Skip to main content

Advertisement

Log in

Effects of Crystal Orientation on Deformation Twinning and Dislocation Slip in Single Crystal Micro-pillars of a Twinning-Induced Plasticity Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Deformation twinning and dislocation slip in twinning-induced plasticity (TWIP) steels have been shown to depend strongly on the crystal orientation, yet the underlying mechanism is still unclear. Here, we addressed this question by fabricating single crystal micro-pillars with six different crystal orientations in a coarse-grained TWIP steel sample and then conducting compression tests as well as microstructural characterization in these pillars. Depending on the crystal orientation, either twinning or slip dominates the plastic deformation. The critical stresses for twinning and slip were measured to be 147.5 ± 19.2 and 105.4 ± 11.2 MPa, respectively. It is found that the Schmid factors for the leading and trailing partial dislocations on the primary slip plane play a crucial role in the competition between twinning and slip at different orientations. Besides, the occurrence of cross-slip depends on crystal orientation through the Schmid factors for the constriction of extended dislocation cores on the primary slip plane as well as those for cross-slip on the conjugate slip plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O. Bouaziz, H. Zurob, and M. Huang: Steel Res. Int., 2013, vol. 84, pp. 937–47.

    CAS  Google Scholar 

  2. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  CAS  Google Scholar 

  3. Y.S. Chun, K.-T. Park, and C.S. Lee: Scr. Mater., 2012, vol. 66, pp. 960–5.

    Article  CAS  Google Scholar 

  4. B.C. De Cooman, L. Chen, H.S. Kim, Y. Estrin, S.K. Kim, H. Voswinckel, in Microstructure and Texture in Steels, A. Haldar, S. Satyam, and B. Debashish, eds. (Springer, London, 2009), pp 165–83.

  5. J.G. Kim, N.A. Enikeev, J.B. Seol, M.M. Abramova, M.V. Karavaeva, R.Z. Valiev, C.G. Park, and H.S. Kim: Sci. Rep., 2018, vol. 8, p. 11200.

    Article  Google Scholar 

  6. X. Lu, J. Zhao, Z. Wang, B. Gan, J. Zhao, G. Kang, and X. Zhang: Int. J. Plast., 2020, vol. 130, p. 102703.

    Article  CAS  Google Scholar 

  7. J. Ding, Z. Shang, J. Li, H. Wang, and X. Zhang: Mater. Sci. Eng. A., 2020, vol. 785, p. 139346.

    Article  CAS  Google Scholar 

  8. X. Guo, C. Sun, C. Wang, J. Jiang, and M.W. Fu: Int. J. Plast., 2021, vol. 145, p. 103076.

    Article  CAS  Google Scholar 

  9. R. Mohammadzadeh and M. Mohammadzadeh: Mater. Sci. Eng. A., 2019, vol. 747, pp. 265–75.

    Article  CAS  Google Scholar 

  10. O. Bouaziz, S. Allain, and C. Scott: Scr. Mater., 2008, vol. 58, pp. 484–7.

    Article  CAS  Google Scholar 

  11. O. Bouaziz: Scr. Mater., 2012, vol. 66, pp. 982–5.

    Article  CAS  Google Scholar 

  12. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2012, vol. 60, pp. 5791–802.

    Article  CAS  Google Scholar 

  13. Z.Y. Liang, Y.Z. Li, and M.X. Huang: Scr. Mater., 2016, vol. 112, pp. 28–31.

    Article  CAS  Google Scholar 

  14. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A., 2010, vol. 527, pp. 3552–60.

    Article  Google Scholar 

  15. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert: Mater. Sci. Eng. A., 2009, vol. 500, pp. 196–206.

    Article  Google Scholar 

  16. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.

    Article  CAS  Google Scholar 

  17. X. Wang, Z.Y. Liang, R.D. Liu, and M.X. Huang: Mater. Sci. Eng. A., 2015, vol. 647, pp. 249–55.

    Article  CAS  Google Scholar 

  18. D. Kim, G.H. Jang, T. Lee, and C.S. Lee: Met. Mater. Int., 2020, vol. 26, pp. 1741–8.

    Article  CAS  Google Scholar 

  19. G.I. Taylor: Plastic Strain in Metals, 1938.

  20. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Science., 2004, vol. 305, pp. 986–9.

    Article  CAS  Google Scholar 

  21. J.R. Greer and J.T.M. De Hosson: Prog. Mater Sci., 2011, vol. 56, pp. 654–724.

    Article  CAS  Google Scholar 

  22. S.Z. Wu, H.W. Yen, M.X. Huang, and A.H.W. Ngan: Scr. Mater., 2012, vol. 67, pp. 641–4.

    Article  CAS  Google Scholar 

  23. Z.Y. Liang and M.X. Huang: J. Mech. Phys. Solids., 2015, vol. 85, pp. 128–42.

    Article  CAS  Google Scholar 

  24. W.S. Choi, B.C. De Cooman, S. Sandlöbes, and D. Raabe: Acta Mater., 2015, vol. 98, pp. 391–404.

    Article  CAS  Google Scholar 

  25. A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A., 2008, vol. 483–484, pp. 184–7.

    Article  Google Scholar 

  26. Z.Y. Liang, J.T.M. De Hosson, and M.X. Huang: Acta Mater., 2017, vol. 129, pp. 1–10.

    Article  CAS  Google Scholar 

  27. W.S. Choi, S. Sandlöbes, N.V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, B.C. De Cooman, and D. Raabe: Acta Mater., 2017, vol. 132, pp. 162–73.

    Article  CAS  Google Scholar 

  28. Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma: Nature, 2010, vol. 463, pp. 335–38.

    Article  CAS  Google Scholar 

  29. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Annu. Rev. Mater. Res., 2009, vol. 39, pp. 361–86.

    Article  CAS  Google Scholar 

  30. J.R. Greer, W.C. Oliver, and W.D. Nix: Acta Mater., 2005, vol. 53, pp. 1821–30.

    Article  CAS  Google Scholar 

  31. Z.C. Luo and M.X. Huang: Scr. Mater., 2018, vol. 142, pp. 28–31.

    Article  CAS  Google Scholar 

  32. Z.C. Luo and M.X. Huang: Scr. Mater., 2020, vol. 178, pp. 264–8.

    Article  CAS  Google Scholar 

  33. M. Madivala, A. Schwedt, U. Prahl, and W. Bleck: Int. J. Plast., 2019, vol. 115, pp. 178–99.

    Article  CAS  Google Scholar 

  34. L. Tang, Li. Wang, M. Wang, H. Liu, S. Kabra, Y. Chiu, and B. Cai: Acta Mater., 2020, vol. 200, pp. 943–58.

    Article  CAS  Google Scholar 

  35. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier: Acta Mater., 2000, vol. 48, pp. 1345–59.

    Article  CAS  Google Scholar 

  36. J.P. Hirth and J. Lothe: Theory of Dislocation, Wiley, New York, 1982.

    Google Scholar 

  37. T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.X.H. acknowledges the support from Guangzhou Municipal Science and Technology Project (No. 202007020007), National Natural Science Foundation of China (No. U1764252), National Key Research and Development Program of China (No. 2019YFA0209900), Research Grants Council of Hong Kong (No. R7066-18, 17255016, 17210418).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 26, 2021; accepted September 4, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z.Y., Huang, M.X. Effects of Crystal Orientation on Deformation Twinning and Dislocation Slip in Single Crystal Micro-pillars of a Twinning-Induced Plasticity Steel. Metall Mater Trans A 52, 5235–5242 (2021). https://doi.org/10.1007/s11661-021-06460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06460-w

Navigation