Skip to main content
Log in

Size Effect on the Tensile Mechanical Behavior of Thin Ti6242S Specimens at 723 K and 823 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical behavior of titanium-based alloy Ti6242S was investigated under uniaxial tensile loading at 723 K (450 °C) and 823 K (550 °C) under air and argon environments. Microtensile specimens ranging from 1 mm to 100 µm in thickness were tested to investigate the influence of the decrease in thickness on mechanical properties. Fractographic analyses were carried out using scanning electron microscopy. At 450 °C and 550 °C, a decrease in yield strength, ultimate tensile strength, and strain-to-failure with decreasing thickness was observed. These drops in the macroscopic tensile properties of the thinnest specimens result from a combination of oxidation, which further impairs the specimens with a high surface-to-volume ratio, and the overall lower number of colonies of α lamellae contained in thinner specimens. Ti6242S exhibited dynamic strain aging at 450 °C, especially in specimens with thickness below 500 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Casadebaigt, J. Hugues, and D. Monceau: Corros. Sci., 2020, vol. 175, p. 108875.

    Article  CAS  Google Scholar 

  2. A.W. Thompson: Scr. Metall., 1974, vol. 8, pp. 145–47.

    Article  Google Scholar 

  3. S. Miyazaki, K. Shibata, and H. Fujita: Acta Metall., 1979, vol. 27, pp. 855–62.

    Article  CAS  Google Scholar 

  4. C. Keller and E. Hug: Mater. Lett., 2008, vol. 62, pp. 1718–20.

    Article  CAS  Google Scholar 

  5. C. Keller, E. Hug, R. Retoux, and X. Feaugas: Mech. Mater., 2010, vol. 42, pp. 44–54.

    Article  Google Scholar 

  6. C. Keller, E. Hug, and X. Feaugas: Int. J. Plast., 2011, vol. 27, pp. 635–54.

    Article  CAS  Google Scholar 

  7. M. Doner and J.A. Heckler: Superalloys, 1988, vol. 1988, pp. 653–62.

    Google Scholar 

  8. M.G.D. Geers, W.A.M. Brekelmans, and P.J.M. Janssen: Int. J. Solids Struct., 2006, vol. 43, pp. 7304–21.

    Article  CAS  Google Scholar 

  9. E. Hug, C. Keller, P.A. Dubos, and M.M. Celis: J. Mater. Res. Technol., 2021, vol. 11, pp. 1362–77.

    Article  CAS  Google Scholar 

  10. C. Romain, D. Texier, C. Desgranges, J. Cormier, S. Knittel, D. Monceau, and D. Delagnes: Oxid. Met., 2021, vol. 96, pp. 169–82.

    Article  CAS  Google Scholar 

  11. J.T. Fourie: Philos. Mag., 1968, vol. 17, pp. 735–56.

    Article  CAS  Google Scholar 

  12. H. Mughrabi: Phys. Status Solidi, 1971, vol. 44, pp. 391–402.

    Article  CAS  Google Scholar 

  13. M.D. Uchic and D.M. Dimiduk: Mater. Sci. Eng. A, 2005, vol. 400–401, pp. 268–78.

    Article  Google Scholar 

  14. J.R. Greer, W.C. Oliver, and W.D. Nix: Acta Mater., 2005, vol. 53, pp. 1821–830.

    Article  CAS  Google Scholar 

  15. C.A. Volkert and E.T. Lilleodden: Philos. Mag., 2006, vol. 86, pp. 5567–579.

    Article  CAS  Google Scholar 

  16. J.R. Greer and W.D. Nix: Appl. Phys. A, 2005, vol. 80, pp. 1625–629.

    Article  CAS  Google Scholar 

  17. W.D. Nix: Metall. Trans. A, 1989, vol. 20, pp. 391–420.

    Article  Google Scholar 

  18. R.-M. Keller, S.P. Baker, and E. Arzt: J. Mater. Res., 1998, vol. 13, pp. 1307–317.

    Article  CAS  Google Scholar 

  19. H. Huang and F. Spaepen: Acta Mater., 2000, vol. 48, pp. 3261–269.

    Article  CAS  Google Scholar 

  20. M. Hommel and O. Kraft: Acta Mater., 2001, vol. 49, pp. 3935–947.

    Article  CAS  Google Scholar 

  21. D.Y.W. Yu and F. Spaepen: J. Appl. Phys., 2004, vol. 95, pp. 2991–997.

    Article  CAS  Google Scholar 

  22. A.A. Benzerga and N.F. Shaver: Scr. Mater., 2006, vol. 54, pp. 1937–941.

    Article  CAS  Google Scholar 

  23. R. Venkatraman and J.C. Bravman: J. Mater. Res., 1992, vol. 7, pp. 2040–48.

    Article  CAS  Google Scholar 

  24. A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky, and R. Banerjee: Acta Mater., 2012, vol. 60, pp. 5697–711.

    Article  CAS  Google Scholar 

  25. M. Brunner, M. Bensch, R. Völkl, E. Affeldt, and U. Glatzel: Mater. Sci. Eng. A, 2012, vol. 550, pp. 254–62.

    Article  CAS  Google Scholar 

  26. B. Cassenti and A. Staroselsky: Mater. Sci. Eng. A, 2009, vol. 508, pp. 183–89.

    Article  Google Scholar 

  27. W.L. Finlay and J.A. Snyder: JOM, 1950, vol. 2, pp. 277–86.

    Article  Google Scholar 

  28. J. Baillieux, D. Poquillon, and B. Malard: J. Appl. Crystallogr., 2016, vol. 49, pp. 175–81.

    Article  CAS  Google Scholar 

  29. G. Baur and P. Lehr: J. Less-Common Met., 1980, vol. 69, pp. 203–18.

    Article  CAS  Google Scholar 

  30. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, and M. Qian: Powder Metall., 2014, vol. 57, pp. 251–57.

    Article  CAS  Google Scholar 

  31. F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini: Materials (Basel), 2014, vol. 7, pp. 542–53.

    Article  Google Scholar 

  32. D. Texier, Q. Sirvin, V. Velay, M. Salem, D. Monceau, B. Mazères, E. Andrieu, R. Roumiguier, and B.B. Dod: Titanium 2019, 2020, pp. 0–4.

  33. B. Barkia, J.P. Couzinié, S. Lartigue-Korinek, I. Guillot, and V. Doquet: Mater. Sci. Eng. A, 2017, 703, vol. 703.

    Article  Google Scholar 

  34. Y. Chong, M. Poschmann, R. Zhang, S. Zhao, M.S. Hooshmand, E. Rothchild, D.L. Olmsted, J.W. Morris, D.C. Chrzan, M. Asta, and A.M. Minor: Sci. Adv., 2020, vol. 6, pp. 1–11.

    Google Scholar 

  35. P. Stratton: Int. Heat Treat. Surf. Eng., 2013, vol. 7, pp. 70–73.

    Article  Google Scholar 

  36. M. Zupan and K.J. Hemker: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 810–14.

    Article  Google Scholar 

  37. M. Zupan, D.M. Dimiduk, and K.J. Hemker: MRS Online Proc. Libr., 1999, vol. 552, pp. 1–6.

    Google Scholar 

  38. R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103–14.

    Article  Google Scholar 

  39. R. Gaddam, B. Sefer, R. Pederson, and M.L. Antti: IOP Conf. Ser. Mater. Sci. Eng., 2002, vol. 48, p. 1.

    Google Scholar 

  40. D. Texier, D. Monceau, J.C. Salabura, R. Mainguy, and E. Andrieu: Mater. High Temp., 2016, vol. 33, pp. 325–37.

    Article  CAS  Google Scholar 

  41. D. Lunt, X. Xu, T. Busolo, J. Quinta da Fonseca, and M. Preuss: Scr. Mater., 2018, vol. 145, pp. 45–49.

    Article  CAS  Google Scholar 

  42. M.A. Sutton, J.J. Orteu, and H.W. Schreier: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts Theory and Applications, Springer, Boston, 2009.

    Google Scholar 

  43. N. Vaché, Y. Cadoret, B. Dod, and D. Monceau: Corros. Sci., 2021, vol. 178, p. 109041.

    Article  Google Scholar 

  44. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  CAS  Google Scholar 

  45. M. Surand. Institut National Polytechnique de Toulouse. PhD Thesis, Université de Toulouse, 2013.

  46. J. Baillieux. Institut National Polytechnique de Toulouse. PhD Thesis, Université de Toulouse, 2015.

  47. E. Hug and C. Keller: Metall. Mater. Trans. A, 2010, 41, 2498–506.

  48. C. Keller, E. Hug, and D. Chateigner: Mater. Sci. Eng. A, 2009, vol. 500, pp. 207–15.

    Article  Google Scholar 

  49. R.N. Shenoy, J. Unnam, and R.K. Clark: Oxid. Met., 1986, vol. 26, pp. 105–24.

    Article  CAS  Google Scholar 

  50. H.E. Evans: Int. Mater. Rev., 1995, vol. 40, pp. 1–40.

    Article  CAS  Google Scholar 

  51. A. Casadebaigt, D. Monceau, and J. Hugues: MATEC Web Conf., 2020, vol. 321, p. 03006.

    Article  CAS  Google Scholar 

  52. C.H. Ward, A.W. Thompson, and J.C. Williams: Scr. Metall. Mater., 1993, vol. 28, pp. 1017–21.

    Article  CAS  Google Scholar 

  53. T.A. Parthasarathy, W.J. Porter, S. Boone, R. John, and P. Martin: Scr. Mater., 2011, vol. 65, p. 65.

    Article  Google Scholar 

  54. R.S. Mishra, D. Bannerjee, and A.K. Mukherjee: Mater. Sci. Eng. A, 1995, vol. 192–193, pp. 763–68.

    Article  Google Scholar 

  55. C.H. Ward, A.W. Thompson, and J.C. Williams: Metall. Mater. Trans. A, 1995, vol. 26, pp. 703–20.

    Article  Google Scholar 

  56. R. Foerch, A. Madsen, and H. Ghonem: Metall. Trans. A, 1993, vol. 24, pp. 1321–332.

    Article  Google Scholar 

  57. J.C. Williams, A.W. Sommer, and P.P. Tung: Metall. Trans., 1972, vol. 3, pp. 2979–984.

    Article  CAS  Google Scholar 

  58. M.P. Echlin, J.C. Stinville, V.M. Miller, W.C. Lenthe, and T.M. Pollock: Acta Mater., 2016, vol. 114, pp. 164–75.

    Article  CAS  Google Scholar 

  59. C. Desgranges, F. Lequien, E. Aublant, M. Nastar, and D. Monceau: Oxid. Met., 2013, vol. 79, pp. 93–105.

    Article  CAS  Google Scholar 

  60. A.D. Smigelskas and E.O. Kirkendall: Trans. AIME, 1947, vol. 171, pp. 130–42.

    Google Scholar 

  61. B.W. Dunnington, F.H. Beck, and M.G. Fontana: Corrosion, 1952, vol. 8, pp. 2–12.

    Article  CAS  Google Scholar 

  62. R. Francis and D.G. Lees: Mater. Sci. Eng. A, 1989, vol. 120–121, pp. 97–99.

    Article  Google Scholar 

  63. S. Perusin, B. Viguier, D. Monceau, L. Ressier, and E. Andrieu: Acta Mater., 2004, vol. 52, pp. 5375–80.

    Article  CAS  Google Scholar 

  64. C.M. Wang, A. Genc, H. Cheng, L. Pullan, D.R. Baer, and S.M. Bruemmer: Sci. Rep., 2015, vol. 4, pp. 1–6.

    Google Scholar 

  65. S. Dryepondt, D. Monceau, F. Crabos, and E. Andrieu: Acta Mater., 2005, vol. 53, pp. 4199–4209.

    Article  CAS  Google Scholar 

  66. K. Prasad and V.K. Varma: Mater. Sci. Eng. A, 2008, vol. 486, pp. 158–66.

    Article  Google Scholar 

  67. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653–63.

    Article  Google Scholar 

  68. A.H. Cottrell: Philos. Mag., 1953, vol. 44, pp. 829–32.

    Article  CAS  Google Scholar 

  69. A.M. Garde, A.T. Santhanam, and R.E. Reed-Hill: Acta Metall., 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  70. M. Doner and H. Conrad: Metall. Trans., 1973, vol. 4, pp. 2809–17.

    Article  CAS  Google Scholar 

  71. K. Prasad: Mater. Sci. Technol., 2010, vol. 26, pp. 1068–72.

    Article  CAS  Google Scholar 

  72. H. Jousset. École Nationale Supérieure des Mines de Paris. PhD Thesis, 2008.

  73. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  74. J.M. Robinson and M.P. Shaw: Mater. Sci. Eng. A, 1992, vol. 159, pp. 159–65.

    Article  Google Scholar 

  75. J. Zdunek, W.L. Spychalski, J. Mizera, and K.J. Kurzydłowski: Mater. Charact., 2007, vol. 58, pp. 46–50.

    Article  CAS  Google Scholar 

  76. A. van den Beukel: Phys. Status Solidi, 1975, vol. 30, pp. 197–206.

    Article  Google Scholar 

  77. A. Van Den Beukel and U.F. Kocks: Acta Metall., 1982, vol. 30, pp. 1027–34.

    Article  Google Scholar 

  78. A.T. Santhanam and R.E. Reed-Hill: Metall. Trans., 1971, vol. 2, pp. 2619–22.

    Article  CAS  Google Scholar 

  79. O.N. Senkov and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1877–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Cavé.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavé, K., Texier, D., Fessler, E. et al. Size Effect on the Tensile Mechanical Behavior of Thin Ti6242S Specimens at 723 K and 823 K. Metall Mater Trans A 54, 549–561 (2023). https://doi.org/10.1007/s11661-022-06898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06898-6

Navigation