Skip to main content
Log in

A Pathway to Grain Structure Control of Gas Tungsten Arc Welded Duplex Stainless Steel Through Ultrasonic Vibration

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-depth understanding of microstructural modification and grain refinement is required to manufacture high quality products by gas tungsten arc welding. Here, we report the governing role of ultrasonic vibration in the improvement of microstructure and mechanical properties of the as-welded duplex stainless steel. We show that the columnar-to-equiaxed transition was promoted and fine equiaxed grains with no preferred crystallographic texture could be achieved involved in welding. Detailed microstructural features coupled with acoustic field simulation were carried out to reveal the mechanisms of grain refinement. This was attributed to the production of many initial nuclei or crystallites which resulted from the acoustic cavitation in the ultrasonic vibration of weld pool. Consequently, the formation of this microstructure led to a significantly increased tensile strength and maintained acceptable ductility. These findings offer a new perspective on control of grain structure in the as-welded condition by extending ultrasonic vibration to duplex stainless steel welding.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. [1] N. Jia, R.L. Peng, Y.D. Wang, S. Johansson, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 782-93.

    Article  CAS  Google Scholar 

  2. [2] A. El Bartali, V. Aubin, L. Sabatier, P. Villechaise, and S. Degallaix-Moreuil: Scr. Mater., 2008, vol. 59, pp. 1231-34.

    Article  CAS  Google Scholar 

  3. [3] J.C. Dalton, F. Ernst, and A.H. Heuer: Metall. Mater. Trans. A, 2020, vol. 51, pp. 608-17.

    Article  CAS  Google Scholar 

  4. [4] D. Statharas, H. Atkinson, R. Thornton, J. Marsden, H. Dong, and S. Wen: Metall. Mater. Trans. A, 2019, vol. 50, pp. 1748-62.

    Article  CAS  Google Scholar 

  5. [5] N.S. Biradar and R. Raman: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3179-91.

    Article  CAS  Google Scholar 

  6. [6] C.M. Garzon and A.J. Ramirez: Acta Mater., 2006, vol. 54, pp. 3321-31.

    Article  CAS  Google Scholar 

  7. [7] B. Varbai, Y. Adonyi, R. Baumer, T. Pickle, J. Dobranszky, and K. Majlinger: Weld. J., 2019, vol. 98, pp. 78-87.

    Article  Google Scholar 

  8. [8] T. Pickle, N. Henry, P. Morriss, L. Tennis, D. Wagner, and R.E. Baumer: Weld. J., 2019, vol. 98, pp. 123-34.

    Google Scholar 

  9. [9] W. Zhang, T. DebRoy, T.A. Palmer, and J.W. Elmer: Acta Mater., 2005, vol. 53, pp. 4441-53.

    Article  CAS  Google Scholar 

  10. [10] I. Petronius and M. Bamberger: Sci. Technol. Weld. Join., 2001, vol. 6, pp. 79-83.

    Article  CAS  Google Scholar 

  11. [11] Y. Cui, C. Xu, and Q. Han: Scripta Mater., 2006, vol. 55, pp. 975-8.

    Article  CAS  Google Scholar 

  12. [12] A. Ureña, E. Otero, M.V. Utrilla, and C.J. Múnez: J. Mater. Process. Technol., 2007, vol. 182, pp. 624-31.

    Article  CAS  Google Scholar 

  13. [13] S. Lu, H. Fujii, and K. Nogi: Scripta Mater., 2004, vol. 51, pp. 271-7.

    Article  CAS  Google Scholar 

  14. [14] L.L. Wang, H.L. Wei, J.X. Xue, and T. DebRoy: Scripta Mater., 2017, vol. 134, pp. 61-5.

    Article  CAS  Google Scholar 

  15. [15] Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo, and J. Li: Corros. Sci., 2012, vol. 62, pp. 42-50.

    Article  CAS  Google Scholar 

  16. [16] X.C. Liu, Y.F. Sun, and H. Fujii: Mater. Des., 2017, vol. 129, pp. 151-63.

    Article  CAS  Google Scholar 

  17. [17] T. DebRoy, T. Mukherjee, H.L. Wei, J.W. Elmer, and J.O. Milewski: Nat. Rev. Mater., 2021, vol. 6, pp. 48-68.

    Article  CAS  Google Scholar 

  18. [18] M.J. Huh, S.B. Kim, K.W. Paik, and Y.G. Kim: Scripta Mater., 1997, vol. 36, pp. 775-81.

    Article  CAS  Google Scholar 

  19. [19] S.J. Kim, J.K. Kim, and S.H. Park: Scripta Mater., 2015, vol. 96, pp. 33-6.

    Article  CAS  Google Scholar 

  20. [20] D.H. Kang and H.W. Lee: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4678-87.

    Article  CAS  Google Scholar 

  21. [21] X. Liu, C. Wu, and G.K. Padhy: Scripta Mater., 2015, vol.102, pp. 95-8.

    Article  CAS  Google Scholar 

  22. [22] T.V. da Cunha and C.E. Bohorquez: Ultrason., 2015, vol. 56, pp. 201-9.

    Article  CAS  Google Scholar 

  23. [23] Q. Han: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1603-14.

    Article  CAS  Google Scholar 

  24. [24] J. Wang, Q. Sun, T. Zhang, S. Zhang, Y. Liu, and J. Feng: J. Mater. Process. Technol., 2018, vol. 254, pp. 254-64.

    Article  CAS  Google Scholar 

  25. [25] C. Fan, W. Xie, C. Yang, S. Lin, and Y. Fan: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4615-21.

    Article  CAS  Google Scholar 

  26. [26] W. Xie, C. Fan, C. Yang, and S. Lin: Metall. Mater. Trans. B, 2017, vol. 49, pp. 274-81.

    Google Scholar 

  27. [27] J. Wang, Q. Sun, S. Hou, T. Zhang, P. Jin, and J. Feng: Mater. Des., 2019, vol. 181, p. 108051.

    Article  Google Scholar 

  28. [28] M. Nabahat, K. Ahmadpour, and T. Saeid: Mater. Res. Express, 2018, vol. 5, p. 096509.

    Article  CAS  Google Scholar 

  29. [29] Y. Wang, C. Yu, H. Lu, and J. Chen: J. Manuf. Process., 2020, vol. 58, pp. 936-54.

    Article  Google Scholar 

  30. [30] T. Yuan, S. Kou, and Z. Luo: Acta Mater., 2016, vol. 106, pp. 144-54.

    Article  CAS  Google Scholar 

  31. [31] L. He, M. Wu, L. Li, and H. Hao: Appl. Phys. Lett., 2006, vol. 89, p. 131504.

    Article  CAS  Google Scholar 

  32. [32] J. Wang, Q. Sun, J. Liu, B. Wang, and J. Feng: Sci. Technol. Weld. Join., 2016, vol. 22, pp. 465-71.

    Article  CAS  Google Scholar 

  33. [33] Y.Y. Hu, H.J. Liu, H. Fujii, H. Araki, K. Sugita, and K. Liu: Scripta Mater., 2020, vol. 185, pp. 117-21.

    Article  CAS  Google Scholar 

  34. [34] D. Zang, L. Li, W. Di, Z. Zhang, C. Ding, Z. Chen, W. Shen, B.P. Binks, and X. Geng: Nat. Commun., 2018, vol. 9, p. 3546.

    Article  CAS  Google Scholar 

  35. [35] M.J. Jose, S.S. Kumar, and A. Sharma: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 243-58.

    Article  Google Scholar 

  36. [36] T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki: J. Mater. Process. Technol., 2010, vol. 210, pp. 1646-51.

    Article  CAS  Google Scholar 

  37. [37] Y. Cui, C. Xu, and Q. Han: Adv. Eng. Mater., 2007, vol. 9, pp. 161-3.

    Article  CAS  Google Scholar 

  38. [38] C. Xu, G. Sheng, H. Wang, and X. Yuan: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 703-7.

    Article  CAS  Google Scholar 

  39. [39] C. Xu, G. Sheng, X. Cao, and X. Yuan: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1253-9.

    Article  CAS  Google Scholar 

  40. [40] Q. Chen, S. Lin, C. Yang, C. Fan, and H. Ge: Ultrason. Sonochem., 2017, vol. 39, pp. 403-13.

    Article  CAS  Google Scholar 

  41. [41] H. Li, J. Zhang, and Y. Xiong: Sci. Technol. Weld. Join., 2017, vol. 23, pp. 308-15.

    Article  CAS  Google Scholar 

  42. [42] X. Wen, X. Cui, G. Jin, X. Zhang, Y. Zhang, D. Zhang, and Y. Fang: J. Alloy. Compd., 2020, vol. 835, p. 155449.

    Article  CAS  Google Scholar 

  43. [43] J. Wang, Q. Sun, J. Ma, J. Teng, P. Jin, and J. Feng: J. Manuf. Process., 2019, vol. 37, pp. 563-77.

    Article  Google Scholar 

  44. [44] Z. Wei, J.A. Kosterman, R. Xiao, G.Y. Pee, M. Cai, and L.K. Weavers: Ultrason. Sonochem., 2015, vol. 27, pp. 325-33.

    Article  CAS  Google Scholar 

  45. [45] Z. Wei and L.K. Weavers: Ultrason. Sonochem., 2016, vol. 31, pp. 490-8.

    Article  CAS  Google Scholar 

  46. [46] M. Thomä, G. Wagner, B. Straß, B. Wolter, S. Benfer, and W. Fürbeth: J. Mater. Sci. Technol., 2018, vol. 34, pp. 163-72.

    Article  Google Scholar 

  47. A. International: ASTM E1245-03-Standard Practice for Determining the Inclusion or Second Phase Constituent Content of Metals by Automatic Image Analysis, ASTM West Conshohocken, 2003.

  48. [48] Z. Zhang, H. Jing, L. Xu, Y. Han, and L. Zhao: Mater. Des., 2016, vol. 109, pp. 670-85.

    Article  CAS  Google Scholar 

  49. [49] G. Wang, M.S. Dargusch, D.G. Eskin, and D.H. StJohn: Adv. Eng. Mater., 2017, vol.19, p. 1700264.

    Article  CAS  Google Scholar 

  50. [50] L. Aucott, H. Dong, W. Mirihanage, R. Atwood, A. Kidess, S. Gao, S. Wen, J. Marsden, S. Feng, M. Tong, T. Connolley, M. Drakopoulos, C.R. Kleijn, I.M. Richardson, D.J. Browne, R.H. Mathiesen, and H.V. Atkinson: Nat. Commun., 2018, vol. 9, p. 5414.

    Article  CAS  Google Scholar 

  51. [51] R. Badji, B. Bacroix, and M. Bouabdallah: Mater. Charact., 2011, vol. 62, pp. 833-43.

    Article  CAS  Google Scholar 

  52. [52] S. Emami, T. Saeid, and A. Abdollah-zadeh: J. Alloy. Compd., 2019, vol. 810, p. 151797.

    Article  CAS  Google Scholar 

  53. [53] E.J. Pavlina and C.J.V. Tyne: J. Mater. Eng. Perform., 2008, vol. 17, pp. 888-93.

    Article  CAS  Google Scholar 

  54. [54] B. Wang, D. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, and J. Mi: Acta Mater., 2018, vol. 144, pp. 505-15.

    Article  CAS  Google Scholar 

  55. [55] F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, and M. Mounib: Acta Mater., 2016, vol. 116, pp. 354-63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (Grant Nos. 2019TQ0057 and 2019M661113), and the Postdoctoral Science Foundation, Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 21, 2020; accepted March 21, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, Y. A Pathway to Grain Structure Control of Gas Tungsten Arc Welded Duplex Stainless Steel Through Ultrasonic Vibration. Metall Mater Trans A 52, 2667–2675 (2021). https://doi.org/10.1007/s11661-021-06262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06262-0

Navigation