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A new numerical modelling approach integrating the Langer and Schwartz approach and
log-normal particle size distribution has been developed to depict the precipitation kinetics of
age-hardening precipitates in Al alloys. The modelling framework has been implemented to
predict the precipitation behavior of the key secondary phases in 6xxx and 7xxx Al alloys
subjected to artificial aging. The simulation results are in good agreement with the available
experimental data in terms of precipitate number density, radius, and volume fraction. The
initial shape parameter of the log-normal size distribution entering the modeling framework
turns to play an important role in affecting the later-stage evolution of precipitation. It is
revealed that the evolution of size distribution is not significant when a small shape parameter is
adopted in the modelling, while an initial large shape parameter will cause substantial
broadening of the particle size distribution during aging. Regardless of the magnitude of shape
parameter, a broadening of the particle size distribution as predicted by the present model is in
agreement with experimental observations. It is also shown that large shape parameter will
accelerate the coarsening rate at later aging stage, which induces fast decreasing of number
density and increased growth rate of mean/critical radius. A comparison to the Euler-like
multi-class approach demonstrates that the integration of more realistic log-normal distribution
and Langer and Schwartz model make the present modelling faster and equivalently accurate in
precipitation prediction.
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I. INTRODUCTION

THE nucleation and growth kinetics of secondary
phases during artificial aging heat treatment are crucial
in enhancing the mechanical properties of various alloy
systems.[1–6] 6xxx and 7xxx aluminium alloys can
generally be precipitation strengthened via artificial
aging, wherein complex precipitation of multiple pre-
cipitates occurs, contributing to the hardening of the
material.[5,7–11] The extent of precipitation strengthening
is largely determined by the precipitate shape, size, and
number density. Up to now, various modelling
approaches have been developed to predict the

precipitation behavior of secondary phases during
age-hardening process.[8,9,12–25] Based on the classical
nucleation and growth theories, these models are able to
predict the time evolution of the precipitation of
secondary phases during heat treatment.
The modelling approaches as developed so far, which

enable the numerical implementation of the classical
nucleation and growth theories generally includes the
‘‘mean size approach’’ and the ‘‘multi-class
approach’’.[13,17,19,26–28] The mean size approach, also
named as ‘‘mean radius approach’’, was originally
proposed by Langer and Schwartz (LS model), wherein
the steady-state nucleation theory was adopted to
compute the time evolution of phase separation in
mixtures.[26] An important simplification of the mean
size approach is that only the particles with radius r>r*
(r* is the critical radius) are included as the newly
precipitated phase (see the hatched area in Figure 1).
Particles with radius r< r* (see the unhatched area in
Figure 1) are considered as unstable and will dissolve
into the supersaturated matrix. The LS model was
afterwards improved by Kampmann and Wagner via
replacing the linearized Gibbs–Thomson equation with
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a non-linearized counterpart (MLS model).[17,29] As
being the ‘‘mean size approach’’, both the LS model and
MLS model cannot predict the explicit particle size
distribution (PSD).

Unlike the ‘‘mean size approach’’, the ‘‘multi-class
approach’’ is developed with a definition of discrete size
classes and a partitioning of the temporal evolution of
PSD into series of individual time steps,[17,29] and hence
is able to predict more information about particles,
especially the full evolution of PSD. The Kampmann
and Wagner numerical model (KWN model) is widely
recognized as the pioneering multi-class approach. The
KWN model is afterwards improved by Myhr and
Grong[13] via allowing for the inter-fluxes between
neighboring size classes, which is later on named as
the ‘‘Euler-like multi-class approach’’. In contrast, the
‘‘Lagrange-like multi-class approach’’ differs from the
Euler-like approach, in that it tracks the time evolution
of each size class, without inter-size class flow.[28] It is
worth noting that the KWN-based multi-class approach
bears a generic and flexible nature, which allows for easy
extension. A coupling of the KWN-based multi-class
approach with the CALPHAD method enables efficient
treatment of the multi-phase precipitation in multi-com-
ponent systems subjected to different heat treatment
conditions.[25] Despite the advantage of KWN-based
multi-class approach, its application in certain circum-
stances is less feasible. For instance, the treatment of
complex precipitation behavior near defects like grain
boundaries or dislocations via KWN multi-class
approach is not affordable, since one has to discretize
the defect region to consider the solute concentration
variation. The implementation of KWN multi-class
approach in each discrete element turns to make the

modeling framework remarkably expensive. A detailed
comparison between the mean size and multi-class
approaches conducted by Perez et al.[19] reveals that in
simple cases, the ‘‘mean size approach’’ is faster and as
accurate as the multi-class approaches in predicting the
general course of precipitation: nucleation, growth,
coarsening. This suggests that the ‘‘mean size approach’’
is also able to predict equally accurate results in the
modeling framework wherein an implementation of
KWN multi-class approach is not computationally
affordable.
In spite of the incapability in prediction of PSD

evolution, the ‘‘mean size approach’’ still has a wide
range of applications, due to its versatility and much less
computing load compared with the multi-class
approaches. Via a ‘‘mean size approach’’ integrating
nucleation, growth and coarsening, Deschamps and
Bréchet[12] have investigated the effect of predeforma-
tion on the precipitation kinetics of an Al-Zn-Mg alloy
during aging. A coarsening rate as a function of mean
and critical radius was introduced to weigh the pure
growth equation and pure coarsening equation to ensure
the continuity from growth to coarsening stage. Perrard
et al.[18] adopted the same approach with a modified
coarsening rate to model the precipitation of NbC on
dislocations in a-Fe. It is worth noting that these two
typical works both have implemented the Lifshitz-Sly-
ozov-Wagner (LSW) kinetics[30] for describing coarsen-
ing.[12,18] However, it is demonstrated by Perez et al.[19]

that the ‘‘mean size approach’’ based on LSW theory is
incapable of modelling the PSD evolution of non-LSW
precipitation. Meanwhile, the powerful multi-class
KWN approaches which can predict PSD evolution
also end up with a LSW particle size distribution at long
aging time.[13,19,23] However, experimental data does not
show characteristic LSW size distribution of precipi-
tates, whereas a log-normal size distribution is com-
monly observed. Indeed, all the three classic approaches
mentioned above cannot properly address the experi-
mental log-normal PSD. These concerns motivate the
present research efforts to develop an optimized mod-
elling framework which simply imposes the realistic
log-normal size distribution function commonly
observed in experiments.
In the present work, we present a revised Langer-Sch-

wartz (RLS) model, which integrates the LS approach
and log-normal particle size distribution to depict the
precipitation kinetics including nucleation, growth and
coarsening. The rest of the manuscript will be arranged
as follows. First, the methodologies formulating the
present modelling framework, which includes classic
nucleation and growth theory, LS approach, log-normal
distribution, and solubility product, will be presented in
Section II. Hereafter, the numerical precipitation model
is applied to treat the nucleation, growth, and coarsen-
ing behavior of the key precipitates in 6xxx and 7xxx
alloys during aging. The simulation results will be
presented and discussed in Section III and IV, followed
by the conclusions in Section V.

Fig. 1—Log-normal particle size distribution with a mean particle
radius �rn: r* is the critical radius. Particles with radius r < r* are
continuously dissolving in the matrix. In the present Revised Langer
and Schwartz approach, only the hatched area with particle radius r
> r* contributes to the mean particle radius �rn: �rn is the mean radius
for the full log-normal distribution and �r is the mean radius of the
stable particles (r> r*).
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II. PRECIPITATION MODEL

Prior to a comprehensive introduction of the RLS
approach, it is necessary to present the hypotheses
adopted in this model:

(i) For simplification of the model, precipitates are
assumed to be spherical.

(ii) The thermodynamics of precipitates are
described by the solubility product.

(iii) The precipitation reaction, including growth
and dissolution, is only controlled by solute
diffusion in matrix.

(iv) Local equilibrium at the precipitate/matrix
interface is assumed, wherein the Gibbs–Thom-
son effect is implemented.

(v) An initial constant shape parameter of the
log-normal particle size distribution is assumed
at the beginning of precipitation.

A. Nucleation

The classic nucleation theory is employed to depict
the formation of precipitates in supersaturated solid
solution. Within this theory, the nucleation rate is
calculated in terms of References 31 through 33:

J ¼ N0Zb
� exp �DG�

kBT

� �
exp � s

t

� �
½1�

wherein N0 is the number of nucleation sites per unit
volume, kB the Boltzmann factor and T the tempera-
ture. Z is the Zeldovich factor and is calculated via[19]

Z ¼ vPat
2pr�2

ffiffiffiffiffiffiffiffiffi
c

kBT

r
; ½2�

where vPat is the mean atomic volume for the precipi-
tate and c is the interfacial energy. b* represents the
condensation rate of solute atoms into a cluster with
critical size r*, which can be evaluated based on Rus-
sell’s equation[34]

b� ¼ 4pr�2

a4

X
i

1

Dixi

 !�1

½3�

where xi and Di are the concentration and diffusion
coefficients of solute element i, respectively. Note that
DG* is the nucleation energy barrier which needs to be
overcome to form a nucleus with size r*, which is
obtained by

DG� ¼ 16pc3

3DG2
v

; ½4�

wherein DGv is the driving force for nucleation per unit
volume, which is related to the critical radius r* via
interfacial energy c as

r� ¼ 2c
DGv

: ½5�

Finally, s in Eq. [1] is the incubation time for
nucleation introduced by Kampmann and Wagner,[27]

and can be calculated as

s ¼ 4

2pb�Z2
½6�

B. RLS Approach

Within the RLS modelling framework, the instanta-
neous evolution of the particle number density, particle
mean radius, volume fraction, solute concentration in
matrix etc. are depicted via differential equations. The
evolution of the size distribution is given by the
following continuity equation

@/ rð Þ
@t

¼ � @

@r
v rð Þ/ rð Þð Þ þ j rð Þ ½7�

where v is the particle growth rate, j(r) is the dis-
tributed nucleation rate, and u(r) is the log-normal
particle size distribution function, which will be pre-
sented in the next section. Recognizing that only parti-
cles with radius r > r* are counted into the number
density n, we can get the time evolution of n through
integrating Eq. [7], leading to

@n

@t
¼ J� / r�ð Þ @r

�

@t
½8�

J is the nucleation rate. The mean radius of the
particle �r: are defined by

r ¼ 1

n

Z1

r�

/ rð Þrdr ½9�

By applying the previously defined assumptions, the
time derivative of Eq. [9] gives us the time evolution of �r:

@�r

@t
¼ vð�rÞ þ 1

n
� ð�r� r�Þ/ðr�Þ @r

�

@t
þ 1

n
� J � r� þ dr� � �rð Þ;

½10�

wherein the first term on the right of Eq. [10], vð�rÞ is the
approximation for the growth rate of particles, which
can be described with the classic Zener equation.[35] The
second term corresponds to the change of �r contributed
by dissolution of u(r*)dr* particles with radius r*+dr*
>r>r*. The third term denotes the change of �r induced
by the nucleation of particles which have radii slightly
larger than r*.

C. Log-Normal Distribution

In order for the RLS model to describe the full
solution of coarsening of particles in later aging stage, a
continuous size distribution function u(r) is needed.
Different from previous LS models, we assume a
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log-normal distribution of particle sizes for size distri-
bution function u(r) in the present work. Such assump-
tion is feasible and sensible since the log-normal
distribution of particle sizes has been frequently
observed in various experiments. An implementation
of log-normal size distribution for u(r) enable the
present RLS model to capture the experimental results
in a more realistic manner. The log-normal distribution
function u(r) is defined in terms of the following

/ xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
sx

exp �
ln xþ s2=2
� �2

2s2

 !
; ½11�

wherein x is the normalized particle size for size class i
with respect to the mean particle radius, i.e., ri=�r: s is
the shape parameter for the u(r), which has the term
of the following

s2 ¼ ln 1þ r2r
�r2

� �
; ½12�

where rr is the measured standard deviation of the
experimental precipitate size distribution. A normalized
distribution function with respect to the normalized
particle size is shown in Figure 2. As one can find that
log-normal PSD with larger shape parameter would
correspond to a more broader distribution.

D. Growth Rate

The classical diffusion-controlled growth rate equa-
tion[35] has been adopted to describe both particle
dissolution and growth in the differential equations,
which is termed as

v ¼ dr

dt
¼ Dj

r

�xj � xij rð Þ
axpj � xij rð Þ ; ½13�

wherein Dj is the solute diffusion coefficient in matrix, r
the spherical particle radius, the mean solute concen-
tration in matrix, the solute concentration in precipitate,
the solute concentration at the particle/matrix interface.
�xj; x

p
j ; and xij rð Þ are the solute concentrations of element

j in the matrix, the particles and at the particle/matrix
interface, respectively. a is the ratio between mean
atomic volume of matrix and precipitate.
Local equilibrium of the solute concentration at the

particle/matrix interface is assumed via the
Gibbs–Thomson effect, which can be described by the
following equation with the solubility product (consid-
ering AmBn precipitate)

[36]:

K rð Þ ¼ xiA
� �m

xiB
� �n¼ K1 exp

2cVm

rRT

� �
; ½14�

wherein c is the particle/matrix interfacial energy and
xiA; x

i
B represent the solute concentration at the parti-

cle/matrix interface of element A and B, respectively.
K¥ is the equilibrium solvus boundary, given by,

K1 ¼ x1A
� �m

x1B
� �n¼ exp

DS�

R
� DH�

RT

� �
; ½15�

where x1A and x1B are the equilibrium concentration of
the solute elements, respectively. DS� and DH� are the
formation entropy and enthalpy of the precipitate.
Note that K¥ is only valid for a particle with infinite
size. The driving force for nucleation can then be given
by[37]

DGv ¼ RT � ln �xAð Þm �xBð Þn½ � � DS�

R
� DH�

RT

� �
½16�

The critical size r* of the particles can be determined
when the growth rate v (Eq. [13]) is zero, wherein the
solute mean concentration equals to the solute interfa-
cial concentration,

�xA ¼ xiA rð Þ; �xB ¼ xiB rð Þ ½17�

Substituting Eq. [17] into Eq. [14], we can get the
critical radius r* for the particles.

r� ¼ 2cVm

RT � ln �xAð Þm �xBð Þn½ � � DS�

R � DH�

RT

� � ½18�

A basic assumption in the present precipitation model
is that the growth rate is diffusion-controlled. In
multi-component systems, we have multiple growth rate
equations for the precipitate as a result of the different
solute elements. By assuming the same overall growth
rate regardless of which element is considered, we have
the following (considering AmBn precipitate)

DA

r

�xA � xiA rð Þ
axPA � xiA rð Þ ¼

DB

r

�xB � xiB rð Þ
axPB � xiB rð Þ ½19�

Solving Eqs. [14] and [19], the solute concentrations at
the particle/matrix interface and the growth rate can be

Fig. 2—Log-normal particle size distribution with four different
shape parameters (0.1, 0.2, 0.3, 0.6).
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determined. Mass balance is calculated to update the
solute concentration in the matrix as the precipitation is
proceeding, which can be evaluated by

�xi ¼
x0i 1þ afv � fvð Þ � axPi fv

1� fv
½20�

where fv is the particle volume fraction.

III. APPLICATIONS

A. Model Prediction of b¢¢ Precipitation
The precipitation kinetics of 6xxx alloys subjected to

artificial aging is rather complex, which involves multi-
ple secondary phase precipitation, including pre-b¢¢, b¢¢,
B¢, b¢, U1, U2, and the stable b precipitates. It is well
established that the b¢¢ phase with a needle morphology
is the most effective strengthening precipitate. The
present modeling framework is utilized to predict the
precipitation of b¢¢ in an Al-0.52 Mg-0.75Si (in wt pct)
alloy during aging treatment, and the experimental data
describing the precipitation behavior of b¢¢ are from
Reference 23. The classical nucleation theory is intrin-
sically sensitive to the particle/matrix interfacial energy
c, which makes this parameter crucial for the present
modelling prediction. The c of b¢¢/Al-matrix interface is
difficult to determine due to its dependency on precip-
itate size and interfacial anisotropy.[2,38] As an early
stage metastable precipitate, the c of b¢¢/Al-matrix
interface is considered small as a result of a full
coherency of b¢¢ with the Al matrix along the precipitate
needle direction and semi-coherency along a and c axes.
In the present simulation, a value of 0.05 J/m2 for c was
adopted, which is very close to the value of 0.045 J/m2

utilized in Du’s multi-class approach.[23] Note that a
stoichiometry of Mg5Si6 is implemented for the b¢¢
phase. Other key parameters for modelling precipitation
of b¢¢ are summarized in Table I.

Figure 3 displays the predicted number density,
mean/critical radius, and volume fraction of b¢¢-Mg5Si6
precipitate as a function of aging time. The experimental
results based on transmission electron microscopy
(TEM) measurements from Du et al.,[23] are also plotted
for comparison. As one can find in Figure 3(a) that the
present modelling can well capture the number density
evolution of b¢¢-Mg5Si6, both at peak hardening and
later over aging stage. Du et al.,[23] have shown that their

KWN multi-class model in combination with spherical
particle assumption is unable to well predict the number
density evolution of b¢¢-Mg5Si6 especially at later aging
stage. It was demonstrated that a consideration of the
non-spherical shape with an aspect ratio can effectively
enhance the coarsening rate and hence increase the
model capability. The present modelling framework is
considered very promising given the fact that it can well
depict the number density evolution even with spherical
particle assumption. Figure 3(b) shows the time evolu-
tion of mean and critical radius of b¢¢-Mg5Si6 particles in
comparison with the experimental data. The predicted
mean radius is in good agreement with experimental
results at early aging stage (3, 36 hours), but bears
discrepancy with experiment at late aging stage (108
hours). This may be attributed to the phase transfor-
mation of age-hardening precipitates. After a long time
artificial aging, the dominant precipitate will become b¢
instead of b¢¢, which is beyond the prediction ability of
the present model. Better prediction might be achieved
by taking into account the precipitation of b¢ precipitate
in the later aging stage. It is shown in Figure 3(c) that
the predicted volume fraction of b¢¢-Mg5Si6 precipitates
is in less agreement with the experimental results,
especially after 105 seconds artificial aging, the predicted
values are much smaller than that measured. Similar
disagreement was also observed in between the predicted
and measured volume fractions by KWN multi-class
approach.[23] Note that both models implemented a
stoichiometry of Mg5Si6 for b¢¢, which has been recently
established to have a constitution of Al2Mg5Si4.

[39] This
can be one reason leading to the lower predicted volume
fraction of precipitates. Moreover, the sudden increase
in measured volume fraction of early-stage b¢¢ at later
aging stage determined by experiments is quite unlikely
to occur. It is considered that the volume fraction may
include contributions from precipitates at later aging
stage, which contains transformation of precipitates and
is beyond the prediction ability of the present modeling.
Figure 3(d) shows the time evolution of the mean
concentration of Mg, Si solute in the matrix. Significant
decrease of the Mg, Si concentration in matrix are
accompanied with the substantial nucleation (cf.
Figure 3(a)) and increased volume fraction (cf.
Figure 3(c)) of b¢¢ precipitates at the timescale of 103

to 104 seconds before reaching the solubility limit
leading to a slow increase of the volume fraction during
coarsening.

Table I. Key Input Parameters for the Precipitation Modelling of b¢¢ in an Al-0.52 Wt Pct Mg-0.75 Wt Pct Si Alloy

Parameter Value

Molar Volume of Al Matrix 1.0 9 10�5 m3/mol
Molar Volume of b¢¢ Precipitate 1.092 9 10�5 m3/mol
Interfacial Energy, c 0.05 J/m2

Diffusion Mobility of Mg in Matrix[49] 1.342 9 10�19 m2/s
Diffusion Mobility of Si in Matrix[49] 2.706 9 10�19 m2/s
Shape Parameter of Log-Normal PSD 0.03
Solvus Boundary from Ref. [50]
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B. Model Prediction of b¢ Precipitation
b¢ is a later-stage precipitate of 6xxx alloys during

artificial aging. This phase, possessing a rod morphol-
ogy, has a hexagonal unit structure with space group of
P63/m. The precipitation behavior of b¢ phase in a
commercial 6056 Al alloy[41] during artificial aging is
utilized to validate the present precipitation model. As
discussed above, the interfacial energy c would drasti-
cally affect the nucleation rate and hence number
density. The b¢ precipitate is solely coherent with the
Al matrix along the c axis, which is less coherent in
comparison with the b¢¢/Al-matrix interface. Hence, a
higher interfacial energy c for b¢/Al-matrix interface can
be expected. A reasonable c value of 0.08 J/m2 which
enables a good prediction of the b¢ precipitation
behavior has been used in the present work. Note that
this value is a bit smaller than the interfacial energy
(0.104 to 0.112 J/m2) adopted in the multi-class
Lagrangian-like modelling of b¢ precipitation by Bardel

et al.[8] The stoichiometry of Mg9Si5 established by
Vissers et al.[40] is used for the b¢ precipitation mod-
elling. The other key parameters for modelling precip-
itation of b¢ are summarized in Table II.
Figure 4 shows the predicted number density,

mean/critical radius, and volume fraction of b¢-Mg9Si5
precipitate vs time evolution. The experimental infor-
mation of the b¢ precipitate from the characterization of
6056 alloy subjected to T6 temper treatment by Don-
nadieu et al.[41] are also included in the figures for
comparison. It can be seen in Figure 4 that the model
predictions are well consistent with the TEM experi-
mental measurements of b¢ precipitation, both in num-
ber density, particle size, and volume fraction at the
aging time of 8 hours. A comparison between Figures 3
and 4 enables one to find that the predicted coarsening
rate of b¢¢ is much faster than b¢ at the late aging stage.
Such higher coarsening rate of b¢¢ seems to be in
contradiction with its smaller interfacial energy than b¢,

Fig. 3—Predicted time evolution of (a) b¢¢-Mg5Si6 precipitate number density, (b) precipitate radius, including mean and critical radius, (c)
precipitate volume fraction, (d) mean concentration of Mg, Si solute in the matrix in an Al-0.52Mg-0.75Si alloy during artificial aging at 175 �C.
The experimental results from Ref. [23] are also plotted for comparison.
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which turns to slow down the growth rate of b¢¢.
However, the coarsening behavior of the precipitate is
not solely controlled by the interfacial energy. Accord-
ing to Eq. [10], an increase of the mean particle radius is
contributed by the Zener growth equation and dissolu-
tion of particles with instantaneous radius smaller than

r* at late aging (coarsening) stage, wherein the nucle-
ation rate at this stage is approaching ~0, with no
contribution of newly nucleated particles to mean
particle radius. As a result of the same aging temper-
ature, the diffusion controlled Zener growth equation is
not supposed to cause large discrepancy in the growth

Table II. Key Input Parameters for the Precipitation Modelling of b¢ in a Commercial 6056 Aluminium Alloy

Parameter Value

Molar Volume of Al Matrix 1.0 9 10�5 m3/mol
Molar Volume of b¢ PRECIPITATE 1.124 9 10�5 m3/mol
Interfacial Energy, c 0.08 J/m2

Diffusion Mobility of Mg in MATRIX[49] 1.342 9 10�19 m2/s
Diffusion Mobility of Si in Matrix[49] 2.706 9 10�19 m2/s
Shape Parameter of Log-Normal PSD 0.01
Solvus Boundary from Ref. [50]

Fig. 4—Predicted time evolution of (a) b¢-Mg9Si5 precipitate number density, (b) precipitate radius, including mean and critical radius, (c)
precipitate volume fraction, (d) mean concentration of Mg, Si solute in the matrix in 6056 alloy during artificial aging at 175 �C. The
experimental results from Ref. [41] are also plotted for comparison.
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rate of the two precipitates. On the contrary, the
dissolution of particles with radius r< r* should play
a deterministic role in the coarsening rate. One can
clearly find in Eq. [18] that multiple factors rather than
sole interfacial energy will serve to determine the critical
radius, including precipitate molar volume, solute mean
concentration, and solvus boundary. The different time
evolution of the critical radius r* causes the distinct
coarsening rate between b¢¢ and b¢ as predicted in the
present modelling.

C. Model Prediction of g¢ Precipitation
The generic precipitation sequence of an Al-Zn-Mg

alloy during artificial aging is widely recognized as: solid
solution fi GP zones fi metastable g¢ fi stable g,
wherein the g¢ precipitates serve as the major secondary
phases contributing to the age-hardening of Al-Zn-Mg
alloy.[42] For the sake of predicting the g¢ precipitation
behavior, a stoichiometry of Mg4Zn11Al1 has been
adopted in the present modelling. Such stoichiometry
is based on the atomic model of g¢ phase established by
Auld and Cousland,[43] which has been validated by
Wolverton[44] using density functional theory (DFT)
calculations. It is worth noting that the g¢/matrix
interfaces are also anisotropic, wherein the
0001f gg0= 111f gAl interface is coherent, while the

10� 10f gg0= 110f gAl interface is semi-coherent. This

makes it difficult to precisely determine the g¢/matrix
interfacial energy. Based on DFT, Cao et al.[45] have
predicted interfacial energies of ~44 and 190 mJ/m2 for
the coherent and semi-coherent interfaces, respectively.
Hence in the present work, an optimal value of 0.1 J/m2

has been used. Such interfacial energy is larger than the
value of 0.06 J/m2 adopted by Kamp et al.[46] to predict
the precipitation and dissolution of g¢ phase during
friction stir welding process. The other key parameters
adopted for modelling g¢ precipitation are as tabulated
in Table III.

The predicted time evolution of number density,
mean/critical radius, and volume fraction for g¢ precip-
itates in a 7150 alloy are displayed in Figure 5. The
experimentally measured number density, mean/critical
radius, and volume fraction at peak-aging time of 24
hours as determined by small-angle X-ray scattering
(SAXS) and TEM methods[47] are also included in the
figures for comparison. It is clearly shown in Figure 5

that the present modelling framework can well predict
the precipitation behavior of g¢ phase at the peak-aging
stage. Note that the peak hardening of 7xxx alloys
usually occurs at ~24 hours, being much slower than the
peak-hardening time of 6xxx alloys, which can be
ascribed to the much lower diffusivity of the impurity
elements at lower aging temperature (~120 �C). One can
find that the predicted peak hardening occurs in the time
range of 104 to 105 seconds, being consistent with the
experimental observations. The lower diffusivity of the
solute elements can be reflected by the much lower
increasing rate of the mean radius during aging. One can
find in Figure 5(b) that corresponding to the peaking
particle number density, a substantial increase in mean
particle radius also occurs at the timescale of 104 to 105

seconds, which is much longer than the timescale of 103

to 104 seconds in 6xxx alloys. Figure 5(e) shows the
time-evolution of Al concentration in the matrix. One
can find that along with the precipitation of g¢ phase,
there is an increase of the Al contents in the matrix. This
is not surprising considering the consumption of Mg, Zn
solutes in the matrix due to the continuous nucleation
and growth of the g¢ phase, which induces a monotonic
increase of Al content in the matrix according to the
conservation law. Figure 6 displays the comparison of
predicted properties, i.e., number density, mean radius,
volume fraction, of g¢ precipitate by RLS model with the
experimental data measured in six 7xxx alloy systems.[47]

The good agreement between the prediction and exper-
imental results as indicated in Figure 6 validates that the
RLS model is able to adequately capture the precipita-
tion behaviors of g¢ phase in these alloys.
The same set of parameters except for the shape

parameter as adopted in the present RLS modelling
were employed to depict the evolution of g¢ precipitate
radius in an Al-6.1 wt pct Zn-2.35 wt pct Mg model
alloy subjected to artificial aging at 160 �C. Note that a
different shape parameter of s = 0.07 instead of 0.01
was utilized for the precipitation modelling. The effect of
this parameter on precipitation behavior will be dis-
cussed in a latter section. For the precipitation mod-
elling of target alloy aged at 160 �C with a slow heating
rate, an interfacial energy of 0.09 J/m2 instead of 0.1 J/
m2 (fast heating rate) was implemented, which corre-
sponds to a lower nucleation energy barrier, accounting
for the easier nucleation of g¢ precipitate on GP zone as
reported by Deschamps et al.[12,48] Figure 7 shows the

Table III. Key Input Parameters for the Precipitation Modelling of g¢ in an 7150 Alloy

Parameter Value

Molar Volume of Al Matrix 1.0 9 10�5 m3/mol
Molar Volume of g¢ Precipitate 5.384 9 10�6 m3/mol
Interfacial Energy, c 0.1 J/m2

Diffusion Mobility of Mg in Matrix[49] 1.455 9 10�21 m2/s
Diffusion Mobility of Zn in Matrix[49] 4.464 9 10�21 m2/s
Shape Parameter of Log-Normal PSD 0.01
Solvus Boundary From Ref. [44,51]
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predicted time evolution of precipitate radius, including
mean and critical radius in comparison with the small
angle scattering (SAXS) and TEM data.[12,48] As indi-
cated, the present modelling framework can deliver a

remarkably accurate prediction of the evolution of
precipitate radius throughout the aging process. Besides,
at early aging stage, the predicted precipitate radius is
slightly smaller than the measured values both in the

Fig. 5—Predicted time evolution of (a) g¢-Mg4Zn11Al1 precipitate number density, (b) precipitate radius, including mean and critical radius, (c)
precipitate volume fraction, mean concentration of (d) Mg, Zn, (e) Al solute in the matrix in 7150 alloy. The experimental results from Ref. [47]
are also plotted for comparison.

Fig. 6—Predicted properties of g¢-Mg4Zn11Al1 precipitate by the RLS model against the experimental data in six alloy systems from Ref. [47],
(a) calculated vs experimental number density, (b) calculated vs experimental mean radius, (c) calculated vs experimental volume fraction.
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fast- and slow-heating cases. This discrepancy with the
experiments can be explained by the presence of GP
zone during early aging stage, which contributes to the
precipitate radius determined by experiments. However,
the predicted precipitate radius in the modelling is only
for the g¢ precipitate, wherein the contribution of GP
zone has not been taken into account.

IV. DISCUSSION

A. Log-Normal Distribution and the Shape Parameter

As demonstrated, the RLS precipitation model within
the framework of mean size approach, is able to
accurately describe the precipitation behaviors including
nucleation, growth and coarsening of a variety of
precipitates during aging treatment. As an important
factor entering the RLS modelling framework, the
log-normal size distribution has large influence on the
predicted precipitation behavior, hence the sensitivity of
the model to the key physical parameter describing
log-normal size distribution, i.e., shape parameter s,
need to be evaluated.

Comparing Figs. 3b, 4b, 5b and 7a and b, one can
easily see a correlation between the shape parameter s of
the log-normal size distribution and the value difference
between �r and r* at the coarsening stage. A large shape
parameter s would correspond to a large value difference
between �r and r* at the coarsening stage (Figures 3(b)
and 7(a) and (b)). However, a small s would produce a
small value difference between the two (Figures 4(b) and
5b). Such behavior can be explained by the intrinsic
dispersion feature of the log-normal size distribution. A
large shape parameter s describes a broader size
distribution, where one could expect a relatively larger
difference between �r and r*. On the contrary, a narrower
size distribution characterized with smaller shape

parameter would yield much smaller difference between
the two. In turn, the magnitude of value discrepancy
between these two parameters at the coarsening stage
can also serve as an indication whether there is a large
change in the particle size distribution.
Figure 8 displays the effect of shape parameter s of

the log-normal distribution on the time evolution of
particle radius, including mean/critical radius, and
radius difference �r� r� for the Q-Al3Cu2Mg9Si7 phase,
as predicted by the RLS approach in the present work.
The key parameters for modelling precipitation of Q
phase are as listed in Table IV. One can clearly identify
that a smaller s corresponds to a smaller radius
difference between �r and r*, and vice versa. It is also
shown in Figure 8 that the particle radius difference �r�
r� at coarsening stage is not a constant, which mono-
tonically increases regardless of the magnitude of the
initial shape parameter. This implies that the shape
parameter depicting the log-normal distribution is
continuously increasing, which refers to a sustained
broadening of the size distribution during coarsening
stage. Such interesting feature is in good agreement with
the results by both experiments and Euler approaches
showing clearly an broadening of the particle size
distribution during aging especially later stage.[13,23]

However, the extent of increment of the radius differ-
ence �r� r� along with aging time is different in respect to
the distinct initial shape parameter. For small s (cf.
Figure 8(a)), the increase in the radius difference �r� r� is
quite small even at long aging time (~107 seconds), while
larger s produce a drastically increased particle radius
difference �r� r� (cf. Figure 8(a)). The magnitude of
radius difference �r� r� at coarsening stage is demon-
strated as being able to identify the broadening/evolu-
tion of particle size distribution. Hence, the initial shape
parameter s is supposed to play a key role in affecting
the later-stage evolution of particle size distribution. It is
supposed that the evolution of the size distribution is

Fig. 7—Predicted time evolution of precipitate radius, including mean and critical radius in comparison with the Small Angle Scattering and
TEM data from Ref. [48], (a) precipitate radius of Al-Zn-Mg alloy aged at 160 �C with a fast heating rate, (b) precipitate radius of Al-Zn-Mg
alloy aged at 160 �C with a slow heating rate.
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not significant during aging when a small shape param-
eter is selected in the modelling, while an initial large
shape parameter will result in a substantial broadening
of the particle size distribution.

Indeed, the shape parameter of the log-normal
distribution does not solely influences the particle size
distribution during precipitation, but also affects the
evolution of other parameters during precipitation.
Figure 9 shows the effects of shape parameter s of the
log-normal distribution on the time evolution of pre-
cipitate number density, mean/critical radius, and vol-
ume fraction for Q-Al3Cu2Mg9Si7 phase, predicted by
the RLS approach in the present work. The different
shape parameter s is shown to hardly affect the number
density evolution at early and peak-aging stage. How-
ever, a larger s can significantly accelerate the coarsening
rate at later aging stage, as indicated by the faster
decrease in number density with larger s (cf.
Figure 9(a)). Correspondingly, one can find that the
variation of shape parameter does not change the
evolution of particle mean/critical radius (cf.
Figures 9(b) and (c)) at early and peak-aging stage,
but a larger s substantially enhances the growth rate of
mean/critical radius at later aging stage. This interesting
feature can be accounted for using the different log-nor-
mal distributions characterized with different shape
parameters. As discussed above, an initial large shape

parameter will produce continuous broadening of the
log-normal distribution during precipitation. A broader
size distribution described with a larger s will corre-
spondingly have more particles with radius r< r* (cf.
Figure 1), which will dissolve in the solid solution
matrix. Such dissolving of the smaller particles will
enormously contribute to the coarsening of the larger
particles. Hence, a larger shape parameter s will produce
faster coarsening rate of the precipitate at later aging
stage. Nevertheless, the variation of shape parameter
does not induce a significant influence on the volume
fraction of the precipitate (cf. Figure 9(d)).

B. Comparison with the Euler-Like Multi-class Approach

A comparison between the present RLS model with
the Euler-like multi-class approach was made in terms of
predicted number density, particle radius, volume frac-
tion and solute mean concentration in order for a
validation of its accuracy and efficiency. The details of
the Euler-like approach can be referred to in References
13 and 19 To facilitate the comparison, the same set of
parameters (cf. Table IV) were adopted for these two
approaches. Figure 10 shows the predicted precipitation
results of Q-Al3Cu2Mg9Si7 phase by the two approaches
in terms of number density, particle radius, volume
fraction and solute mean concentration. Note that a

Fig. 8—Effect of shape parameter s = (a) 0.01 and (b) 0.1 of the log-normal distribution on the time evolution of Q-Al3Cu2Mg9Si7 precipitate
radius, including mean/critical radius, and radius difference between �r and r*, predicted by the RLS approach in the present work.

Table IV. Key Input Parameters for the Precipitation Modelling of Q-Al3Cu2Mg9Si7 Phase

Parameter Value

Molar Volume of Al Matrix 1.0 9 10�5 m3/mol
Molar Volume of g¢ Precipitate 1.077 9 10�5 m3/mol
Interfacial Energy, c 0.16 J/m2

Diffusion Mobility of Mg in Matrix[49] 1.342 9 10�19 m2/s
Diffusion Mobility of Si in Matrix[49] 2.706 9 10�19 m2/s
Diffusion Mobility of Cu in Matrix [49] 1.096 9 10�20 m2/s
Solvus boundary from Ref. [52]
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shape parameter of s = 0.04 is implemented for the
log-normal distribution in the RLS model. One can find
that the prediction results of these two approaches are
remarkably consistent with each other. The different
particle size distributions, i.e., a log-normal distribution
as adopted in the RLS approach and a LSW distribution
as predicted in the Euler-like approach[13] can be one
reason accounting for the slight difference in the
evolution of number density and radius between these
two approaches. The integration of more realistic
log-normal distribution, solubility product and LS
model make this approach faster and equivalently
accurate in precipitation prediction when compared to
the multi-class approaches. Nevertheless, even though a
log-normal distribution has been integrated in the RLS
approach, the precise prediction of the evolution of
particle size distribution is still not possible, which is the
intrinsic feature of mean size approaches. It is worth

noting that the introduction of the log-normal distribu-
tion with an arbitrary shape factor s is an simplification
of the real size distribution. Such simplification is hard
to relate to the true physics of precipitation at the
beginning, since s = 0 is when nucleation starts for the
first time due to the fact that particles nucleate with the
same critical radius r*. During growth and coarsening at
later aging stage, s is increasing as a result of nucleation
of new nuclei with larger r* and the particle growth.
Even as a mean size approach, the RLS approach can be
promisingly further improved if the evolution of shape
parameter s which characterizes the log-normal distri-
bution can be properly addressed in the modelling
framework during the precipitation process. Such
description for the evolution of shape parameter s is
complex and will be reported in our future research
work.

Fig. 9—Effect of shape parameter s of the log-normal distribution on the time evolution of (a) Q-Al3Cu2Mg9Si7 precipitate number density,
precipitate radius, including (b) mean and (c) critical radius, (d) precipitate volume fraction, predicted by the RLS approach in the present work.
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V. CONCLUSION

A novel model termed as RLS approach which
couples the Langer and Schwartz approach and log-nor-
mal particle size distribution has been developed to
predict the precipitation behavior of the key precipitates
including b¢¢, b¢, g¢ in 6xxx and 7xxx Al alloys subjected
to artificial aging. The available TEM and SAXS data
concerning the precipitation of these secondary phases
in terms of number density, mean radius, and volume
fraction can be well predicted by the RLS approach. The
simulation results reveal that the pre-defined log-normal
size distribution in the RLS model is not fixed, where the
shape parameter increases during precipitation process,
corresponding to a broadening of the distribution. It is
shown that the broadening of the size distribution is
dependent on the magnitude of predefined shape

parameter, i.e., broadening is faster when a large shape
parameter is used in the modelling, and vice versa. Such
broadening of the particle size distribution as predicted
by the present modelling is consistent with the experi-
mental observations. Moreover, the shape parameter
will also affect coarsening at later aging stage, wherein
large shape parameter will lead to rapid decreasing of
number density and increased growth rate of mean/crit-
ical radius. A good agreement with the Euler-like
multi-class model indicates that the present RLS frame-
work which integrates the log-normal distribution and
Langer and Schwartz model is faster and equivalently
accurate in precipitation prediction, and hence can serve
as an efficient approach for the description of simulta-
neous nucleation, growth, and coarsening of the key
precipitates in multi-component Al alloys during aging
treatments.

Fig. 10—Predicted time evolution of the (a) particle number density, (b) mean particle radius, (c) precipitate volume fraction, and (d) solute
concentration in matrix by the RLS approach in the present work in comparison with the prediction results by Euler-like multi-class approach.
Note that the Q-Al3Cu2Mg9Si7 phase is selected for the modelling of precipitation and a shape parameter of s = 0.04 is implemented for the
log-normal distribution in the RLS model.
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APPENDIX

Number Density

The evolution equation of the size distribution is
given by the summation of a growth term and a
nucleation term:

@/ rð Þ
@t

¼ � @

@r
v rð Þ/ rð Þð Þ þ j rð Þ ½7�

The number density n, is defined considering only
particles with radius r> r*:

n ¼
Z1

r�

/ rð Þdr ½A1�
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/ rð Þdr
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The time derivative of the number density is obtained
by combining Eqs. [7] and [A1]:
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The nucleation is assumed to form particles with
radius r*+Dr* only with a nucleation rate J. It means
that j(r) is defined as:

j rð Þ ¼ J � d r� þ Dr�ð Þ ½A3�

Assuming that at infinite, v and u are zero and
v(r*)=0 by definition, the equation becomes:

@n
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r�
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We then obtain the final generic equation valid for
any size distribution:
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Mean Radius

The mean radius is defined by:

r ¼ 1

n

Z1
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/ rð Þrdr ½9�

This equation is derived with time and combined with
Eqs. [7] and [8]:
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By applying Eq. A3 and assuming that the product r,
v and u is zero at infinite, we obtain:

@�r

@t
¼ � 1

n
�r J� / r�ð Þ @r

�

@t

� �

þ 1

n
�/ r�ð Þ � r� � @r

�

@t
þ
Z1

r�

v rð Þ/ rð Þdrþ r� � J

0
@

1
A

½A9�

In the present model, we simplify the integration of
v rð Þ/ rð Þ by replacing it by the growth at the mean
radius, leading to the following equation:
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6. K. Li, A. Béché, M. Song, G. Sha, X.X. Lu, K. Zhang, Y. Du,
S.P. Ringer, and D. Schryvers: Scr. Mater., 2014, vol. 75,
pp. 86–89.

7. D.D. Zhao, L.C. Zhou, Y. Kong, A.J. Wang, J. Wang, Y.B. Peng,
Y. Du, Y.F. Ouyang, and W.Q. Zhang: J. Mater. Sci., 2011,
vol. 46, pp. 7839–49.

8. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson,
D. Maisonnette, T. Chaise, J. Garnier, and F. Bourlier: Acta
Mater., 2014, vol. 62, pp. 129–40.

9. M. Afshar, F.X. Mao, H.C. Jiang, V. Mohles, M. Schick,
K. Hack, S. Korte-Kerzel, and L.A. Barrales-Mora: Comput.
Mater. Sci., 2019, vol. 158, pp. 235–42.

10. F. Qian, E.A. Mørtsell, C.D. Marioara, S.J. Andersen, and
Y.J. Li: Materialia, 2018, vol. 4, pp. 33–37.

11. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. TrÆholt,
U. Tundal, and O. Reiso: Acta Mater., 1998, vol. 46, pp. 3283–98.

12. A. Deschamps and Y. Brechet: Acta Mater., 1999, vol. 47,
pp. 293–305.

13. O.R. Myhr and Ø. Grong: Acta Mater., 2000, vol. 48, pp. 1605–15.
14. O.R. Myhr, Ø. Grong, and S.J. Andersen: Acta Mater., 2001,

vol. 49, pp. 65–75.
15. M. Nicolas and A. Deschamps: Acta Mater., 2003, vol. 51,

pp. 6077–94.
16. O.R. Myhr, Ø. Grong, H.G. Fjær, and C.D. Marioara: Acta

Mater., 2004, vol. 52, pp. 4997–5008.
17. R. Wagner, R. Kampmann and P.W. Voorhees, Mater. Sci. Tech.

2006, pp. 309-407.
18. F. Perrard, A. Deschamps, and P. Maugis: Acta Mater., 2007,

vol. 55, pp. 1255–66.

19. M. Perez, M. Dumont, and D. Acevedo-Reyes: Acta Mater., 2008,
vol. 56, pp. 2119–32.

20. Q. Du, W.J. Poole, and M.A. Wells: Acta Mater., 2012, vol. 60,
pp. 3830–39.

21. D. den Ouden, L. Zhao, C. Vuik, J. Sietsma, and F.J. Vermolen:
Comput. Mater. Sci., 2013, vol. 79, pp. 933–43.

22. Z.S. Liu, V. Mohles, O. Engler, and G. Gottstein: Comput. Mater.
Sci., 2014, vol. 81, pp. 410–17.

23. Q. Du, B. Holmedal, J. Friis, and C.D. Marioara: Metall. Mater.
Trans. A, 2016, vol. 47A, pp. 589–99.

24. P. Priya, D.R. Johnson, and M.J.M. Krane: Comput. Mater. Sci.,
2017, vol. 139, pp. 273–84.

25. Q. Du, K. Tang, C.D. Marioara, S.J. Andersen, B. Holmedal, and
R. Holmestad: Acta Mater., 2017, vol. 122, pp. 178–86.

26. J.S. Langer and A.J. Schwartz: Phys. Rev. A, 1980, vol. 21,
pp. 948–58.

27. R. Kampmann and R. Wagner: Decomposition of Alloys: The
Early Stages, Pergamon Press, Oxford, 1984, pp. 91–103.

28. P. Maugis and M. Goune: Acta Mater., 2005, vol. 53, pp. 3359–67.
29. R. Kampmann, H. Eckerlebe, and R. Wagner: Mater. Res. Soc.

Symp. Proc., 1987, vol. 57, pp. 525–42.
30. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961,

vol. 19, pp. 35–50.
31. M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis:

Philos. Mag. Lett., 2007, vol. 87, pp. 645–56.
32. J.D. Robson, M.J. Jones, and P.B. Prangnell: Acta Mater., 2003,

vol. 51, pp. 1453–68.
33. J.D. Robson: Acta Mater., 2004, vol. 52, pp. 4669–76.
34. K.C. Russell, Chapter Nucleation in solids 1968, pp. 219-268.
35. C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950–53.
36. M. Perez: Scr. Mater., 2005, vol. 52, pp. 709–12.
37. Ch.-A. Gandin and A. Jacot: Acta Mater., 2007, vol. 55,

pp. 2539–53.
38. Y. Wang, Z.-K. Liu, L.-Q. Chen, and C. Wolverton: Acta Mater.,

2007, vol. 55, pp. 5934–47.
39. H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers,

J.C. Walmsley, C.D. Marioara, F. Danoix, W. Lefebvre, and
R. Holmestad: J. Appl. Phys., 2009, vol. 106, p. 123527.

40. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen,
C.D. Marioara, and S.J. Andersen: Acta Mater., 2007, vol. 55,
pp. 3815–23.

41. P. Donnadieu, M. Roux-Michollet, and V. Chastagnier: Philos.
Mag. A, 1999, vol. 79, pp. 1347–66.

42. X. Fang, M. Song, K. Li, Y. Du, D.D. Zhao, C. Jiang, and
H. Zhang: J. Mater. Sci., 2012, vol. 47, pp. 5419–27.

43. J.H. Auld and S.M. Cousland: J. Aust. Inst. Met., 1974, vol. 19,
pp. 194–201.

44. C. Wolverton: Acta Mater., 2001, vol. 49, pp. 3129–42.
45. F.H. Cao, J.X. Zheng, Y. Jiang, B. Chen, Y.R. Wang, and T. Hu:

Acta Mater., 2019, vol. 164, pp. 207–19.
46. N. Kamp, A. Sullivan, R. Tomasi, and J.D. Robson: Acta Mater.,

2006, vol. 54, pp. 2003–14.
47. D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.A. Zhang,

Q.S. Wang, G.L. Xie, F. Wang, and H.W. Liu:Mater. Sci. Eng. A,
2015, vol. 639, pp. 245–51.

48. A. Deschamps, F. Livet, and Y. Bréchet: Acta Mater., 1999,
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