Skip to main content
Log in

Hertzian Indentation Behavior of Electroless Ni-P-Ti Composite Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-P-Ti composite coatings have been prepared by co-depositing Ni-P and nano-Ti particles which were then annealed. Tensile tests were conducted on standalone coatings to acquire the mechanical properties of the coatings without the effect of the steel substrate. The Hertzian indentation tests were performed on coating-steel substrate bilayer systems to investigate the indentation behavior of the coatings. After annealing, Ni3Ti and superelastic NiTi phases are identified in composite coatings by XRD and EDS. Compared to the as-deposited Ni-P coatings, the toughness of the annealed composite coatings improved significantly. The superelastic effect of NiTi particles was observed in the Hertzian indentation behavior of the annealed composite coatings. The strengthening mechanisms as well as toughening mechanisms such as crack bridging, crack deflection, crack arresting, and transformation toughening were discussed. Recovery ratio (η) values as well as Hertzian indentation stress distribution were computed to analyze and explain the indentation behavior of the as-deposited and annealed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [1] M. Crobu, A. Scorciapino, B. Elsener, and A. Rossi, Electrochimica Acta, 2008, vol.53, pp.3364-70.

    CAS  Google Scholar 

  2. [2] D. Vojtěch, M. Novák, M. Zelinková, P. Novák, A. Michalcová, and T. Fabián, Applied Surface Science, 2009, vol.255,3745-51.

    Google Scholar 

  3. [3] C.K. Lee, Materials Chemistry and Physics, 2009, vol. 114, pp. 125-33.

    CAS  Google Scholar 

  4. [4] X.Q. Xu, J. Miao, Z.Q. Bai, Y.R. Feng, Q.R. Ma, and W.Z. Zhao, Applied Surface Science, 2012, vol. 258, pp. 8802-06.

    CAS  Google Scholar 

  5. [5] M. Islam, M.R. Azhar, N. Fredj, T.D. Burleigh, O.R. Oloyede, A.A. Almajid, and S. I. Shah, Surface and Coatings Technology, 2015, vol. 261, pp. 141-48.

    CAS  Google Scholar 

  6. [6] M. Palaniappa and S.K. Seshadri, Wear, 2008, vol. 265, pp. 735-40.

    CAS  Google Scholar 

  7. [7] S. Duari, A. Mukhopadhyay, T.K. Barman, and P. Sahoo, Surfaces and Interfaces, 2017, vol. 6, pp. 177-89.

    CAS  Google Scholar 

  8. [8] C.J. Lin, K.C. Chen, and J.L. He, Wear, 2006, vol. 261, pp. 1390-96.

    CAS  Google Scholar 

  9. [9] M. MacLean, Z. Farhat, G. Jarjoura, E. Fayyad, A. Abdullah, and M. Hassan, Wear, 2019, vol. 426-427, pp. 265-76.

    Google Scholar 

  10. [10] R. Neupane and Z. Farhat, Wear, 2013, vol. 301, pp. 682-87.

    CAS  Google Scholar 

  11. [11] Q.J. Zhou, J.Y. He, D.B. Sun, W.Y. Chu, and L.J. Qiao, Scripta Materialia, 2006, vol. 54, pp. 603-08.

    CAS  Google Scholar 

  12. [12] B. Bozzini and M. Boniardi, Zeitschrift Fuer Metallkunde, 1997, vol. 88, pp. 493-97.

    CAS  Google Scholar 

  13. [13] C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, and A.M. Abdullah, Wear, 2017, vol. 376-377, pp. 1630-39.

    Google Scholar 

  14. [14] R.F. Cook and G.M. Pharr, Journal of American ceramic society, 1990, vol. 73, pp. 787-817.

    CAS  Google Scholar 

  15. [15] H. Chai and B.R. Lawn, Journal of Materials Research, 2011, vol. 19, pp. 1752-61.

    Google Scholar 

  16. [16] B.R. Lawn, Journal of American Ceramic Society, 1998, vol. 81, pp. 1977-94.

    CAS  Google Scholar 

  17. [17] J. Chen, Journal of Physics D: Applied Physics, 2012, vol. 45, pp. 1-14.

    CAS  Google Scholar 

  18. [18] H.H. Hertz, J. Reine Angew. Math, 1881, vol. 92, pp. 156-71

    Google Scholar 

  19. [19] N. Schwarzer, F. Richter, and G. Hecht, Surface and Coatings Technology, 1999, vol. 114, pp. 292-304.

    CAS  Google Scholar 

  20. [20] A.C.F. Cripps, Journal of Materials Science, 1997, vol. 32, pp. 1277-1285.

    Google Scholar 

  21. [21] C. Kocer and R.E. Collins, Journal of American Ceramic Society, 1998, vol. 81, pp. 1736-42.

    CAS  Google Scholar 

  22. [22] F. Frank, Proceeding of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1967, vol. 299, pp. 291-306.

    Google Scholar 

  23. [23] S. Y. Chen, T.N. Farris, and S. Chandrasekar, International Journal of Solids and Structures, 1995, vol. 32, pp. 329-40.

    Google Scholar 

  24. [24] D. Louapre and K. Breder, International Journal of Applied Ceramic Technology, 2015, vol. 12, pp. 1071-79.

    CAS  Google Scholar 

  25. H. Hertz, Hertz’s Miscellaneous Papers, 1896, pp. 1–383.

  26. [26] K.L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, UK 1985

    Google Scholar 

  27. [27] Z. Li, Z.N. Farhat, G. Jarjoura, E. Fayyad, A. Abdullah, and M. Hassan, Tribology Transactions, 2019, vol. 62, pp. 880-96.

    CAS  Google Scholar 

  28. J.I.C.F.D. Data®, Powder Diffraction File(PDF) No. 00-004-0850, JCPDS: Netwon Square, PA, USA, 2019.

  29. [29] Y. Zhao, C. Jiang, Z. Xu, F. Cai, Z. Zhang, and P. Fu, Materials & Design, 2015, vol. 85, pp. 39-46.

    CAS  Google Scholar 

  30. J.I.C.F.D. Data®, Powder Diffraction File (PDF) No. 00-008-5982, JCPDS: Netwon Square, PA, USA, 2019.

  31. J.I.C.F.D. Data®, Powder Diffraction File (PDF) No. 00-015-7502, JCPDS: Netwon Square, PA, USA, 2019.

  32. [32] S. Guo, L. Li, G. Zhang, W. Wang, and X. Zhao, Applied Surface Science, 2009, vol. 255, pp. 3691-95.

    CAS  Google Scholar 

  33. [33] S. Karthikeyan, L. Vijayaraghavan, S. Madhavan, and A. Almeida, Metallurgical and Materials Transactions A, 2016, vol. 47, pp. 2223-31.

    Google Scholar 

  34. [34] J. K. Luo, A.J. Flewitt, S. M. Spearing, N. A. Fleck, and W. I. Milne, Materials Letters, 2004, vol. 58, pp. 2306-09.

    CAS  Google Scholar 

  35. [35] J.N. Balaraju, T.S.N.S. Narayanan, and S.K. Seshadri, Journal of Applied Electrochemistry, 2003, vol. 33, pp. 807-16.

    CAS  Google Scholar 

  36. [36] Y. Motemani, M.N. Ahmadabadi, M.J. Tan, M. Bornapour, and S. Rayagan, Journal of Alloys and Compounds, 2009, vol. 469, pp. 164-68.

    CAS  Google Scholar 

  37. [37] C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, and A.M. Abdullah, Surface and Coatings Technology, 2018, vol. 334, pp. 243-52.

    CAS  Google Scholar 

  38. [38] C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, A.M. Abdullah, and E.M. Fayyad, Surface and Coatings Technology, 2017, vol. 326, pp. 336-42.

    CAS  Google Scholar 

  39. [39] B.T. Lester, T. Baxevanis, Y. Chemisky, and D.C. Lagoudas, Acta Mechanica, 2015, vol. 226, pp. 3907-60.

    Google Scholar 

  40. ASTM, Standard Test Method for Adhesion Strength and Mechannical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, ASTM International, 2015, C1624-05, pp. 1–29.

  41. [41] V. D. Papachristos, C.N. Panagopoulos, L. W. Christoffersen, and A. Markaki, Thin Solid Films, 2001, vol. 396, pp. 173-82.

    CAS  Google Scholar 

  42. [42] A. Roman, D. Chicot and J. Lesage, Surface and Coatings Technology, 2002, vol. 155, pp. 161-68.

    CAS  Google Scholar 

  43. [43] C.S. Chang, K.H. Hou, M.D. Ger, C.K. Chung, and J.F. Lin, Surface and Coatings Technology, 2016, vol. 288, pp. 135-43.

    CAS  Google Scholar 

  44. [44] Y.J. Li, A.M.F. Muggerud, A. Olsen, and T. Furu, Acta Materialia, 2012, vol. 60, pp. 1004-14.

    CAS  Google Scholar 

  45. [45] F. Qian, S. Jin, G. Sha, and Y. Li, Acta Materialia, 2018, vol. 157, pp. 114-25.

    CAS  Google Scholar 

  46. [46] R.O. Ritchie, Materials Science and Engineering: A, 1988, vol. 103, pp. 15-28.

    Google Scholar 

  47. [47] X. Sun and J.A. Yeomans, Journal of Materials and Science, 1996, vol. 31, pp. 875-80.

    CAS  Google Scholar 

  48. [48] K.T. Faber, T. Iwagoshi, and A. Ghosh, Communications of the American Ceramic Society, 1988, vol. 71, pp. 399-401.

    Google Scholar 

  49. [49] D.R. Ni and Z.Y. Ma, Acta Metallurgica Sinica (English Letters), 2014, vol. 27, pp. 739-61.

    CAS  Google Scholar 

  50. [50] J.S.C. Jang, S.R. Jian, T.H. Li, J.C. Huang, C.Y.A. Tsao, and C.T. Liu, Journal of Alloys and Compounds, 2009, vol. 485, pp. 290-94.

    CAS  Google Scholar 

  51. [51] J.S.C. Jang, J.B. Li, S.L. Lee, Y.S. Chang, S.R. Jian, J.C. Huang, and T.G. Nieh, Intermetallics, 2012, vol. 30, pp. 25-29.

    CAS  Google Scholar 

  52. [52] R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, and H.M. Hawthorne, Scripta Materialia, 1999, vol. 41, pp. 691-96.

    CAS  Google Scholar 

  53. [53] R. Neupane, Indentation and Wear Behavior of Superelastic TiNi Shape Memory Alloy, Dalhousie University, Halifax, 2014.

    Google Scholar 

  54. [54] C. Greiner, S.M. Oppenheimer, and D.C. Dunand, Acta Biomater, 2005, vol. 1, pp. 705-16.

    Google Scholar 

  55. [55] Y. Chen, O. Tyc, O. Molnárová, L. Heller, and P. Šittner, Shape Memory and Superelasticity, 2018, vol. 5, pp. 42-62.

    Google Scholar 

  56. [56] M.M. Sherif and O.E. Ozbulut, Smart Materials and Structures, 2018, vol. 27, pp. 1-13.

    Google Scholar 

  57. [57] Z. Farhat, G. Jarjoura, and M. Shahirnia, Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 3544-51.

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Natural Scientific and Engineering Research Council of Canada for financial contribution (Grant Number RGPIN 327449) toward this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Farhat, Z. Hertzian Indentation Behavior of Electroless Ni-P-Ti Composite Coatings. Metall Mater Trans A 51, 3674–3691 (2020). https://doi.org/10.1007/s11661-020-05795-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05795-0

Navigation