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A steady-state model for austenite-to-pearlite transformation in multicomponent steel is
presented, including Fe, C, and eight more elements. The model considers not only classic
ingredients (formation of ferrite–cementite interface, volume diffusion, boundary diffusion, and
optimization of lamellar spacing) but also finite austenite–pearlite interfacial mobility that
resolves some previous difficulties. A non-Arrhenius behavior of interfacial mobility is revealed
from growth rate and lamellar spacing data. A smooth and physical transition between
orthopearlite and parapearlite is realized by optimizing the partitioning of substitutional
alloying elements between ferrite and cementite to maximize growth rate or dissipation rate
while keeping carbon at equilibrium. Solute drag effect is included, which accounts for the bay
in growth rate curves. Grain boundary nucleation rate is modeled as a function of chemical
composition, driving force, and temperature, with consideration of grain boundary equilibrium
segregation. Overall transformation kinetics is obtained from growth rate and grain boundary
nucleation rate, assuming pearlite colonies only nucleate on austenite grain boundaries. Further
theoretical and experimental work are suggested for generalization and improvements.
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I. INTRODUCTION

PEARLITE is a common product of austenite
decomposition in steels, typically consisting of alternat-
ing lamellae of ferrite and cementite. It is known as a
product combining good strength and ductility obtained
from relatively simple heat treatment of carbon or
low-alloy steels. Pearlitic steels are widely used for steel
wire and rail.[1] It is thus of great practical interest to
accurately model the overall transformation kinetics of
austenite decomposition to pearlite.

Quantitative experimental characterizations of pear-
lite date back to the 1930s.[2] Since then, there has been a
compilation of information on the morphology, growth
rate, lamellar spacing, partitioning of alloying elements,
nucleation, and overall transformation kinetics of
pearlite formation (see References 3 through 6 for
example). The theory of pearlite formation has its stage
set by Zener[7] and has been further developed by
Hillert,[8–10] Cahn,[11,12] and others.[13–18] Industrially
relevant calculation tools for pearlite include DICTRA
as part of Thermo-Calc[19] based on the work of
Jönsson,[20] and JMatPro based on the formulation by

Kirkaldy et al.,[21] with various levels of predictability
and user-friendliness.
In this work, we build a new model for pearlite

formation, incorporating all major theoretical ingredi-
ents previously scattered in literature, with model
parameters calibrated to best available experimental
information. This work is built on the maturity of
computational thermodynamics and diffusion kinetics in
the framework of CALPHAD (CALculation of PHAse
Diagram)[22] and has been incorporated in Thermo-Calc
since Version 2019a.
Apart from the most common lamellar type of

pearlite, there are also other types of pearlite, for
example, pearlite with rod-shaped minority phase,
divorced or degenerate pearlite with discontinuous
lamellae or rods, or pearlite colony with non-spherical
front, which we do not consider in this work. We also
do not consider the effects of stress, deformation, or
preexisting phase(s) on pearlite formation. In this
work, we only deal with steady-state pearlite of which
growth rate and nucleation rate are time-independent.
It is future work to model pearlite with time-depen-
dent growth rate (as known as divergent pearlite or
partitioned pearlite) and time-dependent nucleation
rate. The model is general for eutectoid/eutectic
decomposition involving any three phases, but in this
work we only present results of austenite (face-cen-
tered cubic or FCC, c) decomposition to ferrite
(body-centered cubic or BCC, a) and cementite (h).
Despite the limitations, our scope in this work should
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cover the most common circumstances of pearlite
formation.

In this paper, we first present our model of the growth
rate, nucleation rate, and overall transformation kinetics
under the aforementioned assumptions. The model is
then calibrated to available experimental data. Results
of the Fe–C, Fe–C–Mn, and Fe–C–Cr systems, and two
higher-order alloys, are presented to demonstrate the
features of our model.

II. MODELING

A. Growth Rate

Growth rate v; lamellar spacing S, and phase consti-
tution of pearlite are determined by a balance of driving
force and dissipation. Figure 1 is a schematic of the
pearlite transformation front in our model. As the
interface moves forward, driving force is consumed to
create new ferrite–cementite interface area, to overcome
the austenite–pearlite interfacial friction and solute drag
force, and to drive partitioning of elements from ferrite
to cementite (or the opposite) via volume diffusion in
austenite and boundary diffusion. Next, we consider
these contributions and finally combine them in a main
equation of driving force–dissipation balance.

1. Driving force
The total driving force for pearlite formation from

austenite is the difference in Gibbs energy between the
initial and final states:

DGm ¼ Gc
m u0i
� �� �

� 1� fh
� �

Ga
m uai
� �� �

þ fhGh
m uhi
� �� �� �

½1�

It is defined as DGm>0 for pearlite formation. We
express the composition using u fractions. These are
defined from the ordinary mole fractions xi as ui ¼
xi=
P

k2S xk: The summation in the denominator is
performed over the substitutional elements (S) only. Let
the concentrations of element i at the interface in ferrite,
cementite, and austenite be uai ; u

h
i ; and uci ; respectively. It

is assumed uci ¼ u0i ; namely, the bulk austenite compo-
sition, in line with the steady-state assumption. The
phase fractions, Gibbs energies, and compositions of
ferrite and cementite can be determined assuming one of
the following:

(1) orthoequilibrium (OE, full equilibrium),
(2) paraequilibrium (PE), where C reaches equilib-

rium under no partitioning of substitutional
elements, and

(3) constrained carbon equilibrium (CCE), where C
reaches equilibrium under prescribed partitioning
of substitutional elements (described in
Section II–A–5).

2. Dissipation
The total driving force is assumed to be dissipated by

four processes:

(1) Formation of ferrite–cementite interface[7]

The free energy stored in the ferrite–cementite inter-
face in one mole of pearlite is

2rVm=S ½2�

where r is the area-specific ferrite–cementite interfacial
Gibbs energy, and Vm is molar volume, which is
assumed equal for austenite, ferrite, and cementite.

(2) Pearlite–austenite interfacial friction

Pearlite forms by a reconstructive mechanism, which
dissipates driving force. It is common to assume
interfacial velocity is proportional to the part of the
driving force DGI

m dissipated by interfacial friction:

v ¼ MIDGI
m ½3�

where the proportionality coefficient MI is interfacial
mobility. In this work, we consider the mobility of
austenite–pearlite interface as a whole, without further
dividing into austenite–ferrite and austenite–cementite
interfaces separately.

(3) Solute drag force on pearlite–austenite interface

Segregation or anti-segregation of an alloying element
to a moving interface causes a drag force. The
steady-state picture of solute drag on homophase and
heterophase interfaces has been well established and
utilized for modeling phase transformations with

Fig. 1—Schematic of pearlite transformation front (thickness of
boundary B exaggerated for clarity). See List of Symbols for
definitions.
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success.[23] Regardless of mathematical details, the basic
features are in common: Segregation profile of alloying
element is perturbed from its equilibrium profile in the
low-velocity limit and is close to none in the high-ve-
locity limit. Solute drag force is proportional to velocity
in the low-velocity limit, reaches a maximum at an
intermediate velocity, and becomes inverse proportional
to velocity in the high-velocity limit. For multiple solute
drag elements, their solute drag forces are assumed to be
additive.

In this work, we find it sufficient to use a simple model
for the solute drag effect on steady-state growth rate of
pearlite. We adopt Cahn’s treatment[24] of solute drag,
which turns out capable of reproducing the basic
features mentioned above with a minimum of parame-
ters. We use a symmetric wedge profile, within which
boundary diffusivity (perpendicular to boundary) DB? is
constant. Such a configuration allows an analytical
expression of solute drag force (Appendix I). For each
element that causes solute drag, model parameters are
binding energy Eb and the ratio of boundary diffusivity
to full-width-half-maximum of the wedge, DB?=d:

Atom probe tomographic results show that Mn
segregates to the austenite–ferrite interface but not to
austenite–cementite interface,[25] which supports an
application of solute drag force only to the austen-
ite–ferrite part of the interface. Therefore, binding
energy values obtained here are expected to be compa-
rable with those determined from modeling austen-
ite–ferrite transformation in steels.

Based on the analysis above, we express the dissipa-
tive force due to solute drag of each element as

1� fh
� �

DGSD
m

Eb

RT
;
DB?

vd

� 	
½4�

The analytical form of DGSD
m is given in Appendix I.

(4) Diffusion of elements, within austenite and along
pearlite–austenite interface

Now we consider partitioning of alloying elements
within pearlite by diffusion. Diffusion can take place
within austenite in front of the austenite–pearlite inter-
face and/or along the austenite–pearlite interface.

There have been models with different levels of
sophistication describing the shape of pearlite–austenite
interface based on capillarity and its effect in thermo-
dynamics.[15,16,20,26] However, interfacial mobility is
infinite in most of the models. Introducing finite
interfacial mobility makes capillarity consideration dif-
ficult because force balance at the austenite–ferrite–ce-
mentite junction is complicated. In addition, it is
revealed in microstructural observations[6,27] that the
interface is mostly flat except in a limited neighborhood
of the triple-phase junction, which casts doubt on the
necessity of introducing capillarity with high
sophistication.

Here, we use a simple but effective model handling
volume and boundary diffusion. Local equilibrium is
not assumed at the interface.

A detailed derivation is given in Appendix II. Here,
we only show the final result of the total dissipative force
due to diffusion, within austenite and along austen-
ite–pearlite interface in parallel:

vS fh
� �2

2

u0i � uhi
� �2

u0i Mc
i þ

2 kMBkdð Þi
S

h i ½5�

We can define a ratio ri ¼ 2 kMBkd
� �

i
=Mc

i S for relative
weight of boundary diffusion and volume diffusion of
element i: Limiting cases of volume diffusion only and
boundary diffusion only can be reproduced by setting

kMBkd ¼ 0 (r ¼ 0) and Mc
i ¼ 0 (r ! þ1), respectively.

3. The main equation
The main driving force–dissipation balance equation

is then

DGm ¼ 2rVm

S
þ v

MI

þ 1� fh
� �Xm

j¼1

DGSD
m;j v;

Eb

RT
;
DB?

d


 �

j

 !

þ
vS fh
� �2

2

Xn

i¼1

u0i � uhi
� �2

u0i Mc
i þ

2 kMBkdð Þi
S

h i ½6�

Assuming dissipation from each element is additive,
the total solute drag force sums over m solute drag
elements, and the total dissipative force from diffusion
sums over all n elements (including Fe, if lattice-fixed
frame is used). If we neglect the thermodynamic
interactions in boundary diffusion, we can link atomic

mobility in boundary MBk to atomic diffusivity in

boundary DBk (not to be confused with DB? used for
solute drag effect in Eq. [4]). Both the segregation ratio k

and boundary diffusivity DBk are expected to follow the
Arrhenius equation. Therefore,

kMBkd
� 

RT ¼ kDBkd
� 

¼ kDBkd
� 

0
exp �QB

RT

� 	
½7�

The activation energy QB is the activation energy for
boundary diffusivity subtracted by the binding energy to
austenite–pearlite interface (Section III–A–1).
Equation [6] is the main equation for calculating v; if

S and compositions in austenite, ferrite, and cementite
are known. Without the solute drag term, v is directly
solvable. Otherwise, the equation is implicit to v and it
has to be solved iteratively.
It is also useful to define the critical spacing Sc by

DGm ¼ 2rVm

Sc
½8�

This means all the driving force is used to create new
ferrite–cementite interface, leaving no driving force
available for the other processes, hence v ¼ 0:
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4. Maximizing growth rate or dissipation rate
Given phase compositions and hence driving force, we

have established the v Sð Þ relationship.AuniqueS has tobe
determined by introducing some criterion. In thiswork, we
considermaximizing growth rate v;[7] ormaximizing rate of
dissipation (except the Gibbs energy stored in ferrite–ce-
mentite interface) v DGm � 2rVm=Sð Þ; with respect to S:
Other options include maximizing total driving force
DGm

[11] or total entropy production rate vDGm=T:
[14]

The result of maximizing growth rate conceptually
corresponds to the maximal growth rate measured from
maximal nodule radius (MNR) in metallography of
isothermally heat-treated alloys. It is also acceptable to
use this criterion for forced velocity growth of pearlite
because it gives similar results to isothermal heat
treatment.[28] Maximizing dissipation gives a smaller
growth rate and a larger lamellar spacing, which may
better represent the average values among all pearlite
colonies. The criteria of maximizing certain quantities
are not fully justified and merely provide convenient
ways to give unique values of lamellar spacing.

In this work, we use the criterion of maximizing
growth rate if not specified otherwise.

5. Constrained carbon equilibrium (CCE) and optimal
pearlite

As mentioned, common ways to determine phase
compositions and driving force include assuming
orthoequilibrium or paraequilibrium between ferrite
and cementite. However, electron probe measurements
of the partition coefficients of substitutional alloying
elements Ki ¼ uhi =u

a
i suggest a continuous transition

from near orthoequilibrium to paraequilibrium as tem-
perature is lowered (See Ridley[29] and references
therein. Note that experimentally measured partition
coefficients are usually expressed in weight fractions
Kw

i ¼ wh
i =w

a
i ). The continuous transition shows that

assuming either orthoequilibrium or paraequilibrium is
too simplistic.

In this work, we move beyond the limiting assump-
tions of either orthoequilibrium or paraequilibrium, by
applying the criterion in Section II–A–4 to determine
both S and the partition coefficients of substitutional
alloying elements. Meanwhile, we assume the fast
diffusing element C reaches equilibrium between ferrite
and cementite under the prescribed partition coefficients
Kif g i 6¼ C;Feð Þ; which is a type of constrained carbon

equilibrium (CCE). Numerically, given Kif g i 6¼ C;Feð Þ;
CCE is found by minimizing Gibbs energy of the
ferrite–cementite system while keeping mass balance:

Given Kif g; i 6¼ C;Fe

Minimize Gah
m fh
� �

¼ 1� fh
� �

Ga
m uai
� �� �

þ fhGh
m uhi
� �� �

; i 6¼ Fe

With uai ¼
u0i

1þ Ki � 1ð Þfh ; u
h
i ¼ Kiu

a
i ; i 6¼ C;Fe

uaC ¼ u0C � fhuhC
1� fh

; uhC ¼ 1

3

½9�

Here, we assume the stoichiometry of cementite is (Fe,
X)3(C)1 in the absence of B and N, and vacancies which
enter the same sublattice as C. The stoichiometry makes
ferrite–cementite system Gibbs energy Gah

m a univariate

function of molar fraction of cementite fh: If B, N, and
vacancies are also allowed together with C, a more
general algorithm must be used for finding constrained
equilibrium.
The CCE solution includes cementite fraction fh;

compositions of ferrite and cementite uai
� �

and uhi
� �

;
and hence driving force DGm from Eq. [1]. Then, growth
rate or dissipation is readily solvable from Eq. [6] with a
given S: In an outer loop, a unique vector
S;K1;K2; . . . ;Kn�2½ � is obtained as the solution of
maximizing growth rate or dissipation rate (Sec-
tion II–A–4). We name the pearlite mode ‘‘optimal
pearlite.’’

B. Nucleation Rate

1. Grain boundary (GB) nucleation rate
Metallographic evidence[3,12,30] shows that pearlite

does not nucleate homogeneously in bulk austenite, but
heterogeneously on austenite grain boundaries (GBs)
and their edges and corners, or sample surface. Under
most common circumstances, it is quite safe to only
consider GB nucleation,[3] except probably for very low
driving force and nucleation rate. Therefore, Cahn’s
analysis[31] is better than the standard equation from
Johnson, Mehl, Avrami, and Kolmogorov (JMAK) for
homogeneous bulk nucleation.[12] Following Cahn’s
analysis, we calculate phase fraction as a function of
time, given a constant growth rate (from Section II–A)
and GB nucleation rate.
GB nucleation rate has been derived from number

density of pearlite colonies from either metallography[12]

or indirect measurement.[32] Existing evidence all sup-
ports a non-steady-state GB nucleation process, with a
nucleation rate increasing with time throughout the
entire transformation. However, published quantitative
research on nucleation rate of pearlite is too limited to
allow modeling in a practically wide range in composi-
tion and temperature. An additional difficulty is a lack
of nucleation theory for eutectoid/eutectic transforma-
tion product. The process of GB nucleation of pearlite
has been conceptualized,[5,33] but it remains unclear how
these concepts can help build quantitative theoretical
models for pearlite nucleation rate.
Alternatively, nucleation rate as a function of time

can also be induced from high-quality curve of fraction
of pearlite over time, if growth is steady-state and the
growth rate is known.[12] Unfortunately, the pearlite
fraction is not systematically measured either. For
industrial steels, most commonly documented are simply
TTT (temperature–time–transformation) diagrams
including times of ‘‘start’’ and ‘‘finish,’’ occasionally
also a few intermediate phase fractions. Definitions of
‘‘start’’ and ‘‘finish’’ can also be ambiguous or mutually
incompatible.
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Because of such shortages of theoretical advances
and experimental information about pearlite nucle-
ation in a general steel, in this work we limit ourselves
to using time-independent nucleation rate, which is
determined by fitting to experimental start and finish
times. We assume ‘‘start’’ corresponds to 2 pct
transformation, and ‘‘finish’’ to 98 pct transformation,
if not specified otherwise. We use the following
equation for temperature dependence of GB nucle-
ation rate:

J0 Tð Þ ¼ J00
DGm

RTr

� 	n

exp �QN

RT

� 	
½10�

where J00 is a prefactor, Tr = 100 K is a reference
temperature simply to normalize the driving force, n is a
positive exponent, and QN is an activation energy to
ensure that low-temperature nucleation rate is diffu-
sion-limited. The expression for J0 Tð Þ is then a C-curve
with temperature. Then we model J00 and n as functions
of system composition.

2. Effect of equilibrium segregation at austenite GB
on pearlite nucleation

In Section II, we have considered steady-state solute
drag effect on pearlite growth rate. The effect is to
create a bay on the growth rate–temperature curve.
However, for some systems, the bay in growth rate is
not sufficient to account for the bay in the TTT
diagram: Another bay in nucleation rate curve should
be added to Eq. [10]. This is justified by segregation of
alloying elements to prior austenite GBs, assuming
some element prohibits pearlite nucleation upon its
segregation to austenite GB. By the onset of pearlite
nucleation, the amount of segregation at high tem-
perature is limited by normalized GB segregation
energy EGB/RT, while at low temperature by diffu-
sional kinetics. At some intermediate temperature,
the amount of segregation within a certain time
reaches a maximum. Such a behavior has been
modeled with success for P in steel using McLean-type
isotherm.[34] Therefore, considering the thermodynam-
ics and diffusional kinetics of GB segregation is
expected to create a bay in nucleation rate–tempera-
ture curve, if the GB segregant suppresses pearlite
nucleation.

However, to keep consistent within the time-indepen-
dent framework, we are focused on equilibrium segre-
gation only. This will give the upper half of a bay
without returning to the case of negligible segregation at
low temperature. This is acceptable for Cr, as is shown
in Section III–D, but not for all elements.

Based on the arguments above, the parameters J00

and n in Eq. [10] should depend on GB composition
instead of nominal composition. Assuming dilute solu-
tion thermodynamics, equilibrium GB composition is
calculated by:

uGBi ¼ u0i exp
EGB
i

RT

� 	
½11�

C. Overall Transformation Kinetics

We adopt Cahn’s analysis[31] and restate key results
here. In this work, both growth rate and grain boundary
nucleation rate are time-independent; therefore, the
overall transformation kinetics, namely, pearlite frac-
tion X over time t, is given by

X tð Þ ¼ 1� exp �b�1=3
s fs asð Þ

h i

as ¼ J0v2
� �1=3

t

bs ¼ J0= 8S3
Gv

� �

fs asð Þ ¼ as

Z1

0

dx 1� exp �pa3s
1� x3

3
� x2 1� xð Þ

� 	� �
 �

½12�

where x ¼ y=vt; y being distance from GB, and SG is
GB area per unit sample volume. Assuming grains are
equally large space-filling tetrakaidecahedra with dis-
tance DG between their square faces, DG can be
regarded as grain size and SG ¼ 3:35D�1

G : Grain
boundary coverage is the area fraction of transforma-
tion product at zero distance from GB, given by

Y0 tð Þ ¼ 1� exp �Ye t; x ¼ 0ð Þ½ � ¼ 1� exp � 1

3
pJ0v2t3

� 	

½13�

The calculation can be summarized in Figure 2.

III. RESULTS

All the calculations are done using Thermo-Calc
Software TCFE9 Steels/Fe-alloys database and
MOBFE4 Steels/Fe-alloys mobility database. Experi-
mental data and back-calculations from them are
plotted in scattered symbols, and model calculations in
continuous curves.

A. Growth of Fe–C Pearlite

Experimental measurements of growth rate and
lamellar spacing are available. We take both the
maximal nodule radius (MNR) and minimal lamellar
spacing from isothermal treatments and unidirectional
growth (forced velocity) experiments.
For the Fe–C system, there are only three parameters to

determine: ferrite–cementite interfacial Gibbs energy r;
the product kMBkd

� �
for C, and interfacial mobility MI:

Boundary mobility or diffusivity is determined by cali-
brating our model to experimental data on pearlite.

Except for Fe, kMBkd
� �

is not taken from measurements
of diffusion along grain boundaries in ferrite or austen-
ite[35] because of a difference in physical meaning (sta-
tionary vs moving boundary, homophase vs heterophase
boundary) and large scatter among literature values.
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1. Difficulties when assuming infinite interfacial
mobility

We first examine the assumption of infinite interfacial
mobility, which is accepted in most of existing analyses.
In this case, the two remaining model parameters

r; kDBkd
� �

C

h i
can be uniquely determined by a pair of

experimental data vmax;Sminð Þ at each temperature,
available from References 28, 36, and 37.

In Figure 3, we overlay the results from our simple
model and the treatments of Sundquist[15] and Hashi-
guchi and Kirkaldy[16] which are more sophisticated.
Both consider detailed geometry of the transformation
front based on capillarity, local equilibrium at interface,
and volume diffusion field in bulk austenite.[16] Sund-

quist uses a fixed r = 0.7 J m�2, but his kDBkd
� �

C
values are quite close to our back-calculations. Hashi-
guchi and Kirkaldy assume maximized entropy produc-
tion rate, which presumably causes the slight differences

in r and kDBkd
� �

C
from our back-calculations. Despite

the minor differences, our simplified model is almost
equally capable of describing pearlite growth quantita-
tively in comparison with the more sophisticated
treatments.

In literature, the results have been criticized for two
arguments, which we examine below:

(1) The activation energy of kDBkd
� �

C
is too high

The activation energy of kDBkd
� �

C
is about

191 kJ mol�1[15] or 170 kJ mol�1.[16] There have been
arguments that this is too high for diffusivity along a
boundary which acts as a shortcut. Some values close to
that of volume diffusion of C in ferrite, about
90 kJ mol�1, are preferred. The apparently too high
activation energy is attributed to impurity segrega-
tion.[15,40]QB

C is the activation energy for boundary

diffusivity DBk subtracted by the binding energy of C
to austenite–pearlite interface. Hashiguchi and Kirkaldy
made an attempt to separate the two parts, estimating
the binding energy to be several tens of kJ mol�1,[16]

which means the activation energy of DBk is even higher

than that of kDBkd
� �

C
However, recent atomistic simulation[41] shows that C

diffusion along GB in pure Fe does not necessarily
exhibit a lower activation energy than volume diffusion,
the difference depending significantly on grain boundary
structure.
In light of these arguments, the resultant activation

energy is acceptable.

(2) Ferrite–cementite interfacial Gibbs energy r and
interfacial entropy rS ¼ �dr=dT are too high

Fig. 2—Calculation flow diagram of the present model.
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The magnitude of r>1 J m�2 is comparable to some
surface energy[42] and is apparently too high for the
ferrite–cementite interface, compared to the experimental
measurements.[38,39] The interfacial entropy rS ¼ �dr=dT
is up to 0.008 J m�2 K�1, also too high to accept for a
solid–solid interface. Sundquist[15] adopted a value of
r ¼ 0:7J m�2 but the calculated lamellar spacing which
maximizes growth rate was smaller than experimental
measured values by nearly one order of magnitude.

As discussed in the two points above, we can accept

an activation energy of kDBkd
� �

C
higher than that of

bulk diffusion, but cannot accept the too high interfacial
Gibbs energy to be physical. Therefore, it is unrealistic
to assume an infinite interfacial mobility for pearlite
formation in steels.

2. Finite interfacial mobility
The difficulty from interfacial properties described in

Section III–A–1 can be resolved by introducing a finite
interfacial mobility, which originates from the

reconstructive nature of pearlite formation. Finite inter-
facial mobility has been considered in modeling cellular
reactions,[9,11] but much less appreciated in modeling
pearlite in steels. The work by Togashi and Nishi-
zawa[40] includes arguably the best assessment of
austenite–pearlite interfacial mobility by far.
Now we have three model parameters r; MI; and

kDBkd
� �

C
which cannot be uniquely determined from

two measurements vmax;Sminð Þ: We then have the
freedom to choose interfacial Gibbs energy and make
it constant over temperature, because this is the physical
quantity that is expected to vary least within the
temperature range of pearlite formation. Then, a pair

of MI; kDBkd
� �

C

h i
can be uniquely determined from

vmax;Sminð Þ; as shown in Figure 4. In this work, we
adopt r = 0.5 J m�2 for Fe–C pearlite. For other
values between 0.2 and 1.0 J m�2, the results are slightly
offset and rotated in an Arrhenius plot, while the
qualitative picture remains the same.

Fig. 3—Results assuming infinite interfacial mobility: (a) Ferrite-cementite interfacial Gibbs energy r and (b) kDBkd
� �

of carbon, back-calculated
in this work, by Hashiguchi and Kirkaldy,[16] and Sundquist.[15] Also shown are experimental measurements[38,39] of r: Experimental data used
for back-calculation: (c) maximal growth rate and (d) minimal lamellar spacing taken from Refs. [28], [36], and [37]
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As expected, kDBkd
� �

C
follows the Arrhenius equa-

tion. We assume kDBkd
� �

C
and MI are independent of

overall C concentration, as suggested by the results from
three different Fe–C alloys.[28,36,37] Using the data from
Pearson and Verhoeven[28] for an upper intercept and
slope and the data from Cheetham and Ridley[37] for a
lower intercept, we adopt an average intercept and write

kDBkd
� 

C
¼ 1:774

� 10�9 exp � 1:737� 105 Jmol�1

RT

� 	
m3 s�1

½14�

3. Temperature dependence of interfacial mobility
After kDBkd

� �
C
is determined in Eq. [14], we can now

make use of the datapoints with only MNR growth rate
measured,[3,30,43,44] and obtain MI below the nose
temperature. The results, which now cover a much
larger temperature range, are shown in Figure 5
together with austenite–ferrite interfacial mobility for
comparison. It is clear that the non-Arrhenius behavior
indicated already in Figure 4(a) is so pronounced that

there is even a maximum at 103=T ffi 1:1K�1:
There is not a clear dependence of MI on overall C

concentration and thus on cementite fraction. There-
fore, further analysis of MI based on a mixture of
austenite–ferrite and austenite–cementite interfaces is
difficult. On the temperature dependence, the MI of
Fe–C pearlite is connected to the data of massive ferrite
at 1000 K and undergoes a smooth transition to a
higher Arrhenius line as temperature decreases. Such a
non-Arrhenius temperature dependence of MI is also
found by Togashi and Nishizawa.[40]

In this work, instead of describing MI based on
physical mechanisms, we simply use a mathematical

equation to fit MI as a function of temperature
(Eq. [15]).

lnMI ¼ 1� fI
� �

lnMI
low þ fI lnMI

high

lnMI
low ¼ lnMI0

low � QI

RT

lnMI
high ¼ lnMI0

high �
QI

RT

fI ¼ 1� exp �T
p
0 � T

Tk

� 	

½15�

Fig. 4—Results assuming finite interfacial mobility and r ¼ 0:5 J m�2: (a) interfacial mobility and (b) kDBkd
� �

of carbon determined from the
same experimental dataset as in Fig. 3.[28,36,37] Data points in solid symbols are utilized for fitting.

Fig. 5—Interfacial mobility determined from either growth rate or
lamellar spacing data[3,28,30,36,37,43,44] using r ¼ 0:5 J m�2 and
kDBkd
� �

of carbon from Eq. [14], in filled symbols. The continuous
curve is fitted using Eq. [15]. Also overlaid are austenite-massive
ferrite interfacial mobility (in unfilled symbols) data from Figs. 1
and 3 of Hillert and Höglund[45] (and references therein) and Zhu
et al.[46]
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Equation [15] represents a transition from one Arrhe-
nius equation to another. The transition starts at the
temperature T

p
0 at which the driving force from austenite

to pearlite with the same composition is zero.[12] T
p
0 is

different from the commonly defined A1 temperature
except for eutectoid Fe–C alloy (0.77 wt pct C, 1000 K).
The value suggested by Zhu et al.,[46]

QI ¼ 1:45� 105 J mol�1, is accepted. The other fitting
parameters are lnMI0

low; lnM
I0
high; and Tk: Fitting to the

results for Fe–C pearlite gives MI0
low ¼ 0:3965m mol J�1

s�1;MI0
high ¼ 123:5m mol J�1s�1;Tk ¼ 56:68K:

We emphasize that Eq. [15] does not have any clear
physical meaning and is merely a method of representing
the interfacial mobility.

4. Results of Fe–C pearlite growth
Now we have determined all the model parameters for

growth of Fe–C pearlite. Growth rate and lamellar
spacing calculated using the model parameters are
compared to experimental measurements in Figure 6.
In Figure 7(a), we plot the driving force for pearlite

formation and how it is dissipated by formation of
ferrite–cementite interface, interfacial friction, and C
diffusion (boundary diffusion and volume diffusion in
parallel). Historically, there has been significant work
attempting to identify one single controlling mechanism
from scaling laws.[48,49] The current model makes it
unnecessary because how driving force is dissipated
results from a proper calibration of the model. Even for
the simplest case Fe–C, pearlite formation is under

Fig. 6—(a) Growth rate and (b) reciprocal lamellar spacing of Fe–C pearlite, calculation (0.77 wt pct C) vs experimental[3,28,30,36,37,43,44,47,48]

(average lamellar spacing from Ref. [44] and minimal from the others).

Fig. 7—(a) Driving force and dissipation, Fe–C pearlite, (b) ratio r as a measure of relative weight of boundary diffusion and volume diffusion.
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mixed control. In Figure 7(b), we plot the ratio r; from
which we can see boundary diffusion of C is more
important than volume diffusion by a factor of about 20.
Although Fe does not partition in Fe–C pearlite, the

same ratio can still be defined for Fe, taking kDBkd
� �

Fe
¼

9:03� 10�13 exp �180500 Jmol�1=RT
� �

m3 s�1.[35] The
ratio rFe is several orders of magnitude higher than that
of C, showing a predominance of boundary diffusion to
volume diffusion. This is also the case for substitutional
alloying elements.

In Figure 8, we compare growth rate–lamellar spacing
curves with infinite and finite interfacial mobility of
Fe–0.77C (wt pct, same below unless specified other-
wise) at T = 800 K, other parameters being the same.
The curve with infinite interfacial mobility starts from
zero at S=Sc ¼ 1; reaches its maximum, and decays to
zero as S=Sc ! þ1: The value of S=Sc which

maximizes growth rate (1.502) lies between the limiting
cases of boundary diffusion control (1.5) and volume
diffusion control (2.0), while being much closer to the
former. Introducing a finite interfacial mobility moves
the maximum of the curve to a larger S=Sc ¼ 4:65 and
lower growth rate. This can account for Sundquist’s
note[15] that the observed lamellar spacing is several
times larger than the calculated value assuming infinite
interfacial mobility (which cannot exceed 2Sc) if a
reasonable interfacial Gibbs energy is adopted. In
addition, finite interfacial mobility makes the maximum
flatter. If the shape of v Sð Þ curve near the maximum has
some implication on the distribution of S and v; finite
interfacial mobility possibly leads to a wider distribution
in lamellar spacing but a narrower one in growth rate
below its maximum.

B. Growth of Fe–C–Mn Pearlite: Orthopearlite,
Parapearlite, and Optimal Pearlite

We have compiled experimental data of ternary alloys
Fe–C–X (X = Mn,[30,50–52] Cr,[50,52–55] Mo,[40,52,56,57]

W,[58] Si,[59] Ni,[36,60] Co,[49,61,62]) and calibrated the
model with critical assessment. Model parameters deter-

mined include the Arrhenius equations for kDBkd
� �

X
;

and effects of X on r; MI; and kDBkd
� �

C
: We assume Al

has the same model parameters as Si. Growth rate
curves for X = Cr and Mo have obvious bays, and
accordingly Eb and DB?=d of Cr and Mo are determined
by fitting to growth rate and lamellar spacing.
In this paper, we use Fe–0.69C–1.80Mn to demon-

strate optimal pearlite compared to orthopearlite and
parapearlite, and use Fe–0.6C–1.78Cr to demonstrate
the effect of solute drag. We use the following param-
eters in Table I for the two alloys.
We calculate the ferrite–cementite CCE at 900 K in

Fe–0.69C–1.80Mn using Eq. [9]. From Figure 9, we can
see CCE reduces to paraequilibrium if K Mnð Þ ¼ 1 and
orthoequilibrium if K Mnð Þ is chosen to minimize the
ferrite–cementite system Gibbs energy (hence driving
force maximized).

Table I. Model Parameters (all in SI Units as Specified in List of Symbols)

Fe–0.69C–1.80Mn Fe–0.6C–1.78Cr

r 0.5 0.5
MI0

low 1:624� 10�6 9:222� 10�3

MI0
high

20:02 18:90

Tk 48:15 56:68
QI 1:45� 105 1:45� 105

kDBkd
� �

C 2:531� 10�10 exp � 1:737�105

RT

� 
1:642� 10�11 exp � 1:737�105

RT

� 

kDBkd
� �

X 1:312� 10�11 exp � 1:8�105

RT

� 
1:664� 10�11 exp � 1:8�105

RT

� 

Eb
X

— 1:7� 104

DB?
X =d — 1:967� 1012 exp � 3:1�105

RT

� 

Fig. 8—Growth rate as a function of lamellar spacing, with infinite
or finite interfacial mobility, Fe–0.77C at T = 800 K. Curve’s
maxima marked with ‘‘+’’.
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Under CCE, growth rate is a function of lamellar
spacing and partition coefficient of Mn. The two-di-
mensional function is shown in Figure 10. The locus
@v=@S ¼ 0 gives the S which maximizes v at a given K;
and para- and orthopearlite are two points on the locus.
The other locus @v=@K ¼ 0 represents the K at which v is
maximized at a given S: The intersection of the two loci
represents the globally maximized v; namely, the solu-
tion of optimal pearlite.

Growth rate, lamellar spacing, and partition coeffi-
cient of Mn of ortho-, para-, and optimal pearlite are
plotted in Figure 11. It can be seen that optimal pearlite
approaches orthopearlite at high temperature and para-
pearlite at low temperature, with a smooth transition in
between where it grows faster than both the other two
modes.

The optimal partition coefficient follows the same
trend as experimental measurements, but is several times
larger. Experimentally, the techniques used in Razik
et al.[51] have been critically examined by Chance and
Ridley,[52,55] who concluded the partition coefficients
from Razik et al. are too low. Computationally, we
point out that partition coefficient is dependent on
lamellar spacing. For a suboptimal lamellar spacing, the
most probable partition coefficient can be given by
@v=@K ¼ 0: It can be seen from Figure 10 that a lamellar
spacing larger than the optimum corresponds to a
smaller partition coefficient. It is also somewhat intuitive
that partitioning should be weakened if it takes place
over a longer transport distance (lamellar spacing).
Experimentally measured partition coefficient does not
usually correspond to minimal lamellar spacing—in
some cases, small lamellar spacing is deliberately
avoided because the size of electron probe cannot fit in
for accurate composition measurement.[51] This can
explain why measured partition coefficients can be very
different (for example, between Razik et al.[51] and

Chance[52] for 1Mn steel), and why calculated optimal
partition coefficient is higher than measured.
In Figure 12, we plot the total driving force and its

dissipation by forming ferrite–cementite interface, inter-
facial motion, diffusion by C, Mn, and Fe, for ortho-,
para-, and optimal pearlite. Of interest is the element
which causes the largest dissipation by diffusion: Mn in
orthopearlite, C in parapearlite (the only partitioning
element), and a transition from Mn to C as temperature
is lowered for optimal pearlite.

Fig. 9—Orthoequilibrium (OE), paraequilibrium (PE), and CCE between ferrite and cementite in Fe–0.69C–1.80Mn at T = 900 K, showing (a)
C activity a Cð Þ (reference: graphite), cementite volume fraction fh; and (b) austenite-to-pearlite driving force DGm as functions of partition
coefficient of Mn between cementite and ferrite K Mnð Þ.

Fig. 10—Growth rate as a function of partition coefficient of Mn
and lamellar spacing. Fe–0.69C–1.80Mn at T = 900 K.
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C. Growth of Fe–0.6C–1.78Cr Pearlite: Solute Drag
Effect

Solute drag effect creates a bay in growth rate and
reciprocal lamellar spacing towards their lower sides,
and a step in partition coefficient towards its higher side,
approximately between 880 K and 950 K for
Fe–0.6C–1.78Cr (Figure 13). The step of partition
coefficient is seen from experimental measurements of
another alloy with slightly lower Cr concentration.
From Figure 14 which shows the driving force and
dissipation, solute drag consumes up to a half of the
total driving force. The alloy undergoes a transition
from orthopearlite to parapearlite also, but solute drag
retards the transition when it is operative, in favor of
orthopearlite.

Figure 15 shows a typical shape of growth rate v as a
function of partition coefficient K of Cr and lamellar
spacing S; with and without solute drag effect. Solute

drag moves the optimum towards higher K Crð Þ and
larger S; and flattens the top of v K;Sð Þ: If the behavior
near the optimum has some implication to the distribu-
tion of growth rate and lamellar spacing, strong solute
drag effect implies a large scatter in both K and S: This is
somewhat in accordance with the reported large scatter
in lamellar spacing in Fe–C–Mo pearlite[63] where solute
drag also exists.

D. Nucleation Rate and Overall Transformation Kinetics

Knowing the steady-state growth rate, the nucleation
rate is determined by fitting to overall transformation
kinetics. The parameters for the Fe–C and Fe–C–Cr
systems are presented in Table II. Figure 16 shows the
nucleation rate curves and TTT diagrams of Fe–C and
Fe–C–Cr alloys. Adding 3 wt pct Cr significantly retards
austenite-to-pearlite transformation below about 850 K,

Fig. 12—Driving force and dissipation of (a) ortho-, (b) para-, and (c) optimal pearlite in Fe–0.69C–1.80Mn.

Fig. 11—Growth rate, lamellar spacing, and partition coefficient (in weight fraction) of Mn of (a) ortho-, (b) para-, and (c) optimal pearlite in
Fe–0.69C–1.80Mn. Experimental measurement from Ref. [51].
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for which a strong decrease in nucleation rate has to be
invoked. In our model, the decrease in nucleation rate is
attributed to Cr segregation to austenite GB. The
temperature dependence is monotonic, which makes
the simplistic assumption of equilibrium GB segregation
plausible.

E. Examples of Higher-Order Alloys

In higher-order systems, there is much less available
high-quality experimental data than in the ternary
systems. We take Cr–Mn[65] (Figure 17) and Cr–Ni[66]

(Figure 18) eutectoid steels, for example.

In general, the model gives quite good results. The
discrepancy below about 875 K is presumably due to the
transformation product becoming ‘‘spiky’’ pearlite and
bainite,[66] which are not considered in our model. The
solute drag effect of Cr can also be influenced by other
substitutional alloying elements. This has been recog-
nized as ‘‘coupled solute drag effect’’ in the studies of
austenite-to-ferrite transformation.[67] Effectively we can
make the binding energy of Cr dependent on concen-
trations of other elements. However, the scarce and
large scatter of available data do not seem to support
further progress in this direction.

Fig. 14—Driving force and dissipation of optimal pearlite in Fe–0.6C–1.78Cr, (a) with and (b) without solute drag.

Fig. 13—(a) Growth rate, (b) lamellar spacing, and (c) partition coefficient (in weight fraction) of Cr of optimal pearlite in Fe–0.6C–1.78Cr, with
and without solute drag. Also shown is v0 where solute drag force is maximized with respect to v: Experimental measurements from Sharma
et al.[54] and Chance and Ridley (Fe–0.82C–1.42Cr).[52,55]
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F. Release of Supersaturation Within Pearlite: Example
of an Fe–C–Mn Alloy

Growth rate is determined by ferrite and cementite
compositions right behind the austenite–pearlite inter-
face. In case of optimal pearlite and parapearlite, the
ferrite–cementite system does not reach full equilibrium
and contains supersaturation. We presume the release of
supersaturation takes place via diffusion between ferrite
and cementite. This is a one-dimensional diffusion
problem for which we can use DICTRA.[19]

According to Pickelsimer et al.,[30] the pearlite in
Fe–0.75C–1.01Mn formed at 893 K is very close to
parapearlite, which is consistent with our model calcu-
lation. Mn concentration in cementite upon further
annealing at 893 K has been measured. The same
problem is set up in DICTRA starting from ferrite
and cementite under paraequilibrium. Figure 19 shows
the temporal evolution of weight fraction of Mn in
cementite from DICTRA, compared to the measure-
ments by Pickelsimer et al. There is some uncertainty in
the choice of lamellar spacing (twice the cell size in
DICTRA) because the measurements by Pickelsimer
et al. were carried out using carbides extracted by
chemical etching, which come from all possible lamellar
spacings. However, using the calculated minimal lamel-
lar spacings assuming maximizing growth rate or

maximizing dissipation rate, DICTRA simulations give
good agreement to the measured time evolution of Mn
concentration in cementite.
This is a case where pearlite transformation completes

much quicker (in ca. 60 seconds) than the subsequent
release of supersaturation (in ca. 105 seconds). The two
processes may take place concurrently at small under-
cooling (low growth rate yet high diffusivity), which
makes it necessary to consider back diffusion in each
phase and its effect on growth rate. However, in our
opinion, under most circumstances back diffusion dur-
ing growth can be neglected, and the release of super-
saturation within pearlite away from the transformation
front is well separated from pearlite growth.

IV. DISCUSSION

A. Time Dependence of Growth Rate and Nucleation
Rate

It has been long discovered that in alloy steels,
pearlite lamellar spacing can increase over time during
isothermal treatment, which makes it usually called
divergent pearlite (as opposed to the ‘‘constant pearlite’’
considered in this work). The increase in lamellar
spacing and the accompanying decrease in growth rate
are the results of partitioning between pearlite and
austenite, which reduces the driving force at austen-
ite–pearlite interface.[6,25,68,69] Our model can be gener-
alized to include divergent pearlite if partitioning
between pearlite and austenite is considered.
Grain boundary nucleation rate J0 is time-dependent

even when growth rate is not. This has been verified by
early painstaking extraction of nucleation rate from
metallography[3,12,36] or indirect in situmeasurements.[32]

Alternatively, J0 tð Þ can be obtained from X tð Þ curve
obtained from, e.g., dilatometry, if growth rate is
reliably known. However, due to a lack of theoretical

Fig. 15—Growth rate as a function of partition coefficient of Cr and lamellar spacing, (a) with and (b) without solute drag.

Table II. Model Parameters for Nucleation in the Fe–C–Cr
System (All in SI Units as Specified in List of Symbols)

J00 2:360� 1018 exp �0:2093uGBCr
� �

n 4:768
QN 1:8� 105

EGB
Cr 5� 104
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advances, there is not a reliable parameterization of
J0 tð Þ for pearlite, not to mention the dependences of the
parameters on chemical composition. There is a need of
study of nucleation kinetics as systematic as that of
growth rate.

We have attempted to consider the effect of GB
segregation on pearlite GB nucleation. Such effect is
alluded by the effect of austenitization temperature on
nucleation.[70] Compared to the steady-state modeling in
this work assuming equilibrium GB segregation before
pearlite starts, a better way is to include kinetics of
diffusion towards GB in McLean isotherm.[34] GB
composition can be measured in, e.g., atom probe
tomography. For GB nucleation in a general alloy, it is
fundamental to know the binding energies and interac-
tions of segregants. There is also a call of theory of
non-steady-state nucleation convoluted with the kinetics
of GB with segregation. These considerations are
fundamental for pearlite transformation kinetics under
non-isothermal conditions and its dependence on

austenitization temperature and impurity levels (P, S,
etc.).
Segregation can be complex. In our model, a calibra-

tion using Cahn’s model for solute drag of Cr gives too
high prefactor and activation energy for DB?=dð Þ: This
can be a result of violating the dilute solution behavior
which our model assumes. The atmosphere of GB
segregation can be clustered instead of being uniform if
GB composition enters miscibility gap, as verified by
simulation and experimental measurements.[71] This
brings challenge to all available solute drag models.
Lastly, we point out that Cahn’s analysis of overall

transformation kinetics should be generalized if growth
rate is time-dependent.

B. Influence of Other Phases

In this work, we ignored any preexisting phase in
austenite before pearlite forms (e.g., proeutectoid ferrite
or cementite) and any phase which can precipitate

Fig. 16—(a) Nucleation rate and (b) TTT diagram of Fe–0.93C,[3] and (c) nucleation rate and (d) TTT diagram of Fe–1.02C–2.89Cr.[64] For the
Fe–C–Cr alloy, results with (solid lines) and without equilibrium GB segregation (dashed lines) are presented. Grain size 3.5 9 10�4 m.
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during pearlite formation (e.g., carbides due to microal-
loying Ti, V, or Nb,[72–75] and Cu precipitation[76]) on
austenite–pearlite interface or within pearlite. Preexist-
ing phase changes the composition of austenite from
which pearlite forms, hence its thermodynamic driving
force. Preexisting phases also have some kinetic influ-
ences to pearlite: Proeutectoid ferrite or cementite plates
can provide extra nucleation sites for pearlite. Fine
precipitates can exert a pinning force to austen-
ite–pearlite interface, lowering the interfacial mobility.
The kinetics of precipitation on interface and within
pearlite, if occurring concurrently with pearlite forma-
tion, greatly complicates the picture. Further experi-
mental and theoretical work is required to quantify and
model these influences, for example, quantitative studies
of the effects of precipitate phase fraction and particle
size on the growth rate of pearlite.

V. CONCLUSIONS

1. Steady-state growth of pearlite in multicomponent
steel is quantitatively modeled. The model considers
formation of ferrite–cementite interface, volume
and boundary diffusion, finite interfacial mobility,
and solute drag effect. Optimal lamellar spacing is
determined by an optimization criterion, maximiz-
ing growth rate or free energy dissipation rate. The
model can give growth rate, lamellar spacing, and
partitioning of elements between ferrite and cemen-
tite. Model parameters are determined by calibra-
tion to binary and ternary systems.

2. Finite interfacial mobility is the key to avoid unphys-
ical values of ferrite–cementite interfacial properties
used in previous models assuming infinitely large
interfacial mobility. The interfacial mobility has a

Fig. 17—(a) Growth rate, (b) lamellar spacing, (c) partition coefficients, and (d) TTT diagram of Fe–0.60C–1.05Cr–1.02Mn–0.20Si alloy.
Experimental data from Ref. [65]. Grain size is assumed to be 10�4 m.
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pronounced non-Arrhenius temperature dependence
which is modeled phenomenologically.

3. Constrained carbon equilibrium has been intro-
duced for ‘‘optimal pearlite’’ as a generalization of
orthoequilibrium and paraequilibrium. Optimal
partitioning of substitutional alloying elements can
be determined by the same optimization criterion,
which realizes a smooth transition between ortho-
pearlite and parapearlite and can describe the
kinetics of pearlite growth in a wide temperature
range. Such a transition is supported by partition
coefficients and lamellar spacing measurements. In
optimal pearlite, degree of partitioning depends on
lamellar spacing, which resolves the discrepancies in
partition coefficients measured in previous works.
Release of supersaturation in pearlite takes place
primarily by diffusion towards neighboring ferrite/

cementite lamellae and is usually much slower than
pearlite growth.

4. Solute drag effect on growth is modeled in a simple
steady-state approach. Solute drag creates bays in
growth rate, lamellar spacing, and partition coeffi-
cients in favor of slower growth, larger lamellar
spacing, and fuller partitioning.

5. Grain boundary nucleation rate is modeled in a
phenomenological steady-state approach. The tem-
perature and composition dependences are cali-
brated to overall transformation kinetics. Effect of
equilibrium grain boundary segregation is also
considered.

6. Future work is suggested for grain boundary
nucleation rate of pearlite, improved solute drag
model, and effect of other phases.

Fig. 18—(a) Growth rate, (b) lamellar spacing, (c) partition coefficients, and (d) TTT diagram of Fe–0.90C–1.05Cr–1.21Ni–0.12Mn alloy.
Experimental data from Ref. [66]. Grain size is assumed to be 10�4 m.
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APPENDIX 1: EXACT ANALYTICAL EXPRESSION
OF SOLUTE DRAG FORCE USING CAHN’S

MODEL

In this work, we use Cahn’s solute drag model.[24] In
this Appendix, we give the exact analytical expression of
solute drag force under a wedge-shaped binding energy
profile and constant diffusivity.

The binding energy profile is

E xð Þ ¼

0; x � �d
E0 1þ x

d

� �
; �d<x � 0

E0 1� x
d

� �
; 0<x<d

0; x � d

8
>><

>>:
½A1�

The exact concentration profile is (Eq. 7 in Reference
24, after converting atomic quantities to molar
quantities)

c ¼ c0 exp �E xð Þ
RT

� v

Zx

x0

dg
D gð Þ

8
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:
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=
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dg
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:
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In Cahn’s definition, E0<0 for segregation, which is
the opposite to Eb defined in the main text. Concentra-
tion c correspond to the u fraction we use. The
diffusivity D is DB? in the main text. Otherwise, we
can proceed with Cahn’s symbols without ambiguity.
Assuming D xð Þ � D; Eq. [A2] becomes

c xð Þ
c0

¼ exp �E xð Þ
RT

� v x� x0ð Þ
D


 �

Zx

�1
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E nð Þ
RT

þ v n� x0ð Þ
D
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vdn
D

½A3�

If v ¼ 0; equilibrium segregation profile is restored:
(Eq. 8, Reference 24)

c xð Þ
c0

¼ exp �E xð Þ
RT


 �
½A4�

Given the concentration profile c xð Þ; the normalized
solute drag force is (Eq. 9, Reference 24)

DGSD
m

c0RT
¼ �

Zþ1

�1

c

c0
� 1

� 	
d E=RTð Þ

dx
dx ½A5�

In our context, c is understood as u fraction, E and
DGSD

m are both in J mol�1. DGSD
m is always positive.

A1. Composition Profile

Let E0=RT ¼ p; vd=D ¼ q; vx0=D ¼ q0; vx=D ¼ qx=d:
The solutions are:
Region 1: x � �d;E xð Þ ¼ 0

c1 xð Þ
c0

¼ 1 ½A6�

Region 2: �d<x � 0; E xð Þ
RT ¼ p 1þ x

d

� �

If pþ q 6¼ 0;

c2 xð Þ
c0

¼ p

pþ q
exp � pþ qð Þ 1þ x

d

� h i
þ q

pþ q
½A7�

If pþ q ¼ 0;

Fig. 19—Weight fraction of Mn in cementite in Fe–0.75C–1.02Mn
as a function of annealing time at 893 K. Pearlite transformation is
complete within about 60 s. DICTRA cell size is half of lamellar
spacing, 3:6� 10�8 m if maximizing growth rate, and 4:4� 10�8 m if
maximizing dissipation rate. Experimental data from Ref. [30].
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c2 xð Þ
c0

¼ 1þ q 1þ x

d

� 
½A8�

Region 3: 0<x<d; E xð Þ
RT ¼ p 1� x

d

� �

If qþ p 6¼ 0 and q� p 6¼ 0;

c3 xð Þ
c0

¼ p

pþ q
exp � qþ pð Þ þ p� qð Þx

d

� �

þ q

pþ q
� q

q� p

� 	
exp p� qð Þ x

d

h i
þ q

q� p

½A9�

If qþ p 6¼ 0 and q� p ¼ 0; which means p ¼ q 6¼ 0;

c3 xð Þ
c0

¼ 1

2
exp �2qð Þ þ 1

2
þ qx

d

� 	
½A10�

If qþ p ¼ 0 and q� p 6¼ 0; which means p ¼ �q 6¼ 0;

c3 xð Þ
c0

¼ qþ 1

2

� 	
exp � 2qx

d

� 	
þ 1

2
½A11�

If qþ p ¼ 0 and q� p ¼ 0; in other words p ¼ q ¼ 0;

c3 xð Þ
c0

¼ 1 ½A12�

Region 4: x>d;E xð Þ ¼ 0
If pþ q 6¼ 0 and q� p 6¼ 0;

c4 xð Þ
c0

¼ p

pþ q
exp �q 1þ x

d

� h i

þ q

pþ q
� q

q� p

� 	
exp p� qx

d

� 

þ p

q� p
exp q 1� x

d

� h i
þ 1 ½A13�

If pþ q 6¼ 0 and q� p ¼ 0; which means p ¼ q 6¼ 0;

c4 xð Þ
c0

¼ 1

2
exp �q 1þ x

d

� h i
þ q� 1

2

� 	
exp q 1� x

d

� h i

þ 1

½A14�

If pþ q ¼ 0 and q� p 6¼ 0; which means p ¼ �q 6¼ 0;

c4 xð Þ
c0

¼ qþ 1

2

� 	
exp �q 1þ x

d

� h i
� 1

2
exp q 1� x

d

� h i

þ 1

½A15�

If qþ p ¼ 0 and q� p ¼ 0; in other words p ¼ q ¼ 0;

c4 xð Þ
c0

¼ 1 ½A16�

A2. Total Solute Drag Force

The integral

Zþ1

�1

c

c0
� 1

� 	
d E=RTð Þ

dx
dx ¼ �DGSD

m

c0RT
¼ I ½A17�

is evaluated in the four regions described above.
Obviously

I1 ¼ I4 ¼ 0 ½A18�

If pþ q 6¼ 0;

I2 ¼
�p2

qþ pð Þ2
exp �p� qð Þ � 1½ � � p2

pþ q
½A19�

If pþ q ¼ 0;

I2 ¼
�q2

2
½A20�

If qþ p 6¼ 0 and q� p 6¼ 0;

I3 ¼ � p2

pþ qð Þ p� qð Þ exp �2qð Þ � exp �q� pð Þ½ �

� pq
1

pþ q
� 1

q� p

� 	
1

p� q
exp p� qð Þ � 1½ � � p2

q� p

½A21�

If qþ p 6¼ 0 and q� p ¼ 0;

I3 ¼ � q

2
exp �2qð Þ þ q

2
� q2

2
½A22�

If qþ p ¼ 0 and q� p 6¼ 0;

I3 ¼ � q

2
� 1

4

� 	
exp �2qð Þ � 1½ � � q

2
½A23�

If qþ p ¼ 0 and q� p ¼ 0;

I3 ¼ 0 ½A24�

The total force is then

DGSD
m

c0RT
¼ � I1 þ I2 þ I3 þ I4ð Þ ½A25�

A3. Low- and High-Velocity Limits, Approximate
Solution

Low-velocity limit (Eq. 15, Reference 24):
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DGSD
m

c0RT

����
v!0

¼ 4v

D

Zþ1

�1

sinh2
E xð Þ
2RT

dx

¼ 4vd
D

sinh E0=RTð Þ
E0=RTð Þ � 1

� �
¼ k1

vd
D

� 	
½A26�

High-velocity limit (Eq. 12, Reference 24):

DGSD
m

c0RT

����
v!þ1

¼ D

v

Zþ1

�1

dE xð Þ
dx

� �2
dx ¼ 2

E0

RT

� 	2
vd
D

� 	�1

¼ k2
vd
D

� 	�1

½A27�

Cahn has constructed an approximate solution which
connects low- and high-velocity limits (Eqs. 16–18,
Reference 24). Using the k1 and k2 coefficients defined
in the previous two equations, the expression is:

DGSD
m

c0RT
ffi

k1
vd
D

� �

1þ k1
k2

vd
D

� �2 ½A28�

which is the same as Cahn’s expressions with his a and

b2 coefficients (his expression of a in an unnamed
equation between 21 and 22 has a missing 4d in the
numerator).

A4. Plots

Figures A1 and A2 show that the analytical expres-
sions of composition profile and solute drag force give
identical results to numerical integrations. Figure A2
shows that although the approximation is accurate at
the low- and high-velocity limits, it gives higher solute

drag force than the exact solution, similarly shown by
Cahn (Figure 4 in Reference 24).
Figure A3 shows some properties of the maximal

solute drag force. At the low-segregation limit

DGSD
m =c0RT

� �
max

/ E0=RTð Þ2: From low to high segre-

gation, the position of maximum v0d=D moves from
approximately 1.9 to 1.0.

Fig. A1—Concentration profiles with (a) E0=RT ¼ �2 (segregation) and (b) E0=RT ¼ 2(anti-segregation), and vd=D ¼ 0; 1; 3; 10: Solid lines from
analytical expression. Open circles from numerical integration of Eq. [A3], giving values identical to those from the analytical expression.

Fig. A2—Solute drag force for E0=RT ¼ 	2: Solid line from
analytical expression. Open circles from numerical integration of
Eq. [A5], giving values identical to those from analytical expression.
Low- and high-velocity limits (Eqs. [A26] and [A27]) and the
approximation Eq. [A28] are also shown.
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APPENDIX B: DETAILED DERIVATION
OF DISSIPATION BY DIFFUSION

The geometry of the diffusion field is shown in
Figure 1. Due to symmetry, we consider an area S=2
wide and unit length deep on the austenite–pearlite
interface. The ferrite-to-austenite and cemen-
tite-to-austenite atomic fluxes of element i are

Ja!c
i ¼ u0i � uai

� �
v
S

2
1� fh
� �

Jh!c
i ¼ u0i � uhi

� �
v
S

2
fh

½B1�

Because there is no net flux from pearlite to austenite,
the incoming flux to austenite must make a U-turn and
equal the outgoing flux from austenite. Considering the
fraction of ferrite and cementite at the interface, the flux is

J ¼ Ja!c
i ¼ �Jh!c

i ½B2�

Now we consider how the flux distributes and the
amount of dissipation.

From diffusion theory,[77] flux J is driven by negative
gradient of chemical potential. At one point in a
continuous diffusion field with local flux density j and
chemical potential l; the free energy dissipation rate
density, namely the free energy dissipation per unit

volume per unit second, is �~j 
 ~rl:Here the arrow refers
to real space instead of composition space. Also from

diffusion theory, ji
!¼ uiMi � ~rli

� 
if we neglect cross-

terms in composition space, where Mi is the atomic
mobility of element i at this space. As a result, the
dissipation rate density is j2=uiMi:

B1. Volume Diffusion Only

The driving force of diffusion is approximately

dl
dz

ffi la � lh

S=2
½B3�

Now we make the same approximation as Zener for
concentration profile in austenite: We assume the
flux is perpendicular to the ferrite–cementite inter-
face, spanning over S=2 in the z direction and
distributed over the same length in the x direction,
as a constant.
Flux density is

jV ¼ J

S=2
½B4�

They are connected by

jV ¼ u0i M
c
i � dl

dz

� 	
½B5�

The total dissipation rate is

S

2

ZS=2

0

jV � dl
dz

� 	
dz ¼ S

2

ZS=2

0

j2V
u0i M

c
i

dz ¼ J2

u0i M
c
i

½B6�

We neglect the details of composition and flux
distribution in space and composition dependence of
atomic mobility, and simply take Mc

i from bulk austen-
ite composition.

Fig. A3—(a) Maximal solute drag force DGSD
m =c0RT

� �
max

and (b) value of v0d=D at maximal solute drag force, as functions of E0=RT:.

1998—VOLUME 51A, MAY 2020 METALLURGICAL AND MATERIALS TRANSACTIONS A



B2. Boundary Diffusion Only

In this case we assume diffusion only takes place
within austenite–pearlite interface whose width is d:
Compared to the volume diffusion-only case, in the x
direction the cross section should change from S=2 to d:

jB ¼ J

d

jB ¼ uBi M
B
i � dl

dz

� 	 ½B7�

where uBi and M
Bk
i are boundary concentration and

in-plane atomic mobility, respectively. In literature it is
common to write uBi ¼ ku0i where k is a segregation
factor. The total dissipation rate is

d
ZS=2

0

jB � dl
dz

� 	
dz ¼ d

ZS=2

0

j2B

uBi M
Bk
i

dz ¼ J2

u0i M
Bk
i

S

2d
½B8�

B3. Combined

A more realistic consideration is to include both
volume diffusion and boundary diffusion. They are
driven by the same driving force (Eq. [B3]) but their
fluxes must add up to the total flux (Eq. [B2]). This is
analogous to a parallel combination of two resistors
under the same voltage.[40]

J ¼ jV
S

2
þ jBd

jV

u0i M
c
i

¼ jB

u0i kM
Bk
i

¼ � dl
dz

� 	 ½B9�

The total dissipation rate of the system is

S

2

ZS=2

0

jV � dl
dz

� 	
dzþ d

ZS=2

0

jB � dl
dz

� 	
dz

¼ J2

u0i Mc
i þ

2 kMBkdð Þi
S

h i ¼ v2
Sfh

2

� 	2
u0i � uhi
� �2

u0i Mc
i þ

2 kMBkdð Þi
S

h i

½B10�

From which we can use the dimensionless ratio r �
2 kMBkd
� �

i
=Mc

i S to characterize the relative signifi-

cance of boundary and volume diffusion: r ¼ 0 for
volume diffusion only, r ! þ1 for boundary diffu-
sion only.

The friction force caused by diffusional dissipation,
in the unit of molar energy, is the total dissipation
rate divided by velocity v and the interface area S=2:

vS fh
� �2

2

u0i � uhi
� �2

u0i Mc
i þ

2 kMBkdð Þi
S

h i ½B11�

LIST OF SYMBOLS

D
Bk
i Diffusivity of element i within

austenite–pearlite interface (in-plane) (m2 s�1)
DB?

i Diffusivity of element i within
austenite–pearlite interface (perpendicular, for
solute drag effect on growth rate) (m2 s�1)

DG Grain size (m)
Eb

i Binding energy of element i to
austenite–ferrite interface (for solute drag
effect on growth rate. Positive for segregation)
(J mol�1)

EGB
i Binding energy of element i to austenite grain

boundary (for nucleation rate) (J mol�1)
fI ‘‘Fraction’’ parameter in interfacial mobility

(1)
f h Fraction of cementite in pearlite in moles of all

elements except C (interstitial element) (1)
G/

m Gibbs energy of phase \phi per mole of all
elements except C (interstitial element) (J
mol�1)

J0, J00 Grain boundary nucleation rate and its
pre-exponential factor (m�2)

J Atomic flux per unit depth (m2 s�1)
j Atomic flux density (m s�1)
Ki Partition coefficient of element i between

cementite and ferrite in U-fraction (1)
ki Segregation factor of element i (1)
M

Bk
i Atomic mobility of element i within

austenite–pearlite interface (in-plane)
(m2 mol J�1 s�1)

MI Interfacial mobility (m mol J�1 s�1)
Mc

i Atomic mobility of element i in austenite (m2

mol J�1 s�1)
n Exponent in grain boundary nucleation rate

expression (1)
QB

i Activation energy of the product kDBkd
� �

of
element i (J mol�1)

QI Activation energy of interfacial mobility (J
mol�1)

QN Activation energy in grain boundary
nucleation rate equation (J mol�1)

R Gas constant, 8.31451 J mol�1 K�1

r Ratio of boundary diffusion to volume
diffusion 2 kMBkd

� �
i
=Mc

i S (1)
S Lamellar spacing (m)
Sc Critical lamellar spacing (m)
SG Grain boundary area in unit volume of sample

(m�1)
T Temperature (K)
T

p
0 Temperature where austenite and

orthopearlite have equal molar Gibbs energy
(K)

Tr Reference temperature, 100 K
Tk Exponential decay in temperature in

interfacial mobility model (K)
t Time (s)
u/i U-fraction of element i in phase /: In this

work, ui ¼ xi
1�xC

(1)
Vm Volume per mole of all elements except C

(interstitial element) (m3 mol�1)
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v Growth rate (m s�1)
w/

i Weight fraction of element i in phase / (1)
X Pearlite volume fraction (1)
x/i Mole fraction of element i in phase / (1)
Y0 Grain boundary coverage (1)
Ye Area fraction in extended space (1)
y Distance from grain boundary (m)
z Distance along austenite–pearlite interface (m)
a Ferrite (–)
c Austenite (–)
DGm Driving force for pearlite formation in Gibbs

energy per mole of all elements except C
(interstitial element) (> 0 for formation) (J
mol�1)

DGSD
m Solute drag force on austenite–ferrite interface

in Gibbs energy per mole of all elements
except C (interstitial element) (J mol�1)

d Thickness of austenite–pearlite interface (for
boundary diffusion), or
full-width-half-maximum of wedge-shaped
binding energy profile (for solute drag effect
on growth rate) (m)

h Cementite (–)
l Chemical potential (J mol�1)
r Ferrite–cementite interfacial free energy (J

m�2)
rS Ferrite–cementite interfacial entropy

(J K�1 m�2)
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