1	43.3	/.4 37.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014	51.2	12.0	50.0		50.5 66.2	71	26.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						51.7	30.4	17.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b15	49.2	25.5	25.3	CoZr	49.9	10.9	39.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	010	.,.=	2010	2010	и	48.9	33.3	17.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b16	29.6	67.7	2.7	bcc(Nb,Zr)	2.4	96.7	9.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					μ	44.5	52.3	3.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b17	28.3	66.8	4.9	bcc(Nb,Zr)	1.8	96.3	1.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					μ	46.9	44.6	8.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b18	41.8	3.8	54.4	CoZr	48.9	2.6	48.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					liquid	35.7	3.1	61.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b19	40.4	8.0	51.6	CoZr	49.7	3.5	46.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					liquid	34.5	11.4	54.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b20	41.1	11.0	47.9	CoZr	48.4	7.6	44.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0.1	24.2	20.0	24.0		34.7	13.9	51.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b21	34.2	30.9	34.9	bcc(Nb,Zr)	1./	92.1	6.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					CoZr	48.9	11.1	40.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	h22	10.6	318	15.6	$\frac{11}{2} \frac{11}{2} \frac$	55.1 17	21.3 54.0	43.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	022	19.0	34.0	45.0	liquid	28.7	23 7	44.5 17 6
b24 10.7 10.0 79.3 bcc(Nb,Zr) 1.2 13.7 85.1 b24 10.7 10.0 79.3 bcc(Nb,Zr) 1.2 13.7 85.1	h23	12.9	29.7	57 4	bcc(Nb Tr)	0.8	42.9	56.3
b24 10.7 10.0 79.3 $bcc(Nb,Zr)$ 1.2 13.7 85.1	525	12.7	<i>2</i>	J/.T	liquid	24.4	18.9	56.7
	b24	10.7	10.0	79.3	bcc(Nb.Zr)	1.2	13.7	85.1
liquid 22.8 3.7 73.5					liquid	22.8	3.7	73.5

Table III. Constituent Phases and Compositions of the Co-Nb-Zr Equilibrated Alloys Annealed at 1100 °C

CoZr were ~ 3.1 at. pct and ~ 11.9 at. pct, and the maximum solubility of Zr in μ was ~ 17.9 at. pct.

C. Isothermal Section at 1000 °C

The experimental information of twenty-three samples annealed at $1000 \ ^{\circ}C$ is listed in Table IV. The

analyses of several samples for three-phase equilibria are discussed as follows.

Three three-phase equilibria, $fcc(Co) + Co_{23}Zr_6 + \lambda_2$ in alloy c5, $CoZr + \lambda_2 + \mu$ in alloy c13, and $bcc(Nb, Zr) + CoZr + \mu$ in alloy c16, were determined based on the microstructures and XRD patterns as shown in Figure 12. The microstructures and XRD

Fig. 8—BSE micrographs and XRD patterns of alloys annealed at 1100 °C: (a) and (b) b3; (c) and (d) b5; (e) and (f) b8.

patterns of alloys c17 and c18 are presented in Figure 13, where the three-phase microstructures, bcc(Nb, Zr) + CoZr + CoZr₂ and bcc(Nb, Zr) + CoZr₂ + liquid, were determined. According to the experimental data above, the maximum solubilities of Nb in Co₂₃Zr₆, CoZr, and CoZr₂ were ~ 2.8, ~ 11.3, and ~ 8.7 at. pct, and the maximum solubility of Zr in μ was ~ 17.5 at. pct, respectively.

Furthermore, typical diffusion layers of λ_2 and μ were observed by the Nb80Zr20/Co diffusion couple annealed at 1000 °C as shown in Figure 14. Due to the presence

of CoZr, a three-phase conjunction corresponding to bcc(Nb, Zr) + CoZr + μ was identified in Figure 14. The compositions of equilibrium phases of Nb80Zr20/ Co diffusion couple obtained using EPMA at 1000 °C are shown in Table V, and tie lines are shown using the dashed lines with inverted triangles in Figure 15(b). Furthermore, the phase relationships and phase compositions obtained by the diffusion couple were almost identical to those of the equilibrated alloys, as shown in Figure 15(b).

Fig. 9-BSE micrographs and XRD patterns of alloys annealed at 1100 °C: (a) and (b) b12; (c) and (d) b14; (e) and (f) b15.

V. THERMODYNAMIC MODELING

A. Thermodynamic Model

The Gibbs energy functions for the unary phases of the pure elements Co, Nb, and Zr were taken from the SGTE database.^[31]

The Gibbs energies of solution phases (liquid, bcc fcc, and hcp) in the Co–Nb–Zr system are expressed:

$$G_{\rm m}^{\phi}(T) = x_{\rm Co}G_{\rm Co}^{\phi}(T) + x_{\rm Nb}G_{\rm Nb}^{\phi}(T) + x_{\rm Zr}G_{\rm Zr}^{\phi}(T) + \mathbf{R}T(x_{\rm Co}\ln(x_{\rm Co}) + x_{\rm Nb}\ln(x_{\rm Nb}) + x_{\rm Zr}\ln(x_{\rm Zr})) + {}^{\rm E}G_{\rm m}^{\phi} + {}^{mg}G_{\rm m}^{\phi}$$
[1]

where x_{Co} , x_{Nb} , and x_{Zr} indicate the molar fractions of the pure elements Co, Nb, and Zr, respectively. ${}^{\text{E}}G_{\text{m}}^{\phi}$ is the molar excess Gibbs energy, and its Redlich–Kister polynomial function can be described^[32]:

Fig. 10—BSE micrographs and XRD patterns of alloys annealed at 1100 °C: (a) and (b) b18; (c) and (d) b19.

$${}^{E}G_{m}^{\phi}(T) = x_{Co}x_{Nb}\sum_{j}{}^{j}L_{Co,Nb}^{\phi}(x_{Co} - x_{Nb})^{j} + x_{Co}x_{Zr}\sum_{j}{}^{j}L_{Co,Zr}^{\phi}(x_{Co} - x_{Zr})^{j} + x_{Nb}x_{Zr}\sum_{j}{}^{j}L_{Nb,Zr}^{\phi}(x_{Nb} - x_{Zr})^{j} + x_{Co}x_{Nb}x_{Zr}L_{Co,Nb,Zr}^{\phi}$$

$$(2)$$

in which ${}^{j}L^{\phi}_{Co,Nb}$, ${}^{j}L^{\phi}_{Co,Zr}$, and ${}^{j}L^{\phi}_{Nb,Zr}$ are the interaction parameters obtained from Co–Nb,^[19] Co–Zr,^[27] and Nb–Zr^[29] systems. $L^{\phi}_{Co,Nb,Zr}$ is the ternary interaction parameters and expressed as follows:

$$L^{\phi}_{\text{Co,Nb,Zr}} = x_{\text{Co}}{}^{0}L^{\phi}_{\text{Co,Nb,Zr}} + x_{\text{Nb}}{}^{1}L^{\phi}_{\text{Co,Nb,Zr}} + x_{\text{Zr}}{}^{2}L^{\phi}_{\text{Co,Nb,Zr}}$$
[3]

where ${}^{j}L^{\phi}_{\text{Co,Nb,Zr}} = a_j + b_j T (j = 0, 1, \text{ and } 2)$. The factors of a_j and b_j were required to be optimized in this work.

CoZr with B2 structure is described as an ordered phase of bcc_A2 and modeled as (Co, Nb, Zr, Va)_{0.5}(Co, Nb, Zr, Va)_{0.5}(Va)₃. The Gibbs energy function of CoZr can be constructed:

$$G_{\rm m}^{\rm CoZr} = G_{\rm m}^{\rm dis}(x_i) + G_{\rm m}^{\rm ord}(y'_i, y_i \prime \prime) - G_{\rm m}^{\rm ord}(x_i) \qquad [4]$$

where $G_{\rm m}^{\rm dis}(x_i)$ denotes the Gibbs energy of bcc_A2. $G_{\rm m}^{\rm ord}(y'_i, y_i \prime \prime) - G_{\rm m}^{\rm ord}(x_i)$ means the ordered contribution to Gibbs energy.

The intermediate compounds $Co_{11}Zr_2$, $Co_{23}Zr_6$, $CoZr_2$, Co_7Nb_2 , λ_1 , λ_2 and λ_3 are modeled as $(Co)_{11}(Nb,Zr)_2$, $(Co)_{23}(Nb,Zr)_6$, $(Co,Zr)(Nb,Zr)_2$, Co_7Nb_2 , $(Co,Nb)_2(Co,Nb)$, $(Co,Nb,Zr)_2(Co,Nb,Zr)$ and $(Co,Nb)_2(Co,Nb)$, respectively. $CoZr_3$ and μ are described as $(Co,Zr)(Co,Zr)Zr_2$ and (Co, $Nb,Zr)_1(Nb,Zr)_4(Co,Nb,Zr)_2(Co,Nb,Zr)_6$. Taking Laves phase λ_2 as an example, the Gibbs energy function is expressed:

Fig. 11—BSE micrographs and XRD patterns of alloys annealed at 1100 °C: (a) and (b) b21; (c) and (d) b22.

$$\begin{aligned} G_{\rm m}^{\lambda_2} &= y_{\rm Co}^{\prime}(y_{\rm Co}^{\prime\prime} \prime \prime G_{\rm Co:Co}^{\lambda_2} + y_{\rm Nb}^{\prime\prime} G_{\rm Co:Nb}^{\lambda_2} + y_{\rm Zr}^{\prime} G_{\rm Co:Zr}^{\lambda_2}) \\ &+ y_{\rm Nb}^{\prime}(y_{\rm Co}^{\prime} G_{\rm Nb:Co}^{\lambda_2} + y_{\rm Nb}^{\prime\prime} G_{\rm Nb:Nb}^{\lambda_2} + y_{\rm Zr}^{\prime} G_{\rm Nb:Zr}^{\lambda_2}) \\ &+ y_{\rm Zr}^{\prime}(y_{\rm Co}^{\prime\prime} G_{\rm Zr:Co}^{\lambda_2} + y_{\rm Nb}^{\prime\prime} G_{\rm Zr:Nb}^{\lambda_2} + y_{\rm Zr}^{\prime\prime} G_{\rm Zr:Zr}^{\lambda_2}) \\ &+ 2 R T(y_{\rm Co}^{\prime} \ln(y_{\rm Co}^{\prime}) + y_{\rm Nb}^{\prime} \ln(y_{\rm Nb}^{\prime}) + y_{\rm Zr}^{\prime} \ln(y_{\rm Zr}^{\prime})) \\ &+ R T(y_{\rm Co}^{\prime\prime}(y_{\rm Co}^{\prime\prime}) + y_{\rm Nb}^{\prime\prime} \ln(y_{\rm Nb}^{\prime\prime}) + y_{\rm Zr}^{\prime\prime} \ln(y_{\rm Zr}^{\prime\prime})) + \frac{E}{6} G_{\rm m}^{\lambda_2} \end{aligned}$$

where y'_* and y''_* are the fractions of sites of elements (* = Co, Nb, and Zr) on the first and second sublattices. ${}^{\rm E}G_{\rm m}^{\lambda_2}$ is the excess Gibbs energy.

B. Assessment Procedure

The thermodynamic parameters of Co–Nb and Nb–Zr systems were taken from the literatures^[19] and^[29] in the Co–Nb–Zr system. To unify the thermodynamic parameters of phases with the same crystal structure in the Co-based superalloys thermodynamic database, the thermodynamic parameters of λ_2 in the Co–Zr system^[27] were slightly modified according to the corresponding thermodynamic parameters in the Co–Nb system.^[29] Furthermore, the Co–Nb–Zr system was optimized using the PARROT module in Thermo-Calc software and the PanOptimizer module in Pandat software to comply with the experimental data of the current work.

C. Thermodynamic Modeling

Thermodynamic models and obtained thermodynamic parameters of each phase in the Co–Nb–Zr system are shown in Table VI. The calculated phase relationships at 1100 °C and 1000 °C in comparison with the experimental information are shown in Figures 15(a) and (b). Three three-phase equilibria, fcc(Co) + Co₂₃Zr₆ + λ_2 , CoZr + λ_2 + μ and bcc(Nb,Zr) + CoZr + liquid, at the 1100 °C and five

	Measured	Alloy Composition	ns (At. Pct)		Phase Compositions (At. Pct)			
No.	Со	Nb	Zr	Equilibrated Phases	Со	Nb	Zr	
c1	84.8	12.7	2.5	fcc(Co)	97.9	2.0	0.1	
				λ_2	74.8	20.8	4.4	
c2	83.4	11.1	5.5	fcc(Co)	98.6	1.4	0.0	
				λ_2	75.0	16.7	8.3	
c3	85.8	8.7	5.5	fcc(Co)	97.9	1.5	0.6	
				λ_2	75.7	14.2	10.1	
c4	82.3	9.2	8.5	fcc(Co)	99.0	0.6	0.4	
-		- 0		λ_2	75.4	12.8	11.8	
c5	83.5	5.0	11.5	fcc(Co)	97.4	1.3	1.3	
				$Co_{23}Zr_6$	79.4	2.8	17.9	
	7/7	1.6	10 7	λ_2	75.3	9.7	15.0	
C 6	/6./	4.6	18.7	$Co_{23}Zr_6$	/9.1	1.9	19.0	
- 7	75.0	2.0	20.2	λ_2	/3.3	8.6	18.1	
C /	/5.8	3.9	20.3	$\operatorname{Co}_{23}\operatorname{Zr}_6$	/8.8	1.2	20.0	
- 0	75 5	2.0	22.5	λ_2	/3./	5.7	20.6	
68	/3.3	2.0	22.3	$Co_{23}Zr_6$	78.9	0.4	20.7	
a 0	56 5	41.2	2.2	λ_2	12.3	5.0	24.1	
09	50.5	41.2	2.5	λ_2	05.5	55.5 48.4	5.2 1.9	
c10	56.8	35 7	75	$\mu_{\lambda_{-}}$	49.8 66.0	21.8	12.2	
010	50.0	55.1	1.5		49.1	21.8 47.4	3 5	
c11	57.5	29.8	12.7	μ	65.3	19.0	15.7	
011	57.5	29.0	12.7	и И	52.3	37.8	99	
c12	58.1	24.5	17.4	$\frac{\mu}{\lambda_2}$	66.1	12.0	21.9	
•	0011	2.110	2,	11 11	51.5	32.8	15.7	
c13	56.0	14.2	29.8	CoZr	50.5	11.3	38.2	
				λ_2	65.9	7.5	26.6	
				μ^2	51.7	30.8	17.5	
c14	30.2	67.1	2.7	bcc(Nb,Zr)	3.6	95.3	0.1	
				μ	45.2	51.4	3.4	
c15	29.6	66.2	4.2	bcc(Nb,Zr)	2.1	96.6	1.3	
				μ	44.2	49.5	6.3	
c16	40.7	32.9	26.4	bcc(Nb,Zr)	6.2	89.8	4.0	
				COZr	49.4	12.8	37.8	
				μ	46.3	38.4	15.3	
c17	34.2	20.7	45.1	CoZr	49.1	8.5	42.4	
				$CoZr_2$	34.1	8.3	57.6	
				μ	1.1	92.2	6.7	
c18	24.5	24.0	51.5	bcc(Nb,Zr)	0.9	83.0	16.1	
				CoZr ₂	31.9	8.7	59.4	
10	40.4	- /	54.0	liquid	25.6	15.3	59.1	
c19	40.4	5.6	54.0	CoZr	48.7	2.6	48.7	
20	10.2	4 7	55.0	CoZr_2	32.1	8.1	59.8	
c20	40.3	4./	55.0	CoZr	48.9	2.0	49.1	
-21	10.6	2.2	57.2	$CoZr_2$	52.0 40.2	0.9	01.1 50.0	
021	40.0	2.2	51.2	CoZr	49.5	0./	50.0 62.8	
c22	12.4	16.2	71.4	bcc(Nlb, Zr)	20	5.7 21.4	02.0 76.6	
022	12.4	10.2	/1.4	liquid	2.0	21. 4 11.7	65.6	
c23	16.6	3.9	79.5	bcc(Nb Zr)	23	93	88.4	
	10.0	5.7	, ,	liquid	23.6	1.9	74.5	
				· · · · · ·				

Table IV. Constituent Phases and Compositions of the Co-Nb-Zr Equilibrated Alloys Annealed at 1000 °C

three-phase regions, fcc(Co) + Co₂₃Zr₆ + λ_2 , CoZr + $\lambda_2 + \mu$, bcc(Nb,Zr) + CoZr₂ + liquid, bcc(Nb,Zr) + CoZr + CoZr₂ and bcc(Nb,Zr) + CoZr + μ at 1000 °C were well reproduced in the calculated isothermal sections.

The comparison of the calculated primary solidification region with the experimental data of the Co–Nb–Zr system is shown in Figure 16(a), in which ten primary solidification regions, fcc(Co), bcc(Nb, Zr), Co₁₁Zr₂, Co₂₃Zr₆, CoZr, CoZr₂, λ_1 , λ_2 , λ_3 , and μ in the liquidus

Fig. 12—BSE micrographs and XRD patterns of alloys annealed at 1000 °C: (a) and (b) c5; (c) and (d) c13; (e) and (f) c16.

surface projection were very well reproduced. The calculated liquidus surface projection with isotherms is exhibited in Figure 16(b), in which seven invariant reactions: liq. \rightarrow CoZr + λ_2 + μ , liq. \rightarrow Co₂₃Zr₆ + fcc(Co) + λ_2 , liq. \rightarrow Co₁₁Zr₂ + Co₂₃Zr₆ + fcc(Co),

liq. \rightarrow fcc(Co) + λ_2 + λ_3 , liq. + $\mu \rightarrow$ bcc(Nb, Zr) + CoZr, liq. + $\lambda_2 \rightarrow \lambda_1$ + μ , liq. \rightarrow bcc(Nb, Zr) + CoZr + CoZr₂, and six maximum points, Max1, Max2, Max3, Max4, Max5 and Max6 on the monovariant lines were manifested.

Fig. 13—BSE micrographs and XRD patterns of alloys annealed at 1000 °C: (a) and (b) b17; (c) and (d) b18.

Fig. 14—(a) BSE micrograph of the Nb80Zr20/Co diffusion couple annealed at 1000 °C for 360 h; (b) enlarged section.

The calculated solidification path by the Scheil model^[33] was compared with those of alloys a35 and a45 in experiments to further verify the reliability of the calculated liquidus surface projection. It was found that only single-phase μ was observed from alloy a35, as

Table V. Tie-Lines Determined from the Nb80Zr20/Co Diffusion Couple Annealed at 1000 °C

E	quilibria Phases	Phase Compositions (At. Pct)						
]	Phase	1	Phase 2			
No.	Phase 1/Phase 2	Со	Nb	Zr	Со	Nb	Zr	
1	$fcc(Co)/\lambda_2$	96.8 66 3	2.6	0.6 19.1	75.4 51.9	18.4 34.3	6.2	
2 3 4 5	$c_{0}^{2/\mu}$ CoZr/ μ bcc(Nb,Zr)/ μ bcc(Nb,Zr)/CoZr	48.8 1.6 1.6	13.3 95.8 95.8	37.9 2.6 2.6	46.6 46.6 48.8	38.7 38.7 13.3	14.7 14.7 37.9	

shown in Figures 6(a) and (b). The solidification paths obtained by the Scheil model were as follows liq. $\rightarrow \mu$ and liq. \rightarrow bcc(Nb, Zr) + μ . When a eutectic microstructure bcc(Nb, Zr) + μ was precipitated, the contents of the remaining liquid phase was 5.5 at. pct using the Scheil model. Therefore, it was challenging to analyze EDS and XRD patterns. In addition, the calculated solidification path using the Lever model was liq. $\rightarrow \mu$. So, the calculated results were acceptable.

Fig. 15—Calculated isothermal sections of the Co-Nb-Zr system in comparison with the experimental data: (a) 1100 °C; (b) 1000 °C.

There were only three phases, bcc(Nb, Zr), CoZr, and CoZr₂, as shown in Figures 7(c) and (d), based on the analyses of the microstructure and XRD pattern of alloy a45. The solidification path of alloy a45 can be inferred: liq. \rightarrow bcc(Nb,Zr), liq. \rightarrow bcc(Nb,Zr) + CoZr and liq. \rightarrow bcc(Nb, Zr) + CoZr + CoZr₂, which was the same as the calculation of the solidification path by the Scheil model. Furthermore, the invariant reaction scheme related to liquid and the invariant reactions are exhibited in Figure 17 and Table VII.

VI. CONCLUSIONS

The experimental liquidus surface projection of the Co–Nb–Zr system was constructed by analyses of solidification paths of as-cast alloys, where ten primary solidification regions and seven invariant reactions were obtained, respectively.

The experimental isothermal sections of the Co–Nb–Zr system at 1100 and 1000 °C were constructed. Three three-phase regions at 1100 °C and five three-phase regions at 1000 °C were also determined. Notably, Co₂Nb and Co₂Zr with the same C15 structure formed a continuous compound from Co₂Nb to Co₂Zr at 1100 and 1000 °C. The maximum solubilities of Nb in Co₂₃Zr₆ and CoZr were ~ 3.1 and ~ 11.9 at. pct at 1100 °C, and the maximum solubilities of Nb in Co₂₃Zr₆, CoZr and CoZr₂ were ~ 2.8, ~ 11.3 and ~ 8.7 at. pct at 1000 °C. The maximum solubility of Zr in μ was ~ 17.9 at 1100 °C and ~ 17.5 at. pct at 1000 °C.

A thermodynamic description of the Co–Nb–Zr system was established using the CALPHAD method according to the experimental data of the current work. Furthermore, a set of reasonable thermodynamic parameters of the Co–Nb–Zr system was obtained, which can provide theoretical guidance for the composition design of Co-based superalloys.

Table VI.	Optimized	Thermodynamic	Parameters and	Thermodynamic	Models of	[•] Individual	Phases in the	Co-Nb-Z	r Svstem

Phase	Thermodynamic Model and Parameter	References
Liquid	(Co,Nb,Zr) ₁	
	${}^{0}L_{\rm CoNb}^{\rm liquid} = -90304.0 + 4.379T$	[19]
	${}^{1}L_{\text{liquid}}^{\text{liquid}} = -45916.6 + 20.647T$	[19]
	${}^{2}L_{\text{liquid}}^{\text{liquid}} = +26144.3$	[19]
	${}^{0}L^{\text{liquid}} = -153092 \ 0 + 14 \ 484T$	[27]
	$L_{Co,Zr} = 103092.0 + 11.1011$	[27]
	$L_{Co,Zr} = -12/08.0$	[27]
	$^{2}L_{co,zr}^{co} = +34316.0 - 3.3941$	[27]
	$^{\circ}L_{\text{Nb,Zr}}^{\text{Ham}} = +10311.0$	[29]
	$L_{\rm Nb,Zr}^{\rm induct} = +6709.0$	[29]
	${}^{0}L_{\rm Co,Nb,Zr}^{\rm induct} = -16150.0$	this work
	${}^{1}L_{\mathrm{Co,Nb,Zr}}^{\mathrm{liquid}} = -16500.0$	this work
	${}^{2}L_{\text{Co,Nb,Zr}}^{\text{liquid}} = -8965.0$	this work
bcc	$(Co,Nb,Zr,Va)_1(Va)_3$	
	${}^{0}L_{ m Co,Va}^{ m bcc}=+165000.0$	[19]
	${}^{0}L_{\rm Co,Nb}^{\rm bcc} = -10599.7$ - 3.274T	[19]
	${}^{0}L_{ m Co,Zr}^{ m bcc} = -55065.0$	[27]
	${}^{1}L_{\rm Co,Zr}^{\rm bcc} = +3500.0$	[27]
	${}^{0}L_{\rm Nb,Va}^{\rm bcc} = +135000 - 0.200 { m R}T$	[19]
	${}^{0}L_{Zr,Va}^{bcc} = +320000.0$	[27]
	${}^{0}L_{ m Va,Va}^{ m bcc}=+30.000 m T$	[27]
	${}^{0}L_{\rm Nb,Zr}^{\rm bcc} = +15911.0 + 3.350T$	[29]
	${}^{1}L_{\rm Nb,Zr}^{\rm bcc} = +3919.0 - 1.09T$	[29]
	${}^{0}L_{ m Co,Nb,Zr}^{ m bcc} = -12000.0$	this work
	${}^{1}L_{\rm Co,Nb,Zr}^{\rm bcc} = -12000.0$	this work
	${}^{2}L_{\rm Co,Nb,Zr}^{\rm bcc} = +12000.0$	this work
Co ₇ Nb ₂	Co_7Nb_2	
	$G_{\text{Co:Nb}}^{\text{Co}_7\text{Nb}_2} = +7\text{GHSER}_{\text{Co}} + 27\text{GHSER}_{\text{Nb}} - 160728.2 + 4.843T$	[19]
$Co_{11}Zr_2$	$(Co)_{11}(Nb,Zr)_2$	[07]
C_{2} T_{2}	$G_{\text{Co:Zr}}^{\text{Co:Tr}} = +11\text{GHSER}_{\text{Co}} + 2\text{GHSER}_{\text{Zr}} - 299728.0 + 21.294T$	[27]
$C0_{23}Z1_{6}$	$(C0)_{23}(IN,Z1)_{6}$	[27]
	$G_{\text{Co:Zr}}^{\text{Co:Zr}} = \pm 23 \text{GHSER}_{\text{Co}} \pm 6 \text{GHSER}_{\text{Zr}} - 323571 \pm 20.5007$	this work
	$0_{C_{0:Nb}} = \pm 2501151 R_{C_0} \pm 001151 R_{Nb} \pm 255000$ $0_{I} C_{0_{23}} Zr_6 = \pm 130155.0 \pm 210.000 T$	this work
	$L_{\text{Co:Nb,Zr}} = +150155.0 + 210.0007$ $L_{\text{Co23}Zr_6} = -71020.0 + 100.0007$	this work
	$L_{\text{Co:Nb},\text{Zr}} = -71959.0 + 100.0001$ $2 L_{\text{Co:Nb},\text{Zr}} = -50764.0 = 150.00077$	this work
CaZr	$L_{\text{Co:Nb,Zr}}^{-2} = +50/64.0 - 150.0001$	uns work
COZI	$(C0, N0, Z1, Va)_{0.5}(C0, N0, Z1, Va)_{0.5}(Va)_3$ $L_{C0}^{C0}Zr = \pm 30T$	[27]
	$L_{Va;Va} = \pm 501$ $I^{CoZr} = I^{CoZr} = \pm 6112.0 \pm 7.137T$	[27]
	$G_{\text{CoZr}}^{\text{CoZr}} = G_{\text{CoZr}}^{\text{CoZr}} = +5 \text{GHSFR}_{\text{Cr}} + 5350.0$	[27]
	${}^{0}L_{cozr}^{cozr} = +62112.0 + 7.137T$	[27]
	$G_{Z_{T}V_{2}}^{COZr} = G_{V_{2},Z_{T}}^{CoZr} = +.5 \text{GHSER}_{Z_{T}} + 44200.0$	[27]
	${}^{0}L_{Co;Cr}^{CoZr} = {}^{0}L_{Co;Cr}^{CoZr} = +49181.0$	[27]
	${}^{0}L_{CoZr}^{CoZr} = {}^{0}L_{CoZr}^{CoZr} = +91491.0$	[27]
	${}^{0}Tc_{CoZr}^{CoZr} = {}^{0}Tc_{ZrCo}^{CoZr} = -1175.0$	[27]
	${}^{0}L_{\text{CoZr}}^{\text{CoZr}} = {}^{0}L_{\text{Nb},\text{Zr}}^{\text{CoZr}} = -52491.0$	this work
	${}^{0}L_{\text{Co,Nb;Zr}}^{\text{CoZr}} = {}^{0}L_{\text{Zr;Co,Nb}}^{\text{CoZr}} = +45626.0$	this work
	${}^{0}L_{CoZr}^{CoZr} = {}^{0}L_{NbcoZr}^{CoZr} = +48626.0$	this work
CoZr ₂	$(Co,Zr)(Co,Nb,Zr)_2$	
	$G_{\text{Co:Zr}}^{\text{CoZr}_2} = +\text{GHSER}_{\text{Co}} + 2\text{GHSER}_{\text{Zr}} - 91215.0 + 0.969T$	[27]
	$G_{\mathrm{Zr};\mathrm{Zr}}^{\mathrm{Co}\mathrm{Zr}_2} = +3\mathrm{GHSER}_{\mathrm{Zr}} + 87000.0$	[27]
	${}^{0}L^{\text{Co}Zr_2}_{\text{Co},Zr,Zr} = -35000.0$	[27]
	$G_{\text{Co:Nb}}^{\text{CoZr}_2} = +\text{GHSER}_{\text{Co}} + 2\text{GHSER}_{\text{Nb}} + 36000.0$	this work

METALLURGICAL AND MATERIALS TRANSACTIONS A

Table VI. continued

Phase	Thermodynamic Model and Parameter	References
	$G_{\text{Zr:Nb}}^{\text{CoZr}_2} = +\text{GHSER}_{\text{Zr}} + 2\text{GHSER}_{\text{Nb}} + 45000.0$	this work
	${}^{0}L_{Co}^{CoZr_{2}} = -9310.0 - 26.000T$	this work
	${}^{1}L_{CoZr_{2}}^{CoZr_{2}} = +9110.0 + 28.000T$	this work
	${}^{2}L_{\text{CoZr}_{2}}^{\text{CoZr}_{2}} = -9110.0 - 30.000T$	this work
CoZr ₃	$(Co, Xr)(Co, Zr)Zr_2$	
5	$G_{CoZr_3}^{CoZr_3} = +2GHSER_{Co} + 2GHSER_{Zr} - 160540.0 + 6.012T$	[27]
	$G_{CoZr_3}^{CoZr_3} = +3 GHSER_{Zr} + GHSER_{Co} - 98944.0 + 7.280T$	[27]
	$G_{CoZr_3}^{CoZr_3} = +GHSER_{Co} + 3GHSER_{Zr} - 98944.0 + 7.280T$	[27]
	$G_{Z_{r}Z_{r}Z_{r}}^{CoZr_{3}} = +4GHSER_{Zr} + 16000.0 + 14.000T$	[27]
	${}^{0}L_{CoZr_{3}}^{CoZr_{3}} = {}^{0}L_{CoZr_{3}}^{CoZr_{3}} = +8166.0$	[27]
	${}^{0}L_{\rm CoZr_3}^{\rm CoZr_3} = {}^{0}L_{\rm CoZr_3}^{\rm CoZr_3} = -2214.0$	[27]
fcc	$(Co,Nb,Zr)_1(Va)_1$	
	${}^{0}L_{Co,Zr}^{fcc} = -60000.0$	[27]
	${}^{1}L_{Co}^{fcc} = -4000.0$	[27]
	${}^{0}L_{\rm CoNb}^{\rm fcc} = -35746.6 - 14.848T$	[19]
hcp	$(Co,Nb,Zr)_1(Va)_{0.5}$	
	${}^{0}L_{\rm Co,Zr}^{\rm hcp} = -47428.0$	[27]
	${}^{1}L_{Co,Tr}^{hcp} = -5961.0$	[27]
	${}^{0}L_{\text{bh},\text{Z}}^{\text{hcp}} = +24411.0$	[29]
λ1	$(\text{Co.Nb})_2(\text{Co.Nb})_1$	
1	$G_{Corco}^{\lambda_1} = +3$ GHSER _{Co} +53403.9	[19]
	$G_{\alpha_{1}}^{\lambda_{1}} = +2$ GHSER _{C0} + GHSER _{Nb} -61714.0 - 6.378T	[19]
	$G_{\lambda_{1}}^{\lambda_{1}} = + \text{GHSER}_{C_{0}} + 2\text{GHSER}_{Nb} + 62124.0 + 6.106T$	[19]
	$G_{\lambda_{1}}^{\lambda_{1}} = +3 \text{GHSER}_{\text{Nb}} + 15000.0$	[19]
	${}^{0}L^{\lambda_{1}}_{C_{C} \text{ NIL NIL}} = -6564.9$	[19]
	${}^{1}L^{\lambda_{1}}_{\lambda_{1}}$, $= -12342.2$	[19]
λ_2	$(C_0, Nb, Zr)_2(C_0, Nb, Zr)_1$	
·2	$G_{carca}^{\lambda_2} = +3 \text{GHSER}_{CO} + 63136.8$	[19]
	$G_{C_{1},T_{2}}^{\lambda_{2}} = +2$ GHSER _{C2} + GHSER _{Zr} - 118425.0 + 2.355T	this work
	$G_{7,r,c}^{\lambda_2} = + GHSER_{c_0} + 2GHSER_{z_r} + 148425.0 - 2.355T$	this work
	$G_{Z_{1},Z_{2}}^{\lambda_{2}} = +3$ GHSER _{2r} +15000.0	this work
	${}^{0}L^{\lambda_{2}}_{cc} = -94668.0 + 12.750T$	this work
	${}^{1}L^{\lambda_{2}}_{\lambda_{2}} = \pm 28668.0$	this work
	$G^{\lambda_2} = \pm GHSER_{\alpha} \pm 2GHSER_{\lambda_1} \pm 93355.7 \pm 5.609T$	[19]
	$G_{\text{Nb:Co}}^{\lambda_2} = \pm 2\text{GHSER}_{\text{O}} \pm 2\text{GHSER}_{\text{Nb}} \pm 5355.7 \pm 5.684T$	[19]
	$G_{C0:Nb}^{\lambda_2} = +3 GHSER_{C0} + 0113ER_{Nb} - 05555.7 - 5.0047$	[19]
	$0_{\text{Nb:Nb}} = +50115E\text{KNb} + 15000.0$ $0_{I}\lambda_{2} = -06868.3 + 3.606T$	[19]
	$L_{\rm Co:Co,Nb} = -50008.5 + 5.0001$	[10]
	$L_{\rm Co:Co,Nb} = -41400$	[19]
	$L_{Co,Nb:Nb}^{-2} = -1413.7$	[17]
	$G_{\text{Zr:Nb}}^{n_2} = +\text{GHSER}_{\text{Nb}} + 2\text{GHSER}_{\text{Zr}} + 20000.0$	this work
	$G_{\text{Nb:Zr}}^{n_2} = +2\text{GHSER}_{\text{Nb}} + \text{GHSER}_{\text{Zr}} + 20000.0$	this work
	${}^{0}L_{\text{Co:Nb,Zr}}^{\lambda_{2}} = -21776.0 + 10.000T$	this work
	${}^{1}L_{\text{Co:Nb,Zr}}^{\lambda_{2}} = -12209.0 + 10.000T$	this work
	${}^{2}L_{\text{Co:Nb,Zr}}^{\lambda_{2}} = +3305.0 - 5.000T$	this work
	${}^{0}L^{\lambda_{2}}_{\text{Co:Co.Nb.Zr}} = -120497.0 + 80.000T$	this work
	$^{1}L_{\text{Co:Co.Nb.Zr}}^{\lambda_{2}} = -104340.0 + 80.000T$	this work
	${}^{2}L_{Corco,Nh,Zr}^{\lambda_{2}} = +3305.0 + 80.000T$	this work
λ3	$(Co,Nb)_2(Co,Nb)_1$	
-	$G_{C_{0}C_{0}}^{\lambda_{3}} = +3 \text{GHSER}_{C_{0}} + 57341.1$	[19]
	$G_{\Lambda_3}^{\lambda_3} = +2 \text{GHSER}_{\text{Co}} + \text{GHSER}_{\text{Nb}} - 62497.5 - 4.485T$	[19]
	$G_{\text{Nb}+\text{Co}}^{\lambda_3} = +\text{GHSER}_{\text{Co}} + 2\text{GHSER}_{\text{Nb}} + 92747.5 + 4.323T$	[19]

Table VI.	continued
-----------	-----------

Phase	Thermodynamic Model and Parameter	References
	$G_{\rm Nb\cdot Nb}^{\lambda_3} = +3 { m GHSER}_{\rm Nb} + 15000.0$	[19]
	${}^{0}L_{\lambda_{3}}^{\lambda_{3}} = -83077.6$	[19]
	${}^{1}L_{\lambda_{3}}^{\lambda_{3}} = -18730.9$	[19]
μ	$(Co,Nb,Zr)_1(Nb,Zr)_4(Co,Nb,Zr)_2(Co,Nb,Zr)_6$	
	$G^{\mu}_{\text{Co:Nb:Co:Co}} = +\text{GFCC}_{\text{Co}} + 4\text{GHSER}_{\text{Nb}} + 2\text{GBCC}_{\text{Co}} + 6\text{GFCC}_{\text{Co}} - 218031.2$	[19]
	$G^{\mu}_{\text{Nb:Nb:Co:Co}} = +\text{GFCC}_{\text{Nb}} + 4\text{GHSER}_{\text{Nb}} + 2\text{GBCC}_{\text{Co}} + 6\text{GFCC}_{\text{Co}} - 179971.1$	[19]
	$G^{\mu}_{\text{Co:Nb:Nb:Co}} = +\text{GFCC}_{\text{Co}} + 4\text{GHSER}_{\text{Nb}} + 2\text{GHSER}_{\text{Nb}} + 6\text{GFCC}_{\text{Co}} - 282434.7 - 17.886T$	[19]
	$G^{\mu}_{\text{Nb:Nb:Nb:Co}} = +\text{GFCC}_{\text{Nb}} + 4\text{GHSER}_{\text{Nb}} + 2\text{GHSER}_{\text{Nb}}$	[19]
	$+ 6 GFCC_{Co} - 309283.9 - 7.591T$	
	$G^{\mu}_{\text{Nb:Nb:Nb:Nb}} = +\text{GFCC}_{\text{Nb}} + 4\text{GHSER}_{\text{Nb}} + 2\text{GHSER}_{\text{Nb}} + 6\text{GFCC}_{\text{Nb}} + 126006.8$	[19]
	${}^{0}L^{\mu}_{\text{Co:Nb:Co Nb:Co}} = -21922.8$	[19]
	$G^{\mu}_{\text{Co:Nb:Nb:Zr}} = +\text{GHSER}_{\text{Co}} + 6\text{GHSER}_{\text{Nb}} + 6\text{GHSER}_{\text{Zr}}$	this work
	$G_{\text{Co:Zr:Nb:Zr}}^{\mu} = +\text{GHSER}_{\text{Co}} + 2\text{GHSER}_{\text{Nb}} + 10\text{GHSER}_{\text{Zr}}$	this work
	$G^{\mu}_{\text{Co:Zr:Nb:Co}} = +7\text{GHSER}_{\text{Co}} + 2\text{GHSER}_{\text{Nb}} + 4\text{GHSER}_{\text{Zr}} \\ -326190.0 + 10.000T$	this work
	$G^{\mu}_{\text{Nb:Zr:Nb:Co}} = +6\text{GHSER}_{\text{Co}} + 3\text{GHSER}_{\text{Nb}} + 4\text{GHSER}_{\text{Zr}} -214990.0 + 10.000T$	this work
	$G^{\mu}_{\text{Nb:Zr:Nb:Nb}} = +9\text{GHSER}_{\text{Nb}} + 4\text{GHSER}_{\text{Zr}} + 38000.0$	this work
	$G^{\mu}_{\text{Nb:Zr:Nb:Zr}} = +3\text{GHSER}_{\text{Nb}} + 10\text{GHSER}_{\text{Zr}} + 38000.0$	this work
	$G^{\mu}_{\text{Nb:Nb:Nb:Zr}} = +7\text{GHSER}_{\text{Nb}} + 6\text{GHSER}_{\text{Zr}} + 38000.0$	this work
	${}^{0}L^{\mu}_{\text{Co:Nb,Zr:Nb:Co}} = -138540.0 - 50.000T$	this work
	${}^{1}L^{\mu}_{\text{Co:Nb,Zr:Nb:Co}} = +29730.0 + 50.000T$	this work
	${}^{2}L^{\mu}_{\text{Co:Nb.Zr:Nb:Co}} = +175680.0 - 100.000T$	this work
	${}^{0}L^{\mu}_{\rm Nb:Nb}Zr:Nb:Co} = -217190.0 + 20.000T$	this work
	${}^{1}L^{\mu}_{\text{Nb:Nb},\text{Zr:Nb:Co}} = -206435.0 + 50.000T$	this work
	${}^{2}L^{\mu}_{\text{Nb:Nb}} Z_{\text{r:Nb:Co}} = -68165.0 + 150.000T$	this work
	${}^{0}L^{\mu}_{Co Nb:Zr Nb:Co} = -219730.0 - 120.000T$	this work
	${}^{1}L^{\mu}_{Co,Nb,Zr,Nb,Co} = -111080.0 - 80.000T$	this work
	${}^{2}L^{\mu}_{\text{Co,Nb:Zr:Nb:Co}} = -111080.0 - 80.000T$	this work

In J mol^{-1} of the formula units.

Fig. 16-Calculated liquidus surface projection of the Co-Nb-Zr system with: (a) experimental data; (b) isothermal lines.

Fig. 17-Invariant reaction scheme in the Co-Nb-Zr system.

Table VII. Calculated Invariant Reactions of the Co-Nb-Zr System

			Compo	ositions of Liquid (A	At. Pct)
Reactions	Туре	<i>T</i> (°C)	Со	Та	Zr
$\overline{\text{Liq.} \rightarrow \text{CoZr} + \lambda_2 + \mu}$	E_1	1399	55.0	12.3	32.7
Liq. $+ \lambda_2 \rightarrow \lambda_1 + \mu$	U_1	1384	57.1	42.7	0.2
Liq. \rightarrow Co ₁₁ Zr ₂ + Co ₂₃ Zr ₆ + fcc(Co)	E_2	1251	89.3	0.3	10.4
Liq. \rightarrow Co ₂₃ Zr ₆ + fcc(Co) + λ_2	$\overline{E_3}$	1249	87.8	5.0	7.2
Liq. \rightarrow fcc(Co) + λ_2 + λ_3	E_4	1239	84.7	15.3	0.0
Liq. + $\mu \rightarrow bcc(Nb,Zr)$ + CoZr	U_2	1174	34.9	31.3	33.8
$\text{Liq.} \rightarrow \text{bcc}(\text{Nb},\text{Zr}) + \text{Co}\text{Zr}_2 + \text{Co}\text{Zr}$	$\tilde{E_5}$	1012	30.4	18.2	51.4

ACKNOWLEDGMENTS

this work was supported by Beijing Natural Science Foundation (Grant No. 2232077), National Natural Science Foundation of China (NSFC) (Grant No. 52271002) and the Cooperation Project of Jiangxi Provincial International Science and Technology (Grant No. 20212BDH81001).

CONFLICT OF INTEREST

On behalf of all authors, the corresponding author states that there is no conflict of interest.

REFERENCES

- 1. J. Zhao, F. Ma, P. Liu, X. Liu, W. Li, and D. He: J. Mater. Eng. Perform., 2020, vol. 29, pp. 3736–44.
- 2. T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, and T. Nakano: *Mater. Sci. Eng. C*, 2020, vol. 107, p. 110322.
- Z. Han, X. Liu, S. Zhao, Y. Shao, J. Li, and K. Yao: Prog. Nat. Sci. Mater., 2015, vol. 25, pp. 365–69.
- *Sci. Mater.*, 2015, vol. 25, pp. 365–69.
 T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: *Intermetallics*, 2013, vol. 32, pp. 274–83.
- 5. I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe: *Acta Mater.*, 2014, vol. 78, pp. 78–85.
- 6. X. Liu, Y. Pan, Y. Chen, J. Han, S. Yang, J. Ruan, C. Wang, Y. Yang, and Y. Li: *Metals*, 2018, vol. 8, p. 563.
- 7. S.G. Huang, R.L. Liu, L. Li, O.V. Der Biset, and J. Vleugels: Int. J. Refract. Met. H Mater., 2008, vol. 26, pp. 389–95.
- D.A. Sandoval, J.J. Roa, O. Ther, E. Tarrés, and L. Llanes: J. Alloys Compd., 2019, vol. 777, pp. 593–601.
- X. Liu, C. Luo, M. Yang, S. Yang, J. Zhang, Y. Huang, J. Han, Y. Lu, and C. Wang: *J. Phase Equilib. Diffus.*, 2020, vol. 41, pp. 3–14.
 W. Gui, H. Zhang, M. Yang, T. Jin, X. Sun, and Q. Zheng: *J.*
- W. Gui, H. Zhang, M. Yang, T. Jin, X. Sun, and Q. Zheng: J. Alloys Compd., 2017, vol. 695, pp. 1271–78.
- 11. Y. Liu, L. Zhang, T. Pan, D. Yu, and Y. Ge: *CALPHAD*, 2008, vol. 32, pp. 455–61.
- 12. J. Ågren: Curr. Opin. Solid State Mater. Sci., 1996, vol. 1, pp. 355-60.
- 13. H. Okamoto: J. Phase. Equilib., 2000, vol. 21, p. 495.
- F. Stein, D. Jiang, M. Palm, G. Sauthoff, D. Grüner, and G. Kreiner: *Intermetallics*, 2008, vol. 16, pp. 785–92.
- K.C.H. Kumar, I. Ansara, P. Wollants, and L. Delaey: J. Alloys Compd., 1998, vol. 267, pp. 105–12.

- C. He, F. Stein, and M. Palm: MRS Online Proceedings Library (OPL), 2008, p. 1128.
- L. Zhou, C. Wang, Y. Yu, X. Liu, H. Chinen, T. Omori, R. Kainuma, and K. Ishida: J. Alloys Compd., 2011, vol. 509, pp. 1554–62.
- C. He, F. Stein, and M. Palm: J. Alloys Compd., 2015, vol. 637, pp. 361–75.
- D. Wei, X. Bai, C. Guo, R. Li, and Z. Du: J. Alloys Compd., 2022, vol. 924, 166516.
- 20. W.H. Pechin, D.E. Williams, and W.L. Larsen: Am. Soc. Met. Trans. Q., 1964, vol. 57, p. 744.
- S.K. Bataleva, V.V. Kuprina, V.V. Burnasheva, V.Y. Markiv, and G.N. Ronami: *Moscow Univ. Chem. Bull.*, 1970, vol. 25, pp. 33–36.
- X. Liu, H. Zhang, C. Wang, and K. Ishida: J. Alloys Compd., 2009, vol. 482, pp. 99–105.
 A. Durga and K.C. Kumar: CALPHAD, 2010, vol. 34, pp.
- 23. A. Durga and K.C. Kumar: *CALPHAD*, 2010, vol. 34, pp. 200–05.
- 24. A. Durga, K.C. Kumar, N. Moelans, and P. Wollants: J. Alloys Compd., 2010, vol. 334, pp. 173–81.
- T. Kosorukova, P. Agraval, V. Ivanchenko, and M. Turchanin: in XI International Conference on Crystal Chemistry of Intermetallic Compounds, 2010, p. 52.
- 26. J.C. Gachon and J. Hertz: CALPHAD, 1983, vol. 7, pp. 1-2.
- 27. C. Zhou and H. Wang: J. Phase Equilib. Diffus., 2021, vol. 42, pp. 77–90.
- A.F. Guillermet: Int. J. Mater. Res., 1991, vol. 82, pp. 478–87.
 J. Li, Y. Guo, S. Yang, Z. Shi, C. Wang, and X. Liu: J. Alloys
- Compd., 2015, vol. 642, pp. 216–24.
 30. A.A. Kodentsov, G.F. Bastin, and F.J.J. van Loo: J. Alloys Compd., 2001, vol. 320, pp. 207–17.
- 31. A.T. Dinsdale: SGTE Pure ELEMENTS (Unary) Database, version 4.5, 2006.
- 32. O. Redlich and A.T. Kister: Ind. Eng. Chem., 1948, vol. 40, pp. 345–48.
- 33. J. Sun, C. Ming, B. Yang, C. Guo, C. Li, and Z. Du: J. Alloys Compd., 2023, vol. 939, 168696.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.