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An Investigation into the Correlation of Small Punch
and Uniaxial Creep Data for Waspaloy

T. WILLIAMS, M. EVANS, and W. HARRISON

Within the aerospace sector, the understanding and prediction of creep strains for materials
used in high-temperature applications, such as Nickel-based super alloys, is imperative. Small
punch testing offers the potential for understanding creep behavior using much less material
than conventional uniaxial testing but in contrast to uniaxial creep tests, the stress in small
punch creep (SPC) tests is multiaxial. SPC testing can be a valuable tool for validating models of
creep deformation, but the key to unlocking its full capability is through the accurate correlation
of the creep material properties measured through both techniques. As such, the focus of this
paper is to correlate the creep behavior of Waspaloy obtained through conventional uniaxial
testing to that obtained via small punch creep testing. Recently, and for low chrome steels, this
has been achieved through use of the ksp method, but there are good reasons for believing this
technique will not work so well for Nickel-based super alloys. This paper shows this to be the
case for Waspaloy and proposes some alternative methods of correlation based on combining
the Monkman–Grant relation and the Wilshire equations for both uniaxial and small punch
creep. It was found that this latter approach enabled the accurate conversion of SPC minimum
displacement rates to equivalent uniaxial minimum creep rates which, when combined with the
Wilshire equations, enabled SPC test loads to be converted into equivalent uniaxial stresses (and
visa versa) with levels of accuracy that were significantly reduced when compared to using the
ksp method. Further, the random error associated with these conversions were dramatically
increased.
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I. INTRODUCTION

THE small punch creep method was originally
developed in the 1980s with the idea of estimating the
properties of irradiated materials in the power genera-
tion industry.[1] However, further potential was seen in
small scale testing to analyze the residual life of key
‘‘in-service’’ components approaching the end of their
life. The traditional uniaxial creep test used to obtain
mechanical data is often insufficient due to the large
volumes of material that are required to produce test
specimens, as these large volumes will in time undermine
the integrity of these components in use.[2] However,
small punch testing allows for a mini-invasive assess-
ment of the component requiring very little material and
therefore less damage is incurred to the component in
use.[2] In the small punch creep test, the disc specimens

typically have dimensions of just 8 to 9.5 mm for the
diameter and 500 lm for the thickness.
When it comes to the application of the small punch

creep test, there have been many reservations surround-
ing the repeatability and application of the small punch
data itself. Reliability and repeatability of testing has
been a strong focus within the research community,
leading to the establishment of a European Code of
Practice.[3] Results from small punch creep (SPC) tests
are typically shown through time/displacement curves,
which while appearing comparable to that of conven-
tional uniaxial creep curves, in reality are quite different
due to the differing creep mechanisms present in each of
these test techniques. This is because uniaxial test
specimens are only subjected to a single tensile stress
state, while in the SPC test the specimen experiences a
multiaxial stress state. Therefore, data obtained from
SPC tests cannot be used to find or to compare to the
values of conventional creep parameters (such as
stress)—hence the need for a form of correlation to
bridge the gap between the two test types. The ksp
method is based on a constant force-to-stress ratio (w =
F/r) and is based on the Chakrabarty membrane
stretching equations.[4] In this model, W is a function
of the test geometry of the small punch creep test and
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the ksp correction factor. This model, also referred to as
the Classic CEN Workshop Agreement model (CWA),
has already been applied to a range of materials, where,
for example, the work done by Jeffs[5] on CMSX-4 and
the work done by Milička and Dobeš on P91[6] have met
with some success. In some studies on P91 this method
has indicated a difference in low and high load condi-
tions, indicating a load dependence.[2] Also, the accuracy
of the ksp method has been shown to be limited to
ductile materials—with the work done by Lancaster[7]

et al. showing that ksp correlations for inherently brittle
superalloys used for high-temperature applications are
not as useful as in the case of Titanium aluminides.
Also, it has been indicated that for specific materials the
ksp factor is not a constant, but instead needs to be
optimized against uniaxial creep date.[2]

Holmstrom et al.[8] have proposed some modifications
to the CWA model to deal with these limitations. These
have involved making w dependant upon the amount of
displacement present at the minimum displacement rate.
One version of this model (the Empirical Force to Stress
conversion or the EFS model) has W modeled as a
power law function of displacement present at the
minimum displacement rate, while another (the Modi-
fied CHakrabarty or MCH model) has W as a linear
function of displacement present at the minimum
displacement rate. These authors found that EFS and
MCH models were superior to the classical CWA model
when tested on P92, F92, and 316L steels. But they also
concluded that additional modeling is required when
converting SPC minimum displacement rates to uniaxial
minimum creep rates.

A number of numerical models have also been
proposed by researchers to interpret the stress and
temperature relationships between both SPC and uni-
axial data. For example, Wang and Evans[9] made use of
numerical models of the small punch test together with
the Monkman–Grant relation to correlate uniaxial and
small punch test data for 0.5Cr-0.5Mo-0.25V and
1.25Cr-1Mo steels. The aim of this paper will be to
make use of the Monkman–Grant[10,11] relation for
small punch and uniaxial data to convert SPC minimum
displacement rates to uniaxial minimum creep rates in
the way suggested by Holmstrom et al.,[8] and then to
incorporate this into a Wilshire type model[12] for
uniaxial and small punch data. Then there is no
requirement to define and measure W. The adequacy
of this approach is then compared to the ksp method
using Waspaloy as the test material.

II. MATERIAL PROPERTIES
AND CHARACTERIZATION

A. Material for Uniaxial Testing

Thirty-one cylindrical test pieces were machined from
an received Waspaloy bar, with a gauge length of 28 mm
and a diameter of 5 mm. The chemical composition of
this batch of Waspaloy (in wt. pct) was 19:1Cr; 13:5Co;
0:03C; 0:10Mn; 0:10Si; 0:79Fe; 4:08Mo; 3:15Ti; 1:30Al;
0:005B; 0:07Zr; 0:0025S; 0:01P; 0:10Cu; 5 ppm Ag; 10

ppm Pb; 0:5 ppm Bi; bal Ni. The material was heat
treated for 4 h at 1353 K (water quenched), 4 hours at
1123 K (air cooled), and 16 hours at 1033 K (air cooled).
This resulted in a uniform equiaxed structure of average
grain diameter 45 lm. The microstructure contained
uniform c¢ particles of mean diameter 0.3 lm. The
tensile strength (rTS) values for this batch of material
were 1154, 1120, 975, and 827 MPa at 873, 923, 973, and
1023 K, respectively.
The specimens were tested in tension over a range of

stresses at 873 K, 923 K, 973 K, and 1023 K using high
precision in Andrade–Chalmers constant-stress
machines.[13] Loads and stresses could be applied and
maintained to an accuracy of 0.5 pct. In all cases,
temperatures were controlled along the gauge lengths
and with respect to time to better than ± 1 K. The
extensometer was capable of measuring tensile strain to
better than 10�5. Loading machines, extensometers, and
thermocouples were all calibrated with respect to NPL
traceable standards. At 873 K, eight specimens were
placed on test over the stress range 1150 to 700 MPa, at
923 K seven specimens were placed on test over the
stress range 1000 to 550 MPa, at 973 K nine specimens
were placed on test over the stress range 950 to 200
MPa, and at 1023 K seven specimens were tested over
the stress range 700 to 250 MPa. Up to 400 creep
strain/time readings were taken during each of these
tests. Because Waspaloy can serve at temperatures up to
920 K for critical applications and 1040 K for less
demanding situations, the test program covered stress
ranges giving creep lives up to 5500 hours (around
19,852,000 seconds) at 873 K to 1023 K. This data set
has been published by Wilshire and Scharning[14] and
Evans.[15]

In all cases, the curves showed conventional primary
and tertiary stages. Figure 1(a) shows a typical creep
curve recorded at the lowest temperature (873 K) and
Figure 1(b) shows a typical creep curve at the highest
test temperature (1023 K). In both cases, the stress was a
mid-value within the test matrix. The strain rates are
based on the slope of the measured creep curve using a
numerical higher order differentiation method. It can be
seen from this figure—by looking either at the creep
curve or the strain rate—that the lower temperatures are
associated with a more prolonged and pronounced
tertiary stage of creep. At 1023 K, the minimum creep
rate occurs very early on in the test, with noticeable
necking present towards the end of the test. At 873 K,
the minimum creep rate occurs towards the middle of
the test, with necking again visible at the end of the
creep curve. But all failed specimens showed evidence of
grain boundary cavitation.[15]

B. Material for Small Punch Testing

Discs with a radius of 8 mm and a thickness of 1000
lm were cut from an as-received Waspaloy bar, with
chemical composition (in wt. pct) 19:5Cr; 13:5Co;
0:08C; 4:3Mo; 3:0Ti; 1:30Al; 0:006B; balance Fe. This
supplied material is therefore very similar to that used
for the uniaxial test specimens. The cut discs were
ground down using progressively finer grit papers until a

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 52A, AUGUST 2021—3461



500 ± 5 lm thickness was achieved in accordance with
the SPC Euro Co.[16] The as-received bar had a typical
heat treatment of 1268 K to 1313 K for 4 hours, air
cooled, followed by a stabilization period at 1118 K for
4 hours, air cooled, and aged at 1033 K for 16 hours, air
cooled. The grain size ranged between 16 and 127 lm.
The heat treatment experience by this material is
therefore very similar to that experienced by the material
used for uniaxial test specimens. The grains sizes were
also similar. Figure 2(a) shows, through an SEM image
of this as-received Waspaloy bar, that the microstruc-
ture consists of primary c¢ precipitates evenly distributed
within a c, with finer secondary c¢ precipitates formed
during heat treatment after the aging stage. From the
BSE scans in Figure 2(b) it is clear that dark inclusions
present in the coarse grain matrix of Figure 2(a) are
TiN. These inclusions, alongside NiC, can form in
Waspaloy during primary processing of superalloys.[1]

For polycrystalline Nickel-based superalloys used at
elevated temperatures, grain boundaries are used to
modify material properties such as fatigue, creep, and
corrosion resistance. This is completed through the
addition of coincident site lattices (CSL). The degree of
misorientation and thus coherency of a grain boundary
can be defined as the CSL and each CSL has a
subsequent R value. Low CSL boundaries (R >29)
contain large defects and vacancies and are therefore
less desirable as they promote creep diffusion mecha-
nisms. However, high CSL boundaries (R < 29) are
coherent and contain less crystal defects, making them
creep resistant at these elevated temperatures. A com-
mon example of a high CSL boundary is twins which
occur at a misorientation of 60 deg ± 5 giving them a R

value of 3. The EBSD data summarized in Figures 2(c)
and (d) show the grain boundary types of the as-received
Waspaloy used for SPC testing in this paper. While
some low CSL boundaries can be observed (Blue and
Pink), a large proportion of twinning (R = 3) is also
observed. This leads to the superior creep properties at
elevated temperature conditions for this material.
The discs were tested on a dead-weight test frame

assembly, in which a load pan applied a load through a
central axis to the circumferential clamped discs, over a
range of loads at 923 K, 973 K, and 1023 K. The
maximum force at failure (Fmax), obtained in a SPC test
where the force is controlled to maintain a constant
displacement rate until failure, were 1565, 1520, and
1450 N at 923 K, 973 K, and 1023 K, respectively. At
923 K, three discs were tested at loads of 700 N, 650 N,
and 600 N, at 973 K, three discs were tested at loads of
600 N, 550 N, and 500 N and at 1023 K three discs were
tested at loads of 500 N, 450 N, and 400 N. At the
lowest temperature the test was repeated three times at
each of the stated loads, and all analyses were based on
the average recorded failure time and minimum dis-
placement rates. A repeat test was also carried out at 973
K–600 N. These temperature and load conditions gave
creep lives of between 1015 hours down and 6 hours.
Displacement/time readings were taken throughout the
tests from two linear variable displacement transducers,
one positioned near the load pan to take displacement
readings from the topside of the disc and the other
placed in the lower die to record displacement of the
underside of the disc.
Normal displacement curves were observed for each

specimen. In Figures 3(a) and (c) displacement and
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Fig. 1—Creep strain and creep rates recorded at (a) 873 K–900 MPa and (b) 1023 K–600 MPa.
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displacement rate curves are shown for specimens tested
at the highest and lowest temperatures. The test curves
showed no sign of premature cracking, which would
have revealed itself in multiple points of minima for the
log displacement rates. Again the effect of increasing
temperature appears to be in shortening the period of
time where decelerating displacement is occurring and
lengthening the time over which the log displacement
rate is approximately constant. Figures 3(b) and (d)
below contain Keyence images of one of the SPC discs
(tested at 923 K and 650 N) post creep rupture.
Figure 3(b) shows a micrograph of the discs fracture
surface and Figure 3(d) a cross section of the ruptured
disc. As expected of high-temperature creep tests,
Figure 3(b) shows evidence of brittle failure as it is
clear that the cracks on the underside of the disc grew in
a radial fashion from the center of the disc finally
resulting in an outward rupture. This is due to a lack of
elasticity upon creep stain accumulation, thus causing
the bottom of the disc to be in tension. Further, the
fracture surface itself has a dimpled look, which is
typical of intergranular cleavage, both characteristics
observed in inherently brittle materials such as cTiAl
and Mg Alloys. The failure mechanism was confirmed
by Scanning Electron Microscope images of the rup-
tured discs cross section as shown in Figure 3(e). Both
wedge cracking and the formation of voids (circled) can

be observed along the grain boundaries in the failed
sample exposed to creep at 923 K at a load of 650 N.

III. METHODOLOGIES

A. Some Established SPC Conversions Models

The current focus in the field of small punch creep
testing is gaining an understanding of the relationship
between the small punch force and uniaxial creep stress.
The key to this relationship is a form of conversion that
enables the small punch force to be represented as a
equivalent uniaxial stress. The most common technique
for the empirical correlation of SPC and uniaxial creep
data is through the creep correlation factor, ksp. The ksp
factor was first introduced in 2006 when the European
standard released the ‘‘Europe Code of Practice for
Small Punch Creep Testing.’’[16] This method uses an
equation derived from the Chakrabarty membrane
stretching theory whereby the ratio of the small punch
force F to the uniaxial stress, r, is dependent on the disc
and testing geometries. The equation has the form

F

r
¼ wCWA ¼ 3:332kspR

�0:202r1:192h0; ½1a�

where R is the die hole radius, r is the punch head
radius, h0 is the thickness of the specimen, and ksp a

Fig. 2—Images of the as-received Waspaloy material used for SPC testing: (a) An SEM microstructure image, (b) a subsequent BSE scan, (c) an
EBSD image of the grain boundary types, and (d) computed R values.
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material-specific ductility parameter. It is often referred
to as a correlation factor because its value is adjusted
so as to fit with the uniaxial date on materials with
varying degrees of ductility. After the release of the
CEN SPCT code of practice,[16] the most commonly
used test apparatus geometry in Europe use values of
R = 2 mm, r = 1.25 mm, and h0 = 0.5 mm and thus
Eq. [1a] reduces to

F

r
¼ 1:8897ksp: ½1b�

In this approach, the equivalent stress associated with
a SPC test force is therefore given by

r ¼ 0:5292
F

ksp
: ½1c�

This ksp approach is quite restrictive in nature, and
this can be most easily illustrated by assuming that a
power (or Norton’s) law model describes adequately the
relationships between i. minimum uniaxial creep rates
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Fig. 3—Displacement and displacement rates recorded at (a) 923 K–650 N, (b) micrograph of the failed discs fracture surface (as tested as 923
K–650 N), (c) displacements recorded at 1023 K–450 N, (d) a cross section of the ruptured disc, and (e) scanning electron microscope images of
the ruptured discs cross section.
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_emin and uniaxial stress r and ii. minimum displacement
rates _umin and the SPC force F

_emin ¼ Arn ½2a�

_umin ¼ BðFÞm; ½2b�

where A, B, n, and m are model parameters. Substitut-
ing Eq. [1c] into Eq. [2a] enables uniaxial creep data to
be converted into equivalent SPC data

_umin ¼ A 0:5292
F

ksp

� �n
¼ A

0:5292

ksp

� �n
Fð Þn: ½2c�

In the ksp method, no distinction is made between
minimum creep rates and minimum displacement
rates—they are taken to be equivalent. This enables
_emin to be replaced by _umin on the left-hand side of
Eq. [2c]. A comparison of Eqs. [2b] and [2c] then makes
clear the fact that the ksp method requires the restriction
that m = n and B = A½0:5292=ksp�n to hold true.

Further, the ksp method makes no adjustment for
measured minimum creep or displacement rates when
converting stresses (forces) to forces (stresses). This
however is taken into account in the EFS and MCH
models. In the ESP model

F

r
¼ wEFS ¼ a0ðuminÞa1 ½3a�

where umin is the displacement (mm) that occurs when
the displacement rate, _u is at a minimum. In the MCH
model

F

r
¼ wMCH ¼ a2 þ a3umin ½3b�

a0 to a3 are parameters that need to be estimated based
on maximizing the correlation between the small punch
and uniaxial data available on a specific material. To the
extent that umin is likely to vary with force and
temperature, it is suggested that in these models W is
test condition dependent.

B. An Modified Approach

As Holmstrom et al.[8] concluded, the use of Mon-
kman–Grant type relations[10,11] are likely to be needed to
improve the universal applicability ofmethods basedonW.
In this section, such relations are combinedwith aWilshire
model for both uniaxial and SPC test data to eliminate the
need for the computation of W in the conversion of a
uniaxial stress to an SPC force. The Monkman–Grant
relation is a commonly used predictive model which
typically relates a uniaxial time to failure, tf,ua, to the
minimum creep rate, _em, with a relationship of the form:

tf;ua ¼ a1ð_eminÞb1 ; ½4a�

where a1 and b1 are material constants typically esti-
mated through linear regression. They are thought to be
material specific, and therefore independent of test
conditions. For many materials, especially low chrome

steel alloys, b1 tend to be around 1 in value. Research on
high-temperature alloys, such as 1Cr-1Mo steel, and
2.25Cr-1Mo steel conducted by Song,[17] found the
values of a1 and b1 to be 0.0528 and 1.016, respectively.
While work by Evans[18] on 1CrMoV steel produced
values of 4.775 and 0.967, respectively.
This relation was initially identified from uniaxial

creep data, but work done by Dobes and Milicka[11]

applied this same relation to the time to failure from an
SPC test, tf,spc, and the minimum displacement rate, _umin

tf;spc ¼ a0ð _uminÞb0 ½4b�

These authors concluded that this relationship was just
as pronounced as that found for uniaxial data. It is thus
possible to adjust theminimumdisplacement rates at each
SPC test failure time to bring them into line with
minimum creep rates, i.e., calculate equivalent minimum
creep rates. This is done by setting tf,spc= tf,ua in Eqs. [4a]
and [4b]. For many materials b0 = b1 = 1 in which case
the equivalent minimum creep rate is given by

ln[_emin� ¼ ln a0½ � � ln a1½ � þ ln½ _umin�; ½5a�

where ln stands for the natural log. For other materi-
als b0 = b1 „ 1 in which case

ln[_emin� ¼
ln a0½ � � ln a1½ �

b1
þ ln½ _umin�: ½5b�

But more generally b0 „ b1 in which case (obtained
by equating Eqs. [4a] and [4b]

ln[_emin� ¼
ln a0½ � � ln a1½ �

b1
þ b0
b1

ln½ _umin�: ½5c�

Minimum rates being tied together in this way further
imply that force and stress are also tied together. Exactly
how they are tied together depends on the way in which
stress varies with the minimum creep rate and the way in
which the minimum displacement rate varies with force.
The Wilshire equations[12] are a fairly new approach to
model uniaxial creep data that have not only proved to
provide very reliable interpolated stresses for awide variety
of high-temperaturematerials, but also produce very good
extrapolations out to very low stresses (and high failure
times). Its use in modeling SPC data is not so wide spread.
TheWilshire equation for the uniaxialminimum creep rate
is a sigmoidal S-shaped curve at a fixed temperature

r
rTS

¼ exp �k2j _emin exp
Q�

RT

� �� �vj� �
½6�

j = 1 when r=rTS � rc1; j = 2 when rc1<r=rTS � rc2;
…; j = p when r=rTS>rcp

rc1<rc2< � � �<rcp;

where T is the absolute temperature, rTS the tensile
strength, R the universal gas constant. Q* is the acti-
vation energy for _emin, while k2j and vj are further
parameters that apply in each of the p normalized
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stress ranges. rcj are critical values for the normalized

stress and so fall between 0 and 1. In this approach,
there are p creep regimes that occur in distinct ranges
for the normalized stress and the p versions of Eq. [6]
then apply to each regime. Typically, p varies between
0 and 4 depending on the material being studied. For-
tunately, it is relatively straightforward to linearize this
model, so that linear least squares can be used to indi-
rectly estimate the unknown parameters (k2j,vj, Q*)
from the uniaxial date

lnð_eminÞ ¼ c0j þ c1jr
� þ c2

1000

RT
; ½7a�

where r* = ln[� ln(r/rTS)] and c0j to c2 are related to
the parameters (k2j,vj, Q*) in each of the p normalized
stress ranges (for example c1j = 1/vj and c2 = Q* in
kJ mol�1). The Wilshire equations use in modeling
SPC data is not so prolific, but its equivalent takes the
form

ln _uminð Þ ¼ d0j þ d1jF
� þ d2

1000

RT
; ½7b�

where F* = ln[� ln(F/Fmax)]. Fmax is the maximum force
at failure obtained in a SP test where the force is
controlled to maintain a constant displacement rate
until failure.

The Wilshire equations for times to failure recorded
from uniaxial and SPC tests, respectively, have the same
form as above

ln tf;ua
� 	

¼ e0j þ e1jr
� þ e2

1000

RT
½8a�

ln tf;spc
� 	

¼ g0j þ g1jF
� þ g2

1000

RT
: ½8b�

Two conversion approaches now present themselves.
The first involves converting a minimum displacement
rate measured at a particular force and temperature,
into an equivalent minimum creep rate using the most
appropriate version of Eq. [5]. The resulting equivalent
minimum creep rate is then inserted into Eq. [7a] and
Eq. [7b] into the resulting equation. The result, together
with a value for T, can be used to find the force
equivalent to the stress used in the uniaxial creep test (F*
is easily converted too F using the known maximum
force for that temperature). When using Eq. [5c], this
gives the conversion equation

F� ¼ b1c0j
b0d1j

� ln a0½ � � ln a1½ �
b0d1j

� d0j
d1j

� �
þ b1c1j
b0d1j

r�

þ b1c2
b0d1j

� d2
d1j

� �
1000

RT
½9a�

which can also be re-arranged to find the uniaxial
stress equivalent to a particular SPC force. The second
involves fewer steps. It simply involves setting
Eqs. [8a] and [8b] equal to each other to obtain the
conversion equation. For the conversion of uniaxial

stress to SPC force this conversion equation takes the
form

F� ¼ ðe0j � g0jÞ
g1j

þ e1j
g1j

r� þ ðe2 � g2Þ
g1j

1000

RT
½9b�

which can be re-arranged to find the uniaxial stress
equivalent to a particular SPC force.
Equations [9a] and [9b] do not require the use of W,

but to work, the parameters a, b, c, d, e, and g must be
estimated from the date collected on uniaxial and SPC
tests. This is also true for the other models mentioned
above—ksp needs to be estimated from a comparison of
uniaxial to SPC data as its value is materials specific,
and in the ESP method data on displacement (and
possibly creep rates) are needed.

IV. MEASURING THE ACCURACY OF EACH
CORRELATION METHOD

To assess the accuracy of the above approaches to
converting force to stress and visa versa, the Wilshire
equations for time to failure can be used to obtain
interpolated uniaxial stresses, SPC forces, and times to
failure along the lines used by Holmstrom et al.[8] The
Wilshire interpolated uniaxial stress rI corresponding to
a measured SPC failure time is calculated from

r� ¼ � e0j
e1j

� e2
e1j

1000

RT
þ 1

e1j
ln tf;spc
� 	

½10a�

with rI = exp(� exp(r*))rUTS. The Wilshire interpo-
lated force FI corresponding to a measured uniaxial
failure time is calculated as

F� ¼ � g0j
g1j

� g2
g1j

1000

RT
þ 1

g1j
ln tf;ua
� 	

½10b�

with FI = exp(� exp(F*))Fmax. rI and FI can be treated
as if they are actual stresses and forces with which to
compare to the converted values given by the above
approaches.
Alternatively, Eqs. [1] and [9] can be used to calculate

the equivalent SPC force to the uniaxial stresses making
up the uniaxial test data set described in Section II. This
force can then be substituted into Eq. [8b] to work out
the predicted SPC failure time corresponding to the
uniaxial test conditions. These predicted SPC failure
times can then be compared to the actual uniaxial failure
times to assess the suitability of Eqs. [1] and [9] in
calculating equivalent forces.
In the following equations yai can refer to either rI or

FI or the actual uniaxial failure time at test condition i.
y
p
i can represent either the equivalent force or stress

calculated using Eqs. [1] and [9], or the predicted failure
time obtained using Eq. [8b] when using the equivalent
force calculated using Eqs. [1] and [9]. Then the mean
square error (MSE) is given by

MSE ¼
Pk

i¼1 yai � y
p
i

� 	2
k

; ½11a�
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where there are k comparisons between ya and yp. While
the squaring of the prediction error prevents under
predictions being offset by over predictions in the
averaging procedure, the MSE provides no sense of
scale for the prediction errors. One simple modification
of Eq. [11a] that introduces a sense of scale is to replace
ya and yp with the natural log of their values. This
scaling comes about because when using the natural
logs, the MSE associated with the logged data is
approximately equal to the mean square percentage
error (MSPE) associated with the raw (untransformed)
data:

Pk
i¼1 ln½yai � ln½ypi� �

� 	2
k

ffi MSPE ¼
Pk

i¼1 yai � y
p
i


 �
=ypi

� 	2
k

½11b�

with this approximation being better the smaller are
the percentage errors. This MSPE can be decomposed
in one of two ways. Theil[19] has shown that

MSPE ¼ ln ya½ � � ln yp½ �
� 2

þVar ln½yai � � ln½ypi �
� 	

¼ ln ya½ � � ln yp½ �
� 2

þ ra � rpð Þ2þ2ð1� rÞrarp;

½11c�

where ln½ya� is the mean of the variable ln½yai � (called
the log mean), ln½yb� is the mean of the variable ln½ypi �,
ra is the standard deviation for the variable ln½yai �, rp
is the standard deviation for the variable ln½yai �, and r
is the correlation coefficient between ln½yai � and ln½ypi �.
Var ln½yai � ln� ½ypi �

� 	
reads the variance of the percentage

prediction error yai � y
p
i

� 	
=ypi . Dividing both sides by

the MSPE defines what Theil called the proportions of
inequality

1 ¼
ln ya½ � � ln yp½ �

� 2

MSPE
þ ra � rpð Þ2

MSPE
þ 2ð1� rÞrarp

MSPE
¼ UM þUS þUC

½11d�

The bias proportion UM is an indication of systematic
error since it measures the extent to which the average
values of the predicted and actual logged series deviate
from each other. The variance proportion US indicates
the ability of the model to replicate the extent to which
actual and predicted series deviate from their log mean
values as a result of changes in test conditions. There-
fore, this is also a systematic error. The covariance
proportion UC measures random or unsystematic error
and represents the remaining prediction error after
deviations from average values have been accounted for.
Experimental errors associated with measuring failure
times means that it is unreasonable to expect the
predictions made from any model to be perfectly
correlated with actual values and so this component is
less of a concern than the other two.

V. RESULTS AND DISCUSSION

A. Monkman–Grant Relations

In Figure 4, the uniaxial failure times are plotted
against the minimum creep rates and these test data
points are shown as solid squares. The Monkman–
Grant relation for this uniaxial data is shown as a solid
line, and this relation explains nearly 98 pct of the
variation in the uniaxial failure times. In relation to
Eq. [4a], the parameter a1 = 1.2096 and b1 = � 0.778.
The SPC failure times are plotted against the minimum
displacement rates and these test data points are shown as
open squares. The Monkman–Grant relation for the SPC
data is shown as a dashed line, and this relation explains
nearly 91 pct of the variation in the SPC failure times. In
relation to Eq. [4b] the parameter a0 = 104.5386 (as the
units for creep and displacement rates are different) and
b0 = � 0.556. With b1 „ b0, the most appropriate
equation for converting minimum displacement rates into
minimum creep rates is Eq. [5c], and the resulting
equivalent minimum creep rates are shown as open
circles in Figure 4. It can be seen that these data points
fall nicely around the uniaxial Monkman–Grant relation.

B. Wilshire Equations

Figure 5(b) shows a typical display of the Wilshire
equation for uniaxial failure times. The horizontal axis
shows the temperature-compensated uniaxial failure times
using an activation energy of 204 kJ mol�1 (or e2 = 204 in
Eq. [8a]). The vertical axis is a log–log transformation of
thenormalized stress,with the dashed line showing the best
fit to the data points. The best fit (i.e., largest R2 value) is
obtained by allowing for a discontinuity at r* = � 1.45.
This best fit line is given by Eq. [8a] with e0=� 13.875 and
e1=1.438belowr*=� 1.45andwith e0=� 9.606 and e1
= 4.380 above r* = � 1.45. The fit has an R2 value of
nearly 95 pct.
The same display is used to represent the Wilshire

equation for uniaxial minimum creep rates in Figure 5(a).
The horizontal axis shows the temperature-compensated
minimum creep rates using an activation energy of 231 kJ
mol�1 (or c2 = 231 in Eq. [7a]). The different estimated
activation energy obtained when using minimum creep
rates reflects the fact that b1 in the uniaxial Monkman–
Grant relation does not equal � 1. Again the dashed line
shows the best fit to the data points. The best fit (i.e.,
largest R2 value) is obtained by allowing for a disconti-
nuity at r* = � 1.45. This best fit line is given by Eq. [7a]
with c0 = 14.983 and c1 = � 1.411 below r* = � 1.45
and with c0 = 8.640 and c1 = � 5.783 above r* = �
1.45. The fit has an R2 value of just over 95 pct.
Whittaker et al.[20] interpretation of this break point was
related to dislocation interaction with c¢ precipitates
below the yield stress. However, significantly increased
dislocation densities at stresses above yield results in
forest hardening becoming the primary mechanism con-
trolling dislocation movement. Thus break points are
attributed to changing creep mechanisms.
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Figure 6(b) shows a display of the Wilshire equation
for the SPC failure times. The horizontal axis shows the
temperature-compensated SPC failure times using g2 =
359 in Eq. [8b]). The vertical axis is a log–log transfor-
mation of the normalized force, with the solid line
showing the best fit to the data points. The best fit (i.e.,
largest R2 value) is obtained without any discontinuity.
This best fit line is given by Eq. [8b] with g0 = � 31.236
and g1 = 15.819. The fit has an R2 of just over 93 pct.

The same display is used to represent the Wilshire
equation for SPC minimum displacement rates in
Figure 6(a). The horizontal axis shows the tempera-
ture-compensated minimum displacement rates using d2
= � 631 in Eq. [7b]). The best fit (i.e., largest R2 value)
is again obtained without any discontinuity. This best fit
line is given by Eq. [7b] with d0 = 62.64 and d1 = �
25.90. The fit has an R2 value of just over 87 pct.

C. Equivalent Uniaxial Stress for a Given SPC Force

Figure 7 shows the force–equivalent stress relation-
ships defined by Eqs. [9a] and [9b] over the test
conditions present within the uniaxial test data set.
Unlike the ksp method, which implies a linear propor-
tional relationship, this plot reveals quite a complex
shape profile between force and the equivalent uniaxial
stress. Further, this relationship is clearly temperature
dependent.

Figure 8(a) plots the uniaxial stresses that would be
equivalent to the nine test forces making up the small
punch test data set. The stresses equivalent to these
forces are shown on the horizontal axis and were
calculated using the ksp method, i.e., inserting the nine
test forces used in the SPC data set into Eq. [1c]. The
actual force values generating these equivalent stresses
are shown alongside the data points. These equivalent

stresses are then plotted against the uniaxial stress
interpolated using the Wilshire equation for uniaxial
stress—Eq. [10a]. That is, the nine SPC failure times are
inserted into Eq. [10a] and then solved for the uniaxial
stress required to generate these times at each temper-
ature (using the values for e described above). The
square root of the MSPE (RMSPE) associated with the
difference between these two stress values is 19.5 pct, but
the proportion of this that is random in nature is quite
low at 11.6 pct. The systematic bias (US =88.4 pct)
further reveals itself in the best fit line having a much
steeper line than the 450 line (dashed line) that corre-
sponds to the equivalent and interpolated stresses being
equal. At low stresses there is a tendency for the ksp
method to overestimate the interpolated uniaxial stress,
while the opposite is true at higher stresses. As a result,
on average the equivalent and interpolated stresses are
the same (shown by UM = 0 pct), but the steep slope of
the best fit line (twice as high as the 45 deg line) results in
a systematic tendency for the ksp method to either over
or under predict the uniaxial stress at any particular test
condition. The value used for ksp was chosen so as to
minimize the above MSPE (ksp = 0.57).
There are perhaps two interrelated reasons as to why

the SPC behavior of Waspaloy, does not follow the ksp
correlation, that has usefully been employed for other
creep-resistant alloys: the multiaxial stress state not
correlating to uniaxial data and stresses changing
between different observed uniaxial creep regimes. First,
the creep behavior of Waspaloy has been shown to be
dependent on applied condition with two distinct
regions corresponding to the stresses above and below
rY (the yield stress).[20,21] This change in creep behavior
is due to differing mechanisms of creep at different
applied conditions. Whittaker et al.[21] highlighted the
dominance of diffusive climb at stresses below rY with

Fig. 4—Monkman–Grant relations for uniaxial and SPC test data.
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dislocation–dislocation interaction in the form of forest
hardening limiting creep rates at higher stresses. Birosca
et al.[22] showed that geometrically necessary dislocation
(GND) densities are higher at the grain boundaries in
Waspaloy samples crept below rY, whereas GND

densities were more uniformly spread through grains
in samples crept above rY.
Secondly, the creep behavior of Waspaloy has also

been shown to be dependent on the direction of stress,
with the maximum principle stress, r1 having a strong

(a)

(b)

Fig. 5—The Wilshire representation of uniaxial Waspaloy creep data on (a) minimum creep rates and (b) failure times.

(a)

(b)

Fig. 6—The Wilshire representation of SPC Waspaloy creep data on (a) minimum displacement rates and (b) failure times.
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Fig. 7—Conversion of force to equivalent uniaxial stress over the SPC test condition range using (a) Eq. [9b] and (b) Eq. [9a].

(a)

(b)

Fig. 8—Wilshire interpolated uniaxial stress in comparison to the equivalent stress calculated using (a) the ksp method and (b) the approaches
given by Eqs. [9a] and [9b].
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influence on tertiary creep and rupture.[23] This depen-
dence on the stress state will have an influence on the
SPC behavior of Waspaloy, since the stress state is
non-uniform and evolves during the test. Initially, the
maximum stress is compressive, immediately adjacent to
the punch, before becoming more tensile across the
width of the disc. A combination of high radial and
hoop stresses results in a peak maximum principle stress
on the underside of the disc, whereas the von-Mises
stress is distributed across the thickness of the disc, near
the point of contact with the punch.[23] Harrison et al.[24]

showed that creep rates in Waspaloy during stress and
temperature change experiments can be higher than
expected. It was proposed that this is due to the
breakdown of stable dislocation structures as applied
conditions change.

The Wilshire equations allow for changing mecha-
nisms of deformation by having break points (as seen in
Figure 5) and so offer the possibility of being able to
more accurately calculate equivalent stresses and forces.
This is born out in Figure 8(b), that shows the same
uniaxial stresses as in Figure 8(a) (interpolated using the
Wilshire equation for uniaxial stress—Eq. [10a]), but
this time they are cross plotted against the stresses
equivalent to these forces as calculated using either
Eq. [9a] (corresponding to the open square symbols) or
Eq. [9b] (corresponding to the filled square symbols).
Take first the equivalent stresses obtained using Eq. [9b].
The RMSPE associated with the difference between
these two stress values is 8.0 pct and the proportion of
this that is random in nature is very high at 92.9 pct. The
remaining systematic bias is mainly due to US = 6.0 pct,
so that on average the equivalent and interpolated
stresses are almost same (shown by UM = 1.1 pct). Next
consider the equivalent stresses obtained using Eq. [9a].
The RMSPE associated with the difference between
these two stress values is a little higher at 10.7 pct and
the proportion of this that is random in nature is lower
at 47.9 pct. The remaining systematic bias is mainly due
to US = 44.1 pct. This approach, that is based on
equating minimum creep and deformation rates rather
than uniaxial and SPC failure times, has characteristics
of accuracy somewhere in between the other two
approaches shown in Figure 8.

D. Equivalent SPC Force for a Given Uniaxial Stress

The analysis in subsection C above was based on only
nine data points. To further assess the suitability of
various conversion approaches, the 31 stresses making
up the uniaxial data set are converted to equivalent SPC
forces using the different conversion methods. The
results are shown in Figure 9. Figure 9(a) plots the
SPC forces equivalent to the 31 test stresses making up
the uniaxial data set. The forces equivalent to these
uniaxial stresses are shown on the horizontal axis and
were calculated using the ksp method, i.e., inserting the
31 test stresses used in the uniaxial data set into Eq. [1b].
Some of the actual stress values generating these
equivalent forces are shown alongside the data points.
These equivalent forces are then plotted against the SPC

forces interpolated using the Wilshire equation for
force—Eq. [10b]. That is, the 31 uniaxial failure times
are inserted into Eq. [10b] and then solved for the SPC
force required to generate these times at each temper-
ature (using values for g shown above). The RMSPE
associated with the difference between these two forces
values is 22.6 pct, but the proportion of this that is
random in nature is quite low at just over 11.9 pct. The
systematic bias (US =88 pct) further reveals itself in the
best fit line having a much flatter line than the 45 deg
line (dashed line) that corresponds to the equivalent and
interpolated forces being equal. At low forces there is a
tendency for the ksp method to underestimate the
interpolated SPC force, while the opposite is true at
higher forces. As a result, on average the equivalent and
interpolated forces are the same (shown by UM = 0.1
pct), but the shallow slope of the best fit line (half as
high as the 45 deg line) results in a systematic tendency
for the ksp method to either over or under predict the
SPC force at any particular test condition. Again the
value for ksp (0.52) was chosen to minimize the above
MSE. These results are very similar to when working
with equivalent stresses in Figure 8(a).
Figure 9(b) shows the same SPC forces as in

Figure 9(a) (interpolated using the Wilshire equation
for force—Eq. [10b]), but this time these are cross plotted
against the forces equivalent to the 31 uniaxial stresses as
calculated using either Eq. [9a] (corresponding to the
open square symbols) or Eq. [9b] (corresponding to the
filled square symbols). Take first the equivalent forces
obtained using Eq. [9b]. The RMSPE associated with the
difference between these two stress values is 3.6 pct and
the proportion of this that is random in nature is very
high at 95.4 pct. The remaining systematic bias is mainly
due to US = 3.5 pct, so that on average the equivalent
and interpolated forces are almost the same (shown by
UM = 1.1 pct). Next consider the equivalent forces
obtained using Eq. [9a]. The RMSPE associated with the
difference between these two force values is a little higher
at 4.8 pct and the proportion of this that is random in
nature is lower at 56.1 pct. The remaining systematic bias
is mainly due to US =38.8 pct. Again these results are
consistent with those shown in Figure 8.

E. Accuracy of Conversion Methods Based of Predicted
Failure Times

The failure times shown along the horizontal axis of
Figure 10(a) were computed by first converting the 31
uniaxial stresses into equivalent forces using Eq. [1c],
i.e., using the ksp method with ksp = 0.52. These forces
were then inserted into Eq. [8b] to predict a failure time
for an equivalent SPC test. If the equivalence calculation
is accurate, these predicted failure times should equal
the actual uniaxial failure times—which are therefore
shown on the vertical axis of Figure 10(a). But as can be
seen from this figure, the best fit line through all the data
points is much flatter that the 45 deg line. It is therefore
not surprising to note that the RMPSE is as high as 367
pct, with only 29.5 pct of this error being random in
nature.
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The failure times shown along the horizontal axis of
Figure 10(b) were computed by first converting the 31
uniaxial stresses into equivalent forces using Eq. [9b].
These forces were then inserted into Eq. [8b] to predict a
failure time for an equivalent SPC test. If this equiva-
lence calculation is accurate, the predicted failure times
should equal the actual uniaxial failure times—which
are therefore shown on the vertical axis of Figure 10(b).
As can be seen from this figure the best fit line through
all the data points are very similar to the 450 line—
having an exponent close to unity—0.92. It is therefore
not surprising to note that the RMPSE is much lower
compared to when using the ksp method—86.0 pct—
with much of this error being random in nature—97.5
pct.

The failure times shown along the horizontal axis of
Figure 10(c) were computed by first converting the 31
uniaxial stresses not equivalent forces using Eq. [9a].
These forces were then inserted into Eq. [8b] to predict a
failure time for an equivalent SPC test. If this equiva-
lence calculation is accurate, the predicted failure times
should equal the actual uniaxial failure times—which
are therefore shown on the vertical axis of Figure 10(c).
As can be seen from this figure, the best fit line through
all the data points is very similar to the 45 deg
line—having an exponent close to unity—0.86. It is
therefore not surprising to note that the RMPSE is
much lower compared to when using the ksp
method—99.6 pct—but a little higher than that shown

in Figure 10(b). Around 80 pct of this error is random in
nature.

VI. CONCLUSION

The main aim of this paper was to accurately convert
small punch loads into equivalent uniaxial stresses. This
paper introduced a number of alternative approach to
the widely used constant stress to force ratio methods.
These alternatives included the use of the Monkman–
Grant relation to convert minimum displacement rates
into equivalent minimum uniaxial creep rates and the
application of the Wilshire equations to SPC test data
using maximum forces in place of UTS. These alter-
native techniques were then compared to the ksp
method through statistical evaluations of predictions
and experimental data. The following conclusions
could be drawn:

� The ksp method was not appropriate for
correlating uniaxial and SPC data for this compo-
sition of Waspaloy, with the method producing
large prediction errors. Further, the vast majority
of these predictions errors were non-random in
nature.

� The Monkman–Grant grant relationships for the
small punch and uniaxial creep data were shown to
have similar slopes will dissimilar degrees of fit.

(a)

(b)

Fig. 9—Wilshire interpolated SPC force in comparison to the equivalent force calculated using (a) the ksp method and (b) the approaches given
by Eqs. [9a] and [9b].
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Consequently, a shifting of the SPC Monkman–
Grant relation would be only approximate for the
conversion of minimum displacement rates to equiv-
alent uniaxial minimum creep rates.

� When these predicted minimum creep rates were
combined with the Wilshire equations for minimum
creep and displacement rates, SPC loads were
converted to equivalent uniaxial stresses with
degrees of accuracy that were much better than
those obtained using the ksp method. Further, and
unlike when using the ksp approach, these prediction
errors were predominantly random in nature. The
approach was also better able to predict times to
failure.

� The most accurate approach to converting force to
stress was, however, obtained by modeling failure
times under both types of test using a Wilshire type
equation.

ACKNOWLEDGMENTS

The authors would like to thank Rolls-Royce for
their financial support and technical involvement in
this research, and in supplying some of the experimen-
tal data and test material used within this paper.

OPEN ACCESS

This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other
third party material in this article are included in the
article’s Creative Commons licence, unless indicated

tf,ua = 2.7356tf,spc
0.92347

R² = 90.86%

1000

10000

100000

1000000

10000000

100000000

100 1000 10000 100000 1000000 10000000 100000000

t
e

mit
eruliaflaixainulautc

A
f,u

a, 
s

Wilshire predicted SPC failure time (tf,spc) based on equivalent SPC force using Eqs. [9b] and then Eq. [8b]

All Temperatures

RMPSE = 86.0%
UM = 1.5%
US = 1.0%
UC =  97.5%

tf,ua = 6.93561tf,spc
0.861

R² = 90.59%

1000

10000

100000

1000000

10000000

100000000

100 1000 10000 100000 1000000 10000000 100000000

t
e

mit
eruli afl ai xain ul autc

A
f,u

a, 
s

Wilshire predicted SPC failure time (tf,spc) based on equivalent SPC force using Eqs. [9a] and then Eq. [8b]

All Temperatures

RMPSE = 99.6%
UM = 11.4%
US = 8.4%
UC =  80.2%

(a)

(c)

(b)

Fig. 10—(a) Predicting uniaxial failure times from SPC tests when using the ksp method to convert stresses to equivalent forces. (b) Predicting
uniaxial failure times from SPC tests when using Eq. [9b] to convert stresses to equivalent forces. (c) Predicting uniaxial failure times from SPC
tests when using Eq. [9a] to convert stresses to equivalent forces.
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