Skip to main content

Advertisement

Log in

High-Throughput Synthesis and Characterization of a Combinatorial Materials Library in Bulk Alloys

  • Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aiming for the accelerated screening of promising materials for a variety of engineering applications efficiently and cost-effectively, a novel high-throughput micro-synthesis of a combinatorial material library through hot isostatic pressing was reported herein. As Co, Fe and Ni are the most common base and alloying elements in metallic alloys and particularly in high entropy alloys, a Co-Fe-Ni ternary alloy system was selected for the study. Using high-purity elemental metal powders as stock materials, 19 combinatorial alloy compositions were designed, and their powder mixtures were placed and vacuum sealed in the cell space of a set of customized honeycomb arrays made of Ni or Ti foils. Subsequent consolidation was conducted under hot isostatic pressing at 1050 °C at 120 MPa for 10 hours. Each of the as-made bulk alloys was characterized by microscopy and spectroscopy, exhibited no macro defects, had actual compositions comparable to the nominal ones, and generated phase constituients and microstructure comparable to these via traditional processes for bulk alloys. The composition and phase constitution of these alloys were systematically characterized, and the discrepencies comparing to historical data were ascribed to the thermodynamic and kinetic driving forces in the processing. The present method, i.e. high-throughput synthesis and characterization of a combinatorial materials library in bulk alloys, demonstrated a new way for screening alloy compositions, microstructures and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.L. Green, C.L Choi, J.R Hattrick-Simpers, A.M. Joshi, I. Takeuchi, S.C. Barron, E. Campo, T. Chiang, S. Empedocles, J.M. Gregoire, A.G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. Van Duren, A. Zakutayev: Appl. Phys. Rev, 2017, vol. 4, pp. 011105.

    Article  Google Scholar 

  2. X.D. Xiang, X. Sun, G. Briceno, Y. Lou, K. A. Wang, H. Chang, W.G. Wallace-Freedman, S.W. Chen, P.G. Schultz: Science, 1995, vol. 268(5218), pp. 1738-740.

    Article  CAS  Google Scholar 

  3. S. M. Samuel: J. Cryst. Growth, 2013, vol. 379, pp. 123-130.

    Article  Google Scholar 

  4. J.C. Zhao: Adv. Eng. Mater. 2001, 3(3), 143-47.

    Article  CAS  Google Scholar 

  5. S.W. Cao and J.C. Zhao: Acta. Mater, 2015,vol. 88, pp. 196-206.

    Article  CAS  Google Scholar 

  6. S.W. Cao and J.C. Zhao: J. Phase. Equilib. Diff. 2015, 37(1), 25-38.

    Article  Google Scholar 

  7. H. Springer and D. Raabe: Acta. Mater. 2012, 60(12), 4950-59.

    Article  CAS  Google Scholar 

  8. M. Polanski, M. Kwiatkowska, I. Kunce, J. Bystrzycki (2013) Int. J. Hydrogen 38(27), 12159-171.

    Article  CAS  Google Scholar 

  9. D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J.O. Suh, A.A. Shapiro, Z.K. Liu, J.P. Borgonia: Sci. Rep-UK, 2014, vol. 4, pp. 5357.

    Article  CAS  Google Scholar 

  10. Y. Liu, C.P. Liang, W.S. Liu, Y.Z. Ma, C. Liu, C. Zhang: J. Alloy Compd, 2018, vol. 763, pp. 376-83.

    Article  CAS  Google Scholar 

  11. S.A. M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis: Mater. Today, 2017, vol. 21(1), pp. 22-37.

    Article  Google Scholar 

  12. H.Y. Wu, J. Li, F. Liu, L. Huang, X. Zeng, Q.H. Fang, Z.W. Huang, L. Jiang, Liang: Mater. Design, 2017, vol. 128, pp.176-81.

    Article  CAS  Google Scholar 

  13. J.Y. Li, Y. Zhang, J.X. Li, J.X. Jie: China, CN105954074B. 2016, pp. 4–26.

  14. H.Z. Wang, L. Zhao, Y.H. Jia, D.L. Li, L.X. Yang, Y.H. Lu, G. Feng, W.H. Wan: Engineering-London, 2020, vol. 6(6), pp. 621-36.

    CAS  Google Scholar 

  15. G.V. Raynor, and V.G. Rivlin: Inst. Met., 1988, 25: 247-255.

  16. A.F. Guillermet (1987) Int. J. Thermophys 8(4), 481-510.

    Article  CAS  Google Scholar 

  17. G.V. Raynor and V.G. Rivlin: Bull. Alloy Phase Diagrams, 1981, vol. 2, pp. 102.

    Article  Google Scholar 

  18. X.J. Wan, Y.X. Chen, A.P. Chen, S.R. Yan: Intermetallics, 2005, vol. 13(5), pp. 454-59.

    Article  CAS  Google Scholar 

  19. X.Y. Zhong, J. Zhu, A.H. Zhang, S.C. Mou: Appl. Phys. Lett. 2006, 89(15), 151912.

    Article  Google Scholar 

  20. T. Nishizawa and K. Ishida: Binary Alloy Phase Diagrams, 2nd edn., Ed. T.B. Massalski, 1990, vol. 2, pp. 1214–15

  21. F. Lihl: Z. Metallkd., 1955, 46, 434–41.

Download references

Acknowledgments

Financial support from the National Key Research and Development Program of China (2016YFB0700302) is acknowledged. The help from Man Hu and Guang Feng at Central Iron & Steel Research Institute in the experimental works is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanting Zhang or Haizhou Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 22, 2020. accepted January 2, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zhou, Y., Wang, H. et al. High-Throughput Synthesis and Characterization of a Combinatorial Materials Library in Bulk Alloys. Metall Mater Trans A 52, 1159–1168 (2021). https://doi.org/10.1007/s11661-021-06149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06149-0

Navigation