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Modeling Static Recrystallization in Al-Mg Alloys

HEINRICH BUKEN and ERNST KOZESCHNIK

In the present work, the influence of Mg on recrystallization kinetics in Al is analyzed by
computer simulation. A comprehensive state parameter-based microstructure model is
developed, which describes recrystallization in terms of nucleation and growth. The mechanism
of solute drag is fully incorporated, thus accounting for the decrease of grain boundary mobility
in the presence of impurity atoms. On the basis of the present approach, the solute binding
energy between Mg atoms and grain boundaries is assessed and compared to experimentally
measured values. Furthermore, the influence of Mg on dislocation production during strain
hardening is modeled. The simulations of the composition and temperature-dependent
recrystallization kinetics are verified on experimental studies where excellent agreement is
achieved. Both simulation and experiment show that increasing Mg content first decelerates
and, later on, accelerates recrystallization kinetics.
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I. INTRODUCTION

THE control of microstructure evolution during
processing of Mg-alloyed Al materials is a key factor
for determining the final mechanical–technological
properties of the material. Mg is a widely used element
in Al alloys, especially in the 5xxx and 6xxx series. On
the one hand, Mg segregates into grain boundaries and
reduces the mobility of the moving boundary by several
orders of magnitude in comparison to pure Al.[1] This
so-called solute drag effect[2] is caused by solute atoms
being dragged along with the moving grain boundary,
thus exerting a restraining force against the movement
of the grain boundary. As a result, microstructural
processes involving the motion of high-angle grain
boundaries (HAGB) and low-angle grain boundaries
(LAGB) can be severely slowed down by the presence of
impurity atoms.[1,3] On the other hand, an increased Mg
content promotes a higher strain-hardening rate, which,
at identical strain, induces a higher dislocation den-
sity.[4,5] As a result, the driving pressure for recrystal-
lization increases, thus accelerating the observed
recrystallization kinetics. Koizumi et al.[6] have per-
formed recrystallization experiments in Al-Mg alloys,
observing that an increase of the Mg content first leads

to a deceleration of the rate of recrystallization, followed
by an acceleration at further increasing Mg content.
These results will form the basis of experimental
verification of the present model.
In literature, several approaches are available describ-

ing recrystallization phenomena in metallic materials.
With particular focus on Al alloys, earlier models[7,8]

mostly utilize JMAK-based equations[9] for describing
the kinetics of static recrystallization. In these models,
several semi-empirical parameters are commonly uti-
lized to adjust the simulated recrystallizing kinetics to
experimentally measured recrystallized fractions. Since
JMAK-based models do not incorporate explicit mech-
anism-based descriptions for nucleation and growth of
recrystallizing grains, they can only take limited account
of basic physical phenomena such as the solute drag
effect, precipitate–dislocation interactions in precipita-
tion hardening alloys or the influence of impurities on
dislocation generation during strain hardening.
Recently, Zurob et al.[10,11] presented a physically

based model describing recrystallization with explicit
expressions for nucleation and growth. In their work,
the nucleation rate for recrystallization is evaluated
from microstructural state parameters such as the
subgrain size and the dislocation density, which, in
combination with growth equations, delivers informa-
tion on the recrystallized fraction within the deformed
microstructure. The solute drag impact is included in the
grain boundary mobility within the Cahn approach.[2]

When applying the model to Al, however, Zurob
et al.[10] utilized experimentally determined mobilities
taken from literature instead of calculating composi-
tion-dependent mobilities based on physical relation-
ships. Furthermore, this work does not take into
account that the alloy composition has an important
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impact on the dislocation evolution during and after
deformation. Consequently, no variation in the alloy
composition of various Al alloys is elaborated in this
work and recrystallization kinetics is evaluated only for
a single Mg content of 1 wt pct.

In the present work, a state parameter-based model is
developed, in which all relevant microstructural param-
eters are numerically integrated forward in time. The
evolution equations incorporate full composition and
temperature dependence for grain boundary mobilities
as well as dislocation generation during strain harden-
ing. The calculated grain boundary mobilities are
compared to experimentally measured values to illus-
trate the predictive potential of the present grain
boundary mobility approach. In addition, relations, by
which the driving pressure for recrystallization is
described as a function of the Mg content through a
composition-dependent dislocation generation term, are
introduced. Furthermore, the previous version of the
model, which has been reported in References 12 and 13
is substantially improved in terms of the introduction of
the Rayleigh distribution for the rate of supercritical
subgrain formation (Section II–A) instead of a sharp
limit corresponding to the comparison of the mean and
critical subgrain sizes, as well as a dynamic treatment of
the subgrain size with growth and shrinkage terms
(Section II–B). The predictions of the recrystallization
model are finally compared with experimentally mea-
sured values from literature. The entire model and input
parameters are explained in detail, subsequently.

II. THE RECRYSTALLIZATION MODEL

A. Nucleation and Growth

The nucleation rate of newly formed recrystallized

grains, _Nrx, is formulated as the product of the number
density of potential nucleation sites, Npot, a site satura-
tion factor, Bnuc, which accounts for the grain area that
is already covered by recrystallized grains and which is,
therefore, no longer available for further nucleation, as
well as the flux of subgrains reaching supercritical size,
_Fsub, as

_Nrx ¼ NpotBnuc
_Fsub: ½1�

Bailey and Hirsch[14] suggested that the main nucle-
ation mechanism for recrystallization is given by the
process of strain-induced boundary migration. This
process is initiated when a subgrain being in contact
with a high-angle grain boundary (HAGB) exceeds a
critical size, rcrit, determined by the quotient of the
interfacial energy of the HAGB, cHB, the time,t, and the
driving pressure, PD, as determined by the total dislo-
cation density, q, with

rcritðtÞ ¼
2cHB

PDðtÞ
¼ 2cHB

0:5 GbqðtÞ ; ½2�

with the shear modulus, G, the Burgers vector, b, and r
denoting the radius of the subgrain.

The number density of potential nucleation sites can
be calculated from the quotient of the specific grain
boundary area, aav, per unit volume of material and the
area covered by a single supercritical subgrain being
located at the high-angle grain boundary. The former is
influenced by the degree of deformation of the grain,
where the surface area increases with increasing strain.
This process is mapped into the simulations using the
analysis of Zhu et al. [15] who described the evolution of
surface area of the grains during deformation in the
form of a function, f, depending on the deformation
strain, e. This function represents the ratio of the specific
surface area of the deformed grain compared to that of
the undeformed grain. The total number of potential
nucleation sites, Npot, then reads

Npot ¼
aav

pr2crit
f eð Þ: ½3�

To calculate the specific grain boundary area of one
individual undeformed grain, the grain is assumed to
have the shape of a tetrakaidecahedron. The total
available grain boundary area of all deformed grains can
be formulated in dependence of the mean grain radius,
R, the number density of the original grains, N0, and the
surface area of one grain, SHAG, as

aav ¼ 0:5N0SHAG

¼ 0:5
1

8
ffiffiffi

2
p

1:5Rð Þ3

 !

6þ 12
ffiffiffi

3
p� �

1:5Rð Þ2
� �

: ½4�

Thereby, the factor 1.5 relates the edge length of the
tetrakaidecahedron to its mid-radius.
With the continuous production of new recrystalliza-

tion nuclei, the deformed grain boundary surface
continues to become occupied leading to a continuous
decrease of the nucleation rate. To approximate this, the
following term is utilized to consider this effect

BNuc ¼ 1�Nrxp rcritð Þ2

aav
: ½5�

To describe the distribution of subgrain sizes, a
Rayleigh distribution is utilized as experimentally
observed by Pantleon and Hansen[16] and also used in
the model of Rehman and Zurob.[11] The fraction of
subgrains, which are larger than the critical size, can
then be expressed as

FsubðtÞ ¼ exp � p
4
X2

critðtÞ
� �

; ½6�

where Xcrit is the critical subgrain size normalized with
respect to the mean subgrain size. The fraction of sub-
grains, which become supercritical and serve as new
stable recrystallization nuclei, is found after differentia-
tion with respect to time as

_Fsub ¼ � 1

2
pFðtÞXcrit

_Xcrit: ½7�
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The normalized critical subgrain size and its deriva-

tive, _Xcrit, are calculated in dependence of the actual
mean subgrain size, rmean, and the critical subgrain size,
as

XcritðtÞ ¼
rcritðtÞ
rmeanðtÞ

½8�

and

_Xcrit ¼
_rcrit
rmean

� rcrit _rmean

r2mean

: ½9�

Successfully nucleated recrystallized grains grow into
the deformed grains by dissipation of the stored
deformation energy. This process is modeled by formu-

lating a growth rate, _Rrx, as the product of a driving
pressure, PD, (identical to the one in Eq. [2]) and an
effective high-angle grain boundary mobility, Meff;HB,
from Reference 12 with

_Rrx ¼ Meff;HBPDð1� XrxÞ: ½10�

The growth rate is scaled with the recrystallized
volume fraction, Xrx, in order to account for hard
impingement of the recrystallized grains.

Since the driving pressure for nucleation and growth
of recrystallized grains is provided by the stored
deformation energy, i.e., the dislocation density, this
quantity and its evolution as function of temperature,
strain rate, and chemical composition of the alloy play a
central role in modeling recrystallization kinetics. This is
equally true for the growth rate of recrystallized grains,
Eq. [10], as well as the nucleation rate as defined in
Eqs. [1 and 2]. Consequently, particular emphasis of the
present work has been directed into accurate modeling
of this microstructural state parameter.

The evolution of the dislocation density is described
by means of an extended Kocks–Mecking model[17]

considering the processes of dislocation generation as
well as dynamic and static recovery. In this context, the
approach introduced by Sherstnev et al.[18] is closely
followed, describing the rate of the total dislocation
density as

_q ¼
M

ffiffiffi

q
p

Ab
_e� 2B

dann
b

qM_e� 2CDDis
Gb3

kBT
ðq2 � q2RSÞ;

½11�

with the Taylor factor, M, the critical dislocation anni-
hilation distance, dann, the substitutional self-diffusion
coefficient at dislocations, DDis, the strain rate, e

:
, and

material-dependent coefficients A, B, C. In contrast to
the original Sherstnev et al. model, where the driving
force for static recovery is given by the difference of
actual and equilibrium dislocation density, a limiting
degree of static recovery is introduced, here, given by
the amount of geometrically necessary dislocations,
qRS, for maintaining the subgrain microstructure. In
the Read–Shockley model,[19] the mean subgrain
misorientation angle, hmean, and the mean subgrain size

in a periodic network of subgrains define the geometri-
cally necessary dislocation density as

qRS ¼ tan hmeanð Þ
brmean

: ½12�

Finally, the individual pieces of information about
nucleation density and growth rate are combined to
calculate the increase of the recrystallized volume
fraction as

_Xrx ¼ 27
ffiffiffi

2
p

R3
rx

_Nrx þ 3NrxR
2
rx

_Rrx

� �

¼
_Vrx

Vtot
: ½13�

In evaluation of the grain volume of all recrystallized
grains in the matrix, Vrx, it is again assumed that the
grain geometry can be approximated by a tetrakaidec-
ahedron. Since the model refers to unit volume of
material, the total volume, Vtot, is 1 m3.
A major advantage of the present nucleation model is

that it avoids the (extensive) use of fitting parameters in
the form of activation energies. Instead, the essential
temperature and composition dependencies of the
nucleation rate, Eq. [1], are incorporated within the
evolution equations for the mean subgrain size, rmean, as
well as the composition and temperature-dependent
evolution of the critical nucleation radius, rcrit, Eq. [2],
which in turn is determined by the dislocation density
evolution, Eq. [11]. The composition and temperature
dependency of the growth rate is also inherently
incorporated in the high-angle grain boundary mobility,
Meff;HB, as well as the driving pressure, PD. As a result,
the present model utilizes only a minimum number of
undetermined input parameters with most of the tem-
perature dependence of physical quantities already being
determined by the temperature dependence of indepen-
dently measured quantities, such as the bulk and grain
boundary self-diffusion coefficients as well as solute drag
binding energies as obtained from the application of the
corresponding Cahn model.[2]

B. Subgrain Evolution

As emphasized in the previous section, the nucleation
rate for recrystallization is substantially determined by
the evolution of the mean subgrain size in relation to the
critical subgrain size for recrystallization nuclei. In the
present approach, the evolution of mean subgrain size is
formulated in differential form as superposition of a
shrinkage term, _r�S , and a growth term, _rþG, with

_rmean ¼ _r�S þ _rþG: ½14�

A convenient parameterization of this general equa-
tion can be achieved in analogy to (i) the ‘‘principle of
similitude,’’ as introduced by Estrin et al.[20] and Nes,[21]

to describe the impact of dislocation storage on the
reduction of the subgrain size and (ii) the driving
force—mobility concept, as already used to describe the
growth rate of recrystallizing grains, Eq. [10]. Although
the former represents a convenient relation between the
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mean subgrain size and the average dislocation density
in several deformed materials, as analyzed by, e.g.,
Gil Sevillano et al.,[22] it has also been shown that the
similitude relation is strictly applicable only to stage II
hardening, since, in stages III and beyond, localized slip
phenomena (microbanding) and crystal or grain
breakup can occur.[23] In the present work, this relation
is, therefore, only applied in its differential form as

_r�S ¼ @

@t

A0
ffiffiffi

q
p
� �

¼ �2A0 rmean

A0

� �3
_qgen; ½15�

being aware that it reduces to a more or less empirical
relation for larger degree of deformation with only
limited correspondence to the original principle of
similitude. A0 is a material-dependent shrinkage coeffi-
cient for the effect of dislocation generation and storage
on subgrain size evolution and _qgen is the dislocation
generation rate.

In an investigation of the evolution of subgrains
during annealing, Sandstrom[3] observed that the rate of
subgrain growth is inversely proportional to the current
subgrain size. Based on this work, Ørsund and Nes[24]

described the growth of subgrains in terms of mobility
and driving pressure. Later, Huang and Humphreys[25]

experimentally investigated subgrain growth in pure Al
and also successfully applied a model that describes the
growth rate via mobilities and driving pressures. This
approach is adopted, here, for the subgrain growth rate
as

_rþG ¼ Meff;LB � PD;SGG; ½16�

with an effective LAGB mobility, Meff;LB, and the
driving pressure for subgrain growth, PD;SGG.

In conventional approaches to subgrain growth, e.g.,
References 3, 24, 25 only the interface curvature-de-
pendent contribution to the driving pressure is consid-
ered. In a recent work, Bréchet et al.[26] extend this
approach and formulate an additional restraining
pressure generated by the intrinsic dislocation density.
The integral driving pressure for subgrain growth then
reads

PD;SGG ¼ 2cLB
rmean

� Gb2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2drmean

p ffiffiffiffiffiffiffi

qint
p

; ½17�

with the subgrain boundary energy, cLB, the interaction
width of the LAGB, d, and the internal dislocation
density, qint ¼ q� qRS, describing the statistically dis-
tributed dislocations.

The subgrain boundary mobility, Eq. [23] later,
incorporates the temperature dependence of the sub-
grain growth rate as well as the impact of impurity
atoms, i.e., the solute drag effect. The parameterization
of this quantity is outlined in the following section.

C. Boundary Mobility

The grain and subgrain boundary mobilities are most
important input parameters determining the recrystal-
lization kinetics. To model the HAGB mobility, the

same approach is used, which has recently been suc-
cessfully applied to recrystallization kinetics simulations
in micro-alloyed steel[13] with

Meff;HB ¼ 1

Mfree;HB
þ 1

MSD

� ��1

; ½18�

where Mfree;HB is the mobility of the free undisturbed
boundary and MSD is the solute drag-affected mobility
capturing the influence of impurity atoms. The former
can be calculated from the work of Turnbull[27] as

Mfree;HB ¼ gfree;HB �MTB ¼ gfree;HB � xDGBVm

b2RT
½19�

with the efficiency factor, gfree;HB, the grain boundary
width, x, the grain boundary self-diffusion coefficient,
DGB, the molar volume, Vm, the ideal gas constant, R,
and the temperature, T. The diffusion coefficient along
grain boundaries has been independently assessed,
recently, by Stechauner and Kozeschnik[28] and their
values are adopted, here. The efficiency factor for the
free mobility is adjusted to the experimental data of[1]

and delivers good results for gfree ¼ 0:4.
The effect of solute drag is accounted for on the basis

of the classical Cahn approach,[2] where the solute drag
mobility, MSD, is inversely proportional to the concen-
tration of impurity atoms in the grain boundary, CGB,
and an inverse mobility, a, as

MSD ¼ 1

aCGB
½20�

and

a ¼ x RTð Þ2

EBDCBVM
sinh

EB

RT

� �

� EB

RT

� �� �

; ½21�

where EB is the interaction energy between the solute
drag-exerting element and the grain boundary. A value
of 5 kJ / mol is utilized for this quantity. DCB is the
diffusion coefficient across the grain boundary. The
concentration of Mg, CGB, is assumed to be identical to
the matrix concentration.[11, 13, 29]

If the Mg content in the alloy increases, the grain
boundary mobility decreases due to the increasing
amount of atoms that must be dragged along with the
moving boundary. In the limit of zero Mg, the calcu-
lated integral mobility approximates the free mobility
since the solute drag mobility approaches infinity.
Figure 1 compares the calculated grain boundary mobil-
ities to experimental data, where fair agreement is
achieved.
Sandstrom[3] and Winning et al.[30] suggest that

dislocation climb provides a viable mechanism for
subgrain boundary movement. On this basis, Sand-
strom[3] formulates a mobility approach, where the
subgrain boundary mobility, MSS, is mainly a function
of the bulk diffusion coefficient, DB, which is applicable
to pure alloys. In the present approach, a tempera-
ture-independent linear prefactor, gfree;LB, is introduced,
which determines the value of the effective free bound-
ary mobility as
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Mfree;LB ¼ gfree;LB �MSS ¼ gfree;LB �DBb
2

kBT
½22�

with the Boltzmann constant, kB. In their simulations,
Rehman and Zurob[11, 31] observe that the growth rate
of subgrains is slowed down by dissolved atoms.
Therefore, they introduce a model that correlates the
rate of subgrain growth with the mean distance of solute
atoms. Unfortunately, a separate parameter must be
defined for each type of solute and obstacle, which is
somehow decoupled from the parameters of the remain-
ing simulation structure.

In contrast to the Rehman and Zurob approach, the
influence of solute atoms on subgrain growth is inter-
preted again as being somehow proportional to the
effect of solutes on grain boundary movement as
delivered by the Cahn model.[2] Although not directly
grounded on a physical basis, a subgrain boundary
retardation factor is introduced, which is derived from
the ratio of free and solute drag mobilities of the
high-angle grain boundaries as

Meff;LB ¼ Meff;HB

Mfree;HB

� �

Mfree;LB: ½23�

The major advantage of this approach is the fact that
no additional independent calibration parameters must
be introduced for the subgrain boundary mobility. The
temperature dependence of the mobility is determined
by the model of Sandstrom,[3] whereas the composition
dependence of the subgrain boundary mobility is related
to that of the high-angle grain boundary.

D. Verification Experiments

To verify the simulation, the work of Koizumi et al.[6]

is analyzed, who experimentally investigate the recrys-
tallization kinetics of five different Al alloys with Mg
matrix concentrations, CMg, of 0.5 wt pct, 1 wt pct, 2 wt
pct, 3 wt pct, 4 wt pct, and 5 wt pct. In their analysis,
they first cast the alloys and measured a grain size of
300 lm after pre-annealing at 450 �C for 7 hours.

Subsequently, cold reduction with a total strain of 0.95
is applied and the specimens are finally tempered at
temperatures of 225 �C, 250 �C, 275 �C, and 300 �C.
During tempering, the specimens are periodically
extracted from a salt bath and analyzed metallograph-
ically in order to obtain the recrystallized fraction
evolution. Since the aim of the present investigation is to
model the influence of temperature and composition
(solute drag and dislocation evolution accompanying
strain hardening) on recrystallization kinetics, only
parameters (temperature and composition) are varied,
which are relevant to these effects.

E. Model Input Parameters

The bulk and grain boundary diffusion coefficients
entering the present model are taken from a recent
analysis by Stechauner and Kozeschnik.[28] These values
mainly determine the temperature dependence of the
free boundary mobilities and the static recovery kinetics
of dislocations and subgrain boundaries. For the HAGB
energy, a value of 0.65-0.0005ÆT[K] is assumed, which
incorporates the temperature dependence of the shear
modulus as reported in Reference 32. The resulting
specific HAGB energy spans a range of 0.35 J/m2–0.4 J/
m2 for the considered testing temperatures from 300�C
to 225�C, which is well in line with the grain boundary
energy value suggested by Murr.[33] The temperature
dependency of these values is adopted in the present
work, since the results presented later demonstrate good
correspondence with experiments. A similar Ansatz for
determining the HAGB energy was used by Zurob
et al.[34] for the austenite phase of steel.
The dislocation density evolution parameters A, B, C

are adjusted to the experimental flow curve measure-
ments of Sherby et al.[4] by means of applying the Taylor
equation[5] with a dislocation strengthening parameter,
aTaylor, of 0.2.

[35] In the present simulation approach, the
dependency of strain hardening on the Mg content is
accounted for by the dislocation generation parameter,
A, in dependence of the Mg content, as suggested by
Kreyca and Kozeschnik,[36] at room temperature.
Thereby, the strain-induced dislocation strengthening
contribution to the material, rDS, is expressed as

rDS ¼ r0 þ aTaylorMGb
ffiffiffi

q
p

; ½24�

where r0is the thermal contribution to the yield strength
containing basic strength as well as solid solution and
grain boundary hardening. To apply the above formula,
Eq. [11] is used together with the parameters A, B, C
given in Table I. Figure 2 shows the simulated flow
curves and dislocation densities for high-purity Al,
Al-0.5 pctMg, Al-1 pctMg, Al-1.5 pctMg, and Al-3
pctMg, where excellent agreement is achieved.

III. RESULTS AND DISCUSSION

In this section, the simulation results are compared
with the experimental data of Koizumi et al.,[6] who
carried out recrystallization kinetics measurements on a

Fig. 1—Calculated (solid lines) and experimental (symbols) grain
boundary mobility for Al-5 pctMg, Al-1 pctMg, Al-0,1 Mg pct, and
high-purity Al at different temperatures. Experimental data from
Huang and Humphreys.[1]
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series of Al-Mg alloys (see Section II–C). In the consid-
ered experiments, the recrystallized volume fraction is
measured metallographically so that there is more
confidence in the measured values than in strength
relaxation-based methods, such as double-hit compres-
sion tests or hardness measurements.[40] The simulations
are carried out with the thermokinetic software tool
MatCalc, in which the identical set of input parameters
is used (Section II–D) for each simulation (material and
temperature variation). The simulation results in com-
parison to the experiments performed by Koizumi
et al.[6] are shown in Figure 3.

Koizumi et al.[6] observe approximately one order of
magnitude difference in recrystallization time for each
chemical composition of Al-Mg alloys, when the
annealing temperature increases by 25 K. The main
reason for this behavior lies in the variation of grain

boundary mobility, by which the temperature depen-
dence of the growth rate is determined.
Figure 3 already indicates that the simulations fully

reproduce the experimental observation that increasing
Mg content first decelerates and then accelerates the rate
of recrystallization, see Perryman.[41] A minimum of the
recrystallization rate can be found in the Koizumi
experiments[6] at a Mg content of approximately 1 wt
pct. This behavior can be described by the interplay of
two mechanisms triggered by Mg atoms in the Al
matrix: On one hand, increasing Mg content decreases
the grain boundary mobility due to the solute drag effect
exerting a retarding pressure on the boundary during
migration.[2] Consequently, this effect acts as a retarding
process on recrystallization (Eq. [10]). To quantify this
mechanism, Figure 1 displays the simulated boundary
mobility for various concentrations of Mg in the matrix
(Section II–B) compared to experimental data.

Table I. List of Simulation Parameters

Symbol Designation Value Unit References

DB Al bulk diffusion coefficient 1.4910�5 exp(-127200/RT) m2/s 28
DDis Dislocation pipe diffusion 1.5910�6 exp(-83200/RT) m2/s 28
DGB Grain boundary diffusion 2.0910�5 exp(-60200/RT) m2/s 28
DCB Cross boundary diffusion m2/s 11, 13
A;B;C Strengthening parameters � 16.69ln(CMg)+44.6;2; 4910�5 — This work, 4
A0 similitude parameter — 12
EB Binding energy 5000 J/mol This work, 1
CGB;Mg HAGB concentration of Mg CMg mol/mol 11, 13
cHB HAGB energy 0.65-0.00059T [K] J/m3 This work
cLB LAGB energy J/m3 32
x Grain boundary width 10�9 m 12, 37
b Burgers vector 2.86910�10 m 38
d Dislocation interaction width 50 m This work
G Shear modulus 29438.4-15.052T[K] MPa 39
hmean Mean misorientation angle 3� — 13
gfree;HB HAGB prefactor 0.4 — 1

gfree;LB LAGB prefactor 1 — 25
aTaylor Strengthening coefficient 0.2 — 35

Fig. 2—(a) Dislocation generation in dependence of different Mg contents (high-purity Al, Al-0.5 pctMg, Al-1 pctMg, Al-1.5 pctMg, Al-3
pctMg) at 25�C. (b) Resulting dislocation strengthening contribution in comparison to experimental data of Ref. [4] at 25 �C.
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On the other hand, the dislocation evolution is heavily
dependent on the Mg content. In a recent contribution,
Muzyk et al.[42] point out that Mg has a strong influence
on the stacking fault energy in Al alloys. Kocks and
Mecking[17] suggest that the strain-hardening potential
in materials should scale with the stacking fault energy.
Thornton et al.[43] describe that the change in stacking
fault energy influences the cross-slip mechanism of
dislocations at high temperatures and, thus, leads to a
lower rate of dynamic recovery. In their recent analysis,
Kreyca and Kozeschnik[36] show that both, the rate of
dislocation generation and that of dislocation annihila-
tion due to dynamic recovery, are influenced by the Mg
content.

The two mechanisms referenced above, solute drag
and dislocation density evolution, severely interact in
the present simulation. As a consequence, the observed
recrystallization kinetics can be likewise accelerated and
decelerated, depending on the Mg content. Figure 4
summarizes the influence of the Mg content on recrys-
tallization kinetics. In image 4a), the simulated recrys-
tallized volume fractions at 275�C are compared,
showing that the recrystallization kinetics are faster in
Al-0.5 pctMg compared to Al-1 pctMg. A further
increase in Mg always leads to an increase of the
recrystallization kinetics. Diagram 4b) shows the simu-
lated (markers) and measured (line) 50 pct recrystalliza-
tion temperatures. Excellent agreement between the

Fig. 3—Calculated recrystallization kinetics at different temperatures for (a) Al-0.5 pctMg, (b) Al-1 pctMg, (c) Al-2 pctMg, (d) Al-3 pctMg, (e)
Al-4 pctMg, and (f) Al-5 pctMg.
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experimental observations and the simulations based on
the present model is observed.

IV. SUMMARY

In the present work, a comprehensive state parame-
ter-based model for static recrystallization in terms of
nucleation and growth of recrystallizing grains is pro-
posed. Both the HAGB mobilities and the dislocation
densities are evolved on the basis of physical evolution
expressions and they are individually analyzed and
compared to independent experiments. On one hand,
the Mg content-dependent dislocation density evolution
promotes recrystallization with increasing alloy content
due to increased dislocation production. On the other
hand, the solute drag effect retards recrystallization due
to an increasingly retarding effect on boundary mobility.
The mutual interplay of these effects is observed in both
the simulation and the experiment.
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