Skip to main content
Log in

Effect of Mo on Phase Stability and Properties in FeMnNiCo High-Entropy Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The goal of this research was to propose a combined modeling approach to design a stable alloy based on the FeMnNiCoMo system. First, phase stability calculations were made using valence electron calculations (VEC) and density functional theory (DFT) methods. The effect of Mo alloying in the FeMnNiCo system was investigated by calculating characteristics of solid solution combined with the different methods. The DFT method was used to obtain formation enthalpy in the (FeMnNiCo)100–xMox system for stable face-centered-cubic (fcc) and body-centered-cubic (bcc) structures. The calculations were made for Mo contents from 0 to 20 at. pct. Classic thermodynamic calculations, such as mixing enthalpy, configurational entropy, or valence electron concentration (VEC), were used. Based on these calculations, the proposed alloy should be characterized by fcc structure in the entire considered Mo content, without occurrence of any intermetallic phases. Subsequently, three alloys with 0, 5, and 10 at. pct Mo were produced using arc melting and were further investigated. Alloys were homogenized and then hot rolled into flat bars. Microstructural analysis was performed using as-cast, after-homogenization, and hot-rolled specimens. The microstructures were characterized by means of scanning electron microscopy–energy-dispersive spectroscopy (EDS) analysis. Mechanical properties were evaluated using tensile and compression tests. In addition, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were also conducted. The results from EDS and XRD showed the occurrence of intermetallic phases in investigated alloys, as phase with Fm3-m space group and in µ phase in (FeMnNiCo)90Mo10 alloy. Based on the comparison of the experimental and calculated results, conclusions regarding the structural changes with Mo content were drawn and the validity of the proposed modeling approach was tested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A., 2004, vol. 375–377, pp. 213–18.

    Article  Google Scholar 

  3. J.W. Yeh: JOM., 2013, vol. 65, pp. 1759–71.

    Article  CAS  Google Scholar 

  4. F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies: Int. J. Mod. Phys. B., 2009, vol. 23(6–7), pp. 1254–59.

    Article  CAS  Google Scholar 

  5. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Intermetallics., 2010, vol. 18(9), pp. 1758–65.

    Article  CAS  Google Scholar 

  6. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Appl. Phy. Lett., 2007, vol. 90, p. 181904.

    Article  Google Scholar 

  7. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk: Metall. Mater. Trans. A., 2015, vol. 47A, pp. 3322–32.

    Google Scholar 

  8. S. Guo and C.T. Liu: Progr. Nat. Sci., 2011, vol. 21, pp. 433–46.

    Article  Google Scholar 

  9. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang: Metall. Mater. Trans. A., 2015, vol. 36A, pp. 881–93.

    Google Scholar 

  10. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics., 2011, vol. 19, pp. 698–706.

    Article  CAS  Google Scholar 

  11. S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra: Mater. Sci. Eng., 2019, vol. 739, pp. 158–66.

    Article  CAS  Google Scholar 

  12. X. Yang and Y. Zhang: Mater. Chem. Phys., 2012, vol. 132(2–3), pp. 233–38.

    Article  CAS  Google Scholar 

  13. X.G. Li, C. Chen, and H. Zheng: npj Comput. Mater., 2020, vol. 6.

  14. M.C. Gao and D.E. Alman: Entropy., 2013, vol. 15, pp. 4504–19.

    Article  CAS  Google Scholar 

  15. J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, and Z.Q. Hu: J. Alloys Compd., 2010, vol. 497, pp. 52–56.

    Article  CAS  Google Scholar 

  16. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu: Mater. Sci. Eng. A., 2010, vol. 527, pp. 6975–79.

    Article  Google Scholar 

  17. T.T. Shun, L.Y. Chang, and M.H. Shiu: Mater. Charact., 2012, vol. 70, pp. 63–67.

    Article  CAS  Google Scholar 

  18. G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, and H. Fu: J. Mater. Sci. Technol., 2019, vol. 35, pp. 578–83.

    Article  Google Scholar 

  19. F. Otto, Y. Yang, H. Bei, and E.P. George: Acta Mater., 2013, vol. 61, pp. 2628–38.

    Article  CAS  Google Scholar 

  20. P.E.J. Rivera Díaz del Castillo and H. Fu: J. Mater. Res., 2018, vol. 33(19), pp. 2970–82.

  21. Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Acta Mater., 2014, vol. 81, pp. 428–41.

    Article  CAS  Google Scholar 

  22. H. Okamoto: J. Phys. Equil. Diff., 2007, vol. 28, p. 300.

    Article  CAS  Google Scholar 

  23. U. Mizutani: Hume-Rothery Rules for Structurally Complex Alloy Phases, CRC Press, Boca Raton, 2011, pp. 249–81.

    Google Scholar 

  24. H.L. Chen, H. Mao, and Q. Chen: Mater. Chem. Phys., 2018, vol. 210, pp. 279–90.

    Article  CAS  Google Scholar 

  25. P. Giannozzil, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corsa, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: J. Phys., 2009, vol. 21 (39).

  26. A. van de Walle: Calphad., 2009, vol. 33(2), pp. 266–78.

    Article  Google Scholar 

  27. A. van de Walle, M. Asta, and G. Ceder: Calphad., 2002, vol. 26(4), pp. 539–53.

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  29. D. Vanderbilt: Phys. Rev. B., 1990, vol. 41, pp. 7892–95.

    Article  CAS  Google Scholar 

  30. E. Kuckukbenli, M. Monni, B.I. Adetunji, X. Ge, G.A. Adebayo, N. Marzari, S. de Gironcoli, and A. Dal Corso: Cond. Mat. Mater. Sci., 2014, arXiv:abs/1404.3015.

  31. Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao: MRS Commun., 2014, vol. 4(2), pp. 57–62.

    Article  CAS  Google Scholar 

  32. R.W. Cahn and P. Hassen: Physical Metallurgy, vol. 1, 4th edn. North Holland, Amsterdam, 1996.

    Google Scholar 

  33. Y. Zhang, X. Yang, and P.K. Liaw: JOM., 2012, vol. 64(7), pp. 830–38.

    Article  CAS  Google Scholar 

  34. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Adv. Eng. Mater., 2008, vol. 10(6), pp. 534–38.

    Article  CAS  Google Scholar 

  35. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.

    Article  CAS  Google Scholar 

  36. S. Müller, W. Wolf, and R. Podloucky: Alloy Physics: Ab-Initio Methods and Applications, Wiley, Hoboken, 2007, pp. 589–652.

    Book  Google Scholar 

  37. V.G. de Paula and M.S. Reis: Chem. Mater., 2021, vol. 33(14), pp. 5483–95.

    Article  Google Scholar 

  38. D. Choudhuri, T. Alam, T. Borkar, B. Gwalani, A.S. Mantri, S.G. Srinivasan, M.A. Gibson, and R. Banerjee: Scripta Mater., 2015, vol. 100, pp. 36–39.

    Article  CAS  Google Scholar 

  39. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P. Liaw, and Z.P. Kand Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1–93.

    Article  Google Scholar 

  40. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad., 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  41. H. Loyer Danflou, M. Macia, T.H. Sanders, and T. Khan: Superalloys, 1996, pp. 119–27.

  42. I. Basu and J.T.M. De Hosson: Scripta Mater., 2020, vol. 187, pp. 148–56.

    Article  CAS  Google Scholar 

  43. H. Kwon, J. Moon, J.W. Bae, J.M. Park, S. Son, H.-S. Do, B.-J. Lee, and H.S. Kim: Scripta Mater., 2020, vol. 188, pp. 140–45.

    Article  CAS  Google Scholar 

  44. D. Wen, C.H. Chang, S. Matsunaga, G. Park, L. Ecker, S.K. Gill, M. Topsakal, M.A. Okuniewski, S. Antonov, D.R. Johnson, and M.S. Titus: Materialia., 2020, vol. 9, p. 100539.

    Article  CAS  Google Scholar 

  45. A.F. Guillermet: Bull. Alloy Phase Diagr., 1982, vol. 3, pp. 359–67.

    Article  Google Scholar 

  46. J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.J. Lee, and H.S. Kim: J. Alloys Compd., 2019, vol. 781, pp. 75–83.

    Article  CAS  Google Scholar 

  47. H. Kwon, P. Asghari-Rad, J. Park, P. Sathiyamoorthi, J.W. Bae, J. Moon, A. Zargaran, Y.T. Choi, S. Son, and H.S. Kim: Intermetallics., 2021, vol. 135, p. 107212.

    Article  CAS  Google Scholar 

  48. W. Jiao, H. Jiang, D. Qiao, J. He, H. Zhao, Y. Lu, and T. Li: Mater. Chem. Phys., 2021, vol. 260, p. 124175.

    Article  CAS  Google Scholar 

  49. K. Ming, X. Bi, and J. Wang: Scripta Mater., 2017, vol. 137, pp. 88–93.

    Article  CAS  Google Scholar 

  50. X. Li, Z. Li, Z. Wu, S. Zhao, W. Zhang, H. Bei, and Y. Gao: J. Mater. Sci. Technol., 2021, vol. 94, pp. 264–74.

    Article  Google Scholar 

  51. Y. Dong, Y. Lu, J. Kong, J. Zhang, and T. Li: J. Alloys Compd., 2013, vol. 573, pp. 96–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research project supported by the program “Excellence initiative—research university” for the AGH University of Science and Technology. Calculations have been carried out in the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.pl.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Cichocki.

Ethics declarations

Conflict of interest

On behalf of all of the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cichocki, K., Bała, P., Kozieł, T. et al. Effect of Mo on Phase Stability and Properties in FeMnNiCo High-Entropy Alloys. Metall Mater Trans A 53, 1749–1760 (2022). https://doi.org/10.1007/s11661-022-06629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06629-x

Navigation