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Misfit stresses in the c¢¢-strengthened Ni-base superalloy Inconel 718 were calculated from the
measured constrained misfit strain using Eshelby’s inclusion method. The constrained misfit
strains of the c¢¢ precipitates were measured using neutron diffraction at various temperatures
with the aid of the stress-induced variant selection method. Eshelby tensor was calculated using
the expressions for the case of anisotropic matrix given by Mura. Results show the presence of
significant compressive misfit stresses in the c¢¢ precipitates with an anisotropic distribution,
namely 3.0 GPa along the habit plane and 1.7 GPa along the plane normal direction at room
temperature, and 2.0 and 1.2 GPa at 664 �C. The decrease in misfit stresses was due to the
decrease in stiffness and the different coefficients of thermal expansion of the c and c¢¢ phases.
The average internal stresses in the c matrix due to lattice misfit were found to be ~ 329 MPa at
room temperature and ~ 186 MPa at 664 �C in tension. The possibility of relieving such high
levels of misfit stresses in precipitates by loss of coherency during continued growth of
precipitates is also discussed.
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I. INTRODUCTION

NI-BASE superalloys derive strengthening from a
coherent precipitate phase embedded in a matrix
phase.[1] The precipitate phase would normally possess
lattice parameter(s) different from that of the matrix
phase which leads to a lattice misfit between the two
phases.[2] The lattice misfit generates misfit stresses in
both the precipitates and the matrix. Misfit stresses will
influence microstructure evolution including precipitate
shape required to accommodate the misfit stresses,
precipitate coarsening kinetic and rafting phenomenon
at elevated temperatures during processing or servicing
of the alloys.[2] Such misfit stresses will also interact with
dislocations during plastic deformation and influence
the strength of the alloys.[3] Misfit stresses are deter-
mined by the misfit strains and elastic moduli which are
both temperature dependent. Therefore, misfit stresses

are temperature dependent and their influence on the
alloys will vary with temperature. Quantitative analysis
of misfit stresses in the system would thus help deepen
the understanding of the materials in different aspects.
Inconel 718 (IN718) is a widely used Ni-base super-

alloys in turbine engines. IN718 derives its strengthening
mainly from the c¢¢ precipitates which is body-centered
tetragonal.[3] The c¢¢ precipitates are coherently embed-
ded in the c matrix with different misfit strains along a
and c-axes of the c¢¢ precipitates. Due to the anisotropic
misfit strains that lead to anisotropic misfit stresses, the
c¢¢ precipitates grow into oblate ellipsoids.[4] Lattice
misfit between the two phases can be up to 3 pct along
the c-axis,[5] which is much larger than the misfits in
c¢-strengthened Ni-base superalloys where the misfits
between c and c¢ phases are normally less than 1 pct.[6]

The large lattice misfits lead to large misfit stresses.
Phase field simulations have shown the misfit stresses in
the c¢¢ precipitates at the level of 1 GPa in compression
at 790 �C.[7] Misfit stresses can vary significantly at
different temperatures due to the different thermal
expansion of the strengthening and matrix phases and
the temperature-dependent elastic moduli.
The misfit stresses arising from the lattice misfit

between the strengthening phase and matrix phase can
be calculated using the Eshelby inclusion method.[8] The
dilute dispersion of ellipsoidal c¢¢ precipitates in this
study finely meet the case of Eshelby’s thought exper-
iment described in his paper, which provides analytical
solutions to the elastic strain and stress field in an
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ellipsoidal inclusion.[8] Eshelby’s method has substantial
applications in research of solid mechanics and details of
the method can be found in literature.[8–13]

II. THE ESHELBY METHOD

A. The Transformed Inclusion

Starting from a situation where inclusion and matrix
are elastically homogeneous, in Eshelby’s method, the
problem is solved by a series of cutting and welding
exercises as shown in Figure 1[8]: (i) a region (the
inclusion) is cut from a material (the matrix), (ii) the
region undergoes a shape transformation strain (eT) to
reach its unconstrained state, (iii) apply an appropriate
surface traction on the inclusion to restore it to the
original shape, (iv) then put it back to the hole where it
was cut off from the matrix and weld the interface
between the inclusion and the matrix, (v) remove the
surface traction and the equilibrium between the inclu-
sion and matrix is reached at a constrained strain (eC) in
the inclusion relative to its original shape in stage (i).

Now the elastic strain within the inclusion at stage (v)
is ee ¼ eC � eT, and the stress in the inclusion rI can be
expressed by Hooke’s law:

rI ¼ CI eC � eT
� �

½1�

where CI is the elastic stiffness of the inclusion.
In precipitate-strengthening Ni-base superalloys, the

precipitate phase (c¢ and c¢¢) and the c matrix phase are
elastically inhomogeneous. The inhomogeneity has a
stress-free transformation strain (SFTS) eT� which
differs from eT of a homogeneous inclusion. Such
inhomogeneous problems can be solved using the
equivalent inclusion method[8, 9] that replaces the
inhomogeneity with elastic stiffness CI by a homoge-
neous inclusion with elastic stiffness CM, maintaining
identical stresses in the inclusion:

rI ¼ CM eC � eT
� �

¼ CI eC � eT�
� �

½2�

Eshelby found that the stress in an ellipsoidal inclu-
sion is uniform and the constrained strain eC can be
related to the stress-free transformation strain (SFTS) eT

by the so-called Eshelby tensor S[8]:

eC ¼ SeT ½3�

The Eshelby tensor depends solely upon the inclusion
shape and the elastic properties of the matrix, such as
the Poisson’s ratio and Young’s modulus for an
isotropic matrix or the elastic constants for an aniso-
tropic matrix.[8, 10] The calculation of the Eshelby tensor
is lengthy and here we adopt the expressions given by
Mura for the case of anisotropic matrix[10] which are
shown in Appendix.

B. Determination of constrained misfit strain

The c phase has a face-centered cubic crystallographic
structure, and the c¢¢ phase possesses an ordered D022
body-centered tetragonal crystallographic structure. The
c¢¢ phase maintains a c¢¢//{100}c and c¢¢//<100>c crys-
tallographic relationship with the c matrix, and three
possible variants of c¢¢ would exist in approximate equal
quantities.[7] The normal of c¢¢ precipitate habit plane is
parallel to the c-axis and therefore, the constrained
strain eCa along a-axis and eCc along c-axis for c¢¢ can be
determined by

eCc00a ¼
dCc00200 � dCc200

dCc200
½4a�

eCc00c ¼
dCc00004 � dCc200

dCc200
½4b�

Fig. 1—Schematic illustration of Eshelby’s cutting and welding processes.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 51A, APRIL 2020—1861



where dC200, d
C
004 and dC200 are spacings of hkl lattice planes

of the c¢¢ and c phases measured in bulk IN718,
respectively. The superscript capital C denotes the
constrained state. Neutron or X-ray diffraction tech-
niques are desirable in measuring lattice parameters of
constituent phases in multi-phase alloys. Lattice param-
eters of c¢ and c phases in c¢-strengthened Ni-base
superalloys such as Li720, CMSX-4 are very similar
(within 1 pct) and lead to overlapping diffraction peaks.
Such overlapping problems are commonly solved using
the deconvolution method developed by Stone,[14] and
thereby lattice spacings of both the c¢ and c phases are
obtained. In the case of IN718 where c¢¢ and c phases
exist, the deconvolution method to separate all three
peaks becomes unsuitable. Mukherji et al. showed that a
direct separation of the overlapping peak was feasible if
the volume fraction of each phase was known.[15] In our
previous study, we have developed a method using
stress-induced variant selection (SIVS) effect to facilitate
the deconvolution of overlapping peaks from IN718.[16]

Using such a method, lattice spacings of the c and c¢¢
phases can be determined from diffraction patterns.

C. Elastic Constants

In the calculation of the Eshelby tensor, a knowledge
of elastic constants of the c matrix phase is required. In
order to calculate the SFTS eT� of the inhomogeneity,
the elastic constants of the c¢¢ phase also need to be
known. In the current study, tensile tests on IN718 were
performed at room temperature (RT) and at elevated
temperature (664 �C). Young’s modulus E and DECs of
the c phase at these two temperatures were obtained and
used to derive elastic constants at temperatures in
between. Here we assume the Young’s modulus E
follows a linear relationship with temperature in the
current temperature range according to the measure-
ments in literature,[17] and the elastic constants of the c
phase at various temperatures follow the same linear
relationship with temperature. For the c¢¢ phase, elastic
constants are adopted from first principle calculations
by Lin et al.[18] for various temperatures.

III. EXPERIMENTAL PROCEDURES

A. Sample Preparation

Polycrystalline IN718 with nominal chemical compo-
sition listed in Table I was used in the current study.
Specimens were extracted from forged IN718, which was
solution heat treated at 1000 �C for 1 hour before
machining into tensile bar shape with gauge diameter of
8 mm and length of 42 mm. In order to make the

deconvolution feasible for the subsequent neutron
diffraction experiment, the SIVS method was employed,
which applied 300 MPa tensile stress to the specimens
during aging heat treatment at 790 �C for 5 hours.
Depending on the grain orientation, the SIVS led to a
reduction in the number of c¢¢ variant in grains. For
example, in {100} oriented grains, only one c¢¢ variant
with its habit plane normal parallel to the loading axis
exist. A detail description of the SIVS method can be
found in our previous study.[16] After aging heat
treatment, the sample were air cooled to RT to minimize
the generation of residual stresses.

B. Microstructural Characterization

As aforementioned, the misfit strains were measured
along the principal axes of the crystals. The microstruc-
tural observation by scanning electron microscopy
(SEM) was performed on a [100] oriented grain with
respect to the axial direction of the specimen. In order to
measure the aspect ratio of the c¢¢ precipitates, thin foils
were prepared by focus-ion beam (FIB) and subjected to
transmission electron microscopy (TEM)
characterization.

C. Misfit Strain Measurement Using Neutron Diffraction

Diffraction measurements were performed in the
ENGIN-X neutron diffractometer at ISIS neutron
source in the UK. The specimens were mounted
horizontally on a stress rig (INSTRON, 100 KN) with
the axial direction 45 deg to the incident beam. Bank 1
and bank 2 detectors were fixed at 2h = ±90 deg to the
incident beam, so that the d-spacing parallel and
perpendicular to the axial direction were measured by
the bank 1 and bank 2 detectors, respectively (Figure 2).
One specimen was subjected to tensile loading test at RT
to obtain the Young’s modulus E and DECs. The other
specimen was subjected to heating from RT to 600 �C in

Table I. Chemical Composition (Wt Pct)

C Cr Nb Ti Al Mo Ni Fe

0.02 19.03 5.06 1.00 0.54 3.06 52.16 balance Fig. 2—Schematic illustration of neutron experiment setup at
ENGIN-X, ISIS, UK.
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a stepwise manner under a negligible load (5 MPa).
During heating, the step interval was set to 100 �C with
a heating time of 5 minutes, and each temperature was
held for 20 minutes for neutron scanning. After this, a
tensile loading test was performed on the sample at the
600 �C. Three K-type thermocouples were connected to
the surface of the rod specimens by twisting the
thermocouple wires to control and monitor the temper-
ature. The heating was carried out by a radiative furnace
open to air. Neutron diffraction acquisition time was 20
minutes.

D. Temperature Calibration

After the experiments, a tiny gap (~ < 0.5 mm)
between the thermocouple contact pin and the sample
surface was noticed. In order to rectify the measured
temperatures, a post-test temperature calibration was
performed. The calibration was performed using two
thermocouples, with one directly in contact with the
sample surface while the other was twisted around the
sample. The sample was heated by the radiative furnace
with temperature increased stepwise. At each step, the
temperature was held for about 5 minutes for temper-
ature homogenization. The plots of measured

temperatures by the two thermocouples are plotted in
Figure 3. A polynomial relationship (Eq. [5]) was
obtained between the two sets of temperature. The
derived relationship was then used to calibrate the
temperature data measured during the previous heating
experiment. The set temperature of 600 �C was cali-
brated to be 664 �C.

TCali ¼ �0:229 � 10�3 � T2
twist þ 1:25 � Ttwist

� 5:25

½5�

IV. EXPERIMENTAL RESULTS

A. Microstructural Characterization

Figure 4(b) shows the micrograph of the cross-section
of a grain with [100] orientation with respect to the
sample axial direction, selected from an electron
backscattering diffraction (EBSD) map as shown in
Figure 4(a). The c matrix was eliminated by chemical
etching with a solution (5 g CuCl2 + 100 ml hydrochlo-
ric acid + 100 ml ethanol) in order to reveal the c¢ and
c¢¢ precipitates. As shown in Figure 4(b), the smaller
round particles are the c¢ precipitates, whilst the larger
particles are the c¢¢ precipitates. As mentioned above,
SIVS allowed only the c¢¢ variant with its habit plane
normal to the stress axis (along the viewing direction in
this micrograph) to exist (Figure 4(b)). Although the
volume fraction of both precipitates in the bulk sample
could not be estimated from the micrograph, the c¢-to-c¢¢
volume fraction ratio was estimated by counting the
number of particles and their average particle size. In the
current study, the volume ratio was estimated to be 0.36.

B. Aspect Ratio

Figure 5(a) shows the [100]-oriented bright field TEM
image of a FIB foil from the aged IN718. Only one
variant of the c¢¢ precipitates displaying in ellipsoidal
shape was observed in the TEM image. The inset
selected area electron diffraction (SAED) shows only
one set of the superlattice diffraction pattern confirming
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Fig. 3—Temperature calibration plot.

Fig. 4—(a) EBSD map on cross-section normal to the axial axis of the specimen, (b) SEM micrograph on a (100) oriented grain selected from
the EBSD map as shown.
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the existence of only one c¢¢ variant in the micrograph.
The major and minor axes of the ellipse were counted
and the aspect ratio (minor-to-major axis) was obtained
for each particle in the TEM image and plotted against
the major axis in Figure 5(b). The aspect ratio, a,
decreases with increasing precipitate size. This relation-
ship has been reported previously in literature.[19–21] The
volume-averaged major and minor axes were deter-
mined to be 55.8 nm and 12.1 nm, respectively, and
hence the overall volume-averaged aspect ratio was
determined to be 0.22, which is consistent with the
reported values.[20, 21]

C. Peak Deconvolution

Since the three major phases (c¢, c¢¢ and c) have similar
lattice parameters, the diffraction peaks from the three
phases overlap. In order to obtain isolated d-spacing of
the c and c¢¢ phases, deconvolution of the overlapping
peaks is required. Mukherji et al. showed the feasibility
to deconvolute the overlapping peaks from three con-
stituent phases if the volume fraction of each phase is
known a priori.[22] However, the volume fraction of each
phase in IN718 is difficult to determine experimentally
and the reported volume fractions vary in literature.
Thermodynamic simulations provide the equilibrium
volume fractions based on a pseudo-ternary database,
but the actual sample would have not reached the
equilibrium state in the absence of sufficient aging time.

In the current study, the samples were tensile-stress
aging heat treated before the neutron diffraction exper-
iment. The c¢¢ variants were selected by the applied
stress[16] and for the {100} oriented grains, only the c¢¢
variant with disc-plane normal to the axial direction is
present. Such a selected variant distribution will facil-
itate the peak deconvolution which is described below.
Figure 6(a) shows diffraction peaks for {200} grains
obtained from bank 1 detector at RT. One major peak
(left) and one minor peak (right) were identified. The
minor peak is the {004} c¢¢ peak, since only one c¢¢
variant exist, all the volume of c¢¢ phase in these oriented

grains contributes to the {004} c¢¢ peak, and thereby, the
major peak consists of only the c¢ and c phase. Since the
volume fraction of the c¢ phase is very low and has a
lattice parameter very close to that of the c phase,[5] the
major peak can be treated as a single c peak. As shown
in Figure 6(a), the major and minor peaks can be fitted
by two Pseudo-Voigt functions. Using this assumption,
the c-to-c¢¢ peak intensity ratio was obtained to be
around 8. This intensity ratio was used in the subsequent
deconvolution of the diffraction peak obtained from
bank 2 detector.
Figure 6(b) shows the deconvolution of the overlap-

ping peak obtained from bank 2 detector which consists
of {200} peaks from the c¢¢ and c phases. The decon-
volution was performed by fitting the peak with two
Pseudo-Voigt functions representing the two phases.
The intensity of the c peak was set to be 8 times of that
of the c¢¢ peak. Such a set of constraints were used in a
trial fitting to each overlapping peak obtained at
different temperatures.
The d-spacing of {200} c and {004} c¢¢ peaks were

obtained by fitting the peaks from the bank 1 detector,

Fig. 5—(a) [100]-oriented bright field TEM image of c¢¢ precipitates, inset is the SAED pattern, (b) aspect ratio vs major axis.
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and d-spacing of {200} c and {200} c¢¢ peaks from the
bank 2 detector, as shown in Figure 6. Such a strategy
was employed to fitting peaks obtained at different
temperatures, and lattice strain of both the c and c¢¢
phases ei;thkl due to heating was calculated by

ei;Thkl ¼
di;Thkl � di;0hkl

di;0hkl
½6�

where di;Thkl and di;0hkl are the d-spacing of hkl planes for a
phase measured at a temperature T and at RT,
respectively. The lattice-strain plots against temperature
are shown in Figure 7. All the plots show a polynomial
relationship with temperature which agrees with the
general polynomial thermal expansion of the material.
The lattice strain along the c-axis of c¢¢ is apparently
smaller than that of the c phase, while lattice strain
along the a-axis is very similar to that of c phase.

D. Constrained Misfit Strain

The constrained misfit strain for the c¢¢ phase along a-
and c-axes was calculated using Eq. [4], and is plotted
against temperature in Figure 8. The calculated con-
strained misfit strains for the c¢¢ phase were positive
along both a- and c-axes. The magnitude of the
constrained misfit strain along the a-axis was much
smaller compared to c-axis, which agrees with the
general knowledge of lattice parameter of the c¢¢
phase.[5] The constrained misfit strain along a-axis
remained relatively stable (0.10 to 0.14 pct) with tem-
perature, while the constrained misfit strain along c-axis
showed an apparent decline from 3.30 to 2.95 pct. Such
a reduction in constrained misfit strain indicates an
apparent drop in misfit stresses with increasing
temperature.

E. Estimation of c Phase Single Crystal Elastic
Constants

Since the FCC c matrix phase has anisotropic elastic
properties, the single crystal elastic constant (SCEC) of
the c phase is indispensable for the calculation of the
Eshelby tensor S. The SCEC of the c phase has only
been reported at RT, but not at elevated temperatures.
Therefore, in order to calculate the Eshelby tensor S at
different temperatures, the variation in SCEC with
temperature needs to be estimated.

(a) (b)

Fig. 7—Lattice-strain evolution with temperature for both phases obtained from (a) bank 1 detector, (b) bank 2 detector. The lattice strain along
the c-axis of c¢¢ is apparently smaller than that of the c phase, while lattice strain along the a-axis is very similar to that of c phase. Errors of the
lattice strains associated with the peak fitting are about 20 microstrains for the c phase and 150 microstrains for the c¢¢ phase. For the reason of
clarity, error bars are not shown.

Fig. 8—Misfit strain evolution with temperature for the c¢¢ phase
along a- and c-axes. The constrained misfit strain along a-axis
remained relatively stable (0.10 to 0.14 pct) with temperature, while
the constrained misfit strain along c-axis showed an apparent decline
from 3.30 to 2.95 pct. Error bars are shown for the uncertainties
associated with fitting.
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Young’s moduli at RT and 664 �C were obtained
from the tensile experiments. Lattice parameter at each
stress step was obtained by whole pattern fitting using
the Pawley refinement.[23] Young’s moduli were derived
from the slopes of the stress–lattice-strain plots as
shown in Figure 9. Similarly, the hkl-specific DEC of the
c phase at RT and 664 �C were measured. hkl-specific
lattice strain was obtained by single peak fitting and the
DECs were derived from the slopes of the stress–lat-
tice-strain plots in Figure 10.

According to the elastic properties study of IN718 by
Aba-Perea et al.,[17] it is reasonable to assume that the
Young’s modulus decreases linearly with increasing
temperature. As shown in Figure 9, the Young’s mod-
ulus dropped by 22.3 pct from RT (25 �C) to 664 �C;

thereby, it is assumed that the SCEC dropped by the
same ratio from RT to 664 �C.
The SCEC of the c phase at RT reported by Dye

et al.[24] was adopted in the current study (Table II). On
the basis of the adopted RT SCEC and the linear
relationship with temperature, the SCEC at 664 �C was
calculated and listed in Table II.
The SCECs were subsequently justified by comparing

the measured DECs to the calculated DECs from the
SCECs using a program ‘DECcalc’.[25] The measured
and calculated DECs are listed in Table III, showing
relatively good agreements in DECs between the mea-
surements and calculations. This proves that the esti-
mated SCECs are appropriate. Therefore, the SCECs at
various temperatures were estimated and plotted in
Figure 11.

F. Calculation of Eshelby tensor and misfit stress

According to Eshelby’s method, the Eshelby tensor in
Eq. [3] can be obtained by solving a surface integral,
although the calculation is lengthy and challenging if the
matrix is not isotropic.[8] For the case of an ellipsoidal
inclusion embedded in an anisotropic matrix, Kinoshita
and Mura[26] and Lin and Mura[27] have derived
expressions for the Eshelby tensor S by using the theory
of residues to reduce the surface integral to a line
integral.[10, 27] With the measured aspect ratio and
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Table II. SCECs of the c Phase in Aged IN718 at RT and

664 �C

Temperature C11 (GPa) C12 (GPa) C44(GPa)

RT[24] 224 119 142
664 �C 174 92.4 110
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estimated SCECs of the c matrix, the Eshelby tensor S
was calculated. The detailed calculation of the Eshelby
tensor S is described in Appendix.

Sijmn ¼
0:1599 0:0201 �0:0194
0:0201 0:1599 �0:0194
0:3278 0:3278 0:8531

2

4

3

5 ½7�

The Eq. [3] can be rewritten as

eC11
eC22
eC33

2

4

3

5 ¼
S1111 S1122 S1133

S2211 S2222 S2233

S3311 S3322 S3333

2

4

3

5�
eT11
eT22
eT33

2

4

3

5 ½8�

where eC11, eC22, and eC33 are constrained misfit strains
measured at a specific temperature, subscripts 11 and
22 denote direction along a-axis, 33 denotes direction
along c-axis. At RT, they were measured to be
eC11 ¼ eC22 ¼ 0:0014, eC33 ¼ 0:033. The SFTS eT11, e

T
22 and

eT33 at RT were derived by solving Eq. [8]:

eT11
eT22
eT33

2

4

3

5 ¼
0:0110
0:0110
0:0302

2

4

3

5 ½9�

The misfit stresses at RT were then calculated by
Eq. [2]

r11
r22
r33

2

4

3

5 ¼
C11 C12 C12

C12 C11 C12

C12 C12 C11

2

4

3

5�
eC11 � eT11
eC22 � eT22
eC33 � eT33

2

4

3

5

¼
�3:0 GPa
�3:0 GPa
�1:7 GPa

2

4

3

5: ½10�

Misfit stresses at different temperatures were calcu-
lated in the same manner with the temperature-depen-
dent constrained misfit strains (Figure 8) and elastic
constants (Figure 11). The results are plotted in
Figure 12.
The results show that the c¢¢ precipitates were in a

high level of compressive stress state: 3.0 GPa along
a-axis and 1.7 GPa along c-axis at RT, which dropped
with increasing temperature to 2.0 GPa and 1.2 GPa at
664 �C along a- and c-axes, respectively. Results also
show that the magnitude of misfit stress was much
higher along the a-axis than along the c-axis, or
equivalently, along the in-plane direction and the
normal-to-plane direction, respectively. Phase field sim-
ulations by Zhou et al.[7] have shown that compressive
misfit stresses of 1 GPa level exist in c¢¢ phase in IN718
at 790 �C. The discrepancy between results of the
current work and their phase field simulations could be
due to the use of a smaller SFTS, and the assumption of
identical elastic constants of the c and c¢¢ phases in the
simulations. However, the simulation by Lin et al.[18]

found that the BCT-c¢¢ phase is stiffer than the FCC-c
phase, for example, the elastic modulus along the c-axis
of the c¢¢ phase is 30 pct higher than the c phase.

Table III. Measured and Estimated DECs of the c Phase at

RT and 664 �C

hkl-Specific DEC (GPa)

111 200 220 311

Measured at RT 249 156 228 193
Calculated from SCECs at RT[25] 246 163 218 194
Measured at 664 �C 200 119 186 147
Calculated from SCECs at 664 �C 192 126 170 150
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Fig. 11—Estimated temperature-dependent single crystal elastic
constants of the c phase.
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Fig. 12—Calculated misfit stresses along a- and c-axes of the c¢¢
phase at various temperatures. It is shown a larger compressive
stress existed along a-axis compared to c-axis, both stresses declined
with increasing temperature. Uncertainties were estimated from the
uncertainties of measured constrained misfit strain in Figure 8.
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G. Misfit Stress in Matrix

Since macro residual stress in the specimen is assumed
to be negligible, the equilibrium condition of average
stresses in the two phases within the sampling volume
requires[28]

rc
00
fc

00 þ rcfc ¼ 0 ½11�

where fc¢¢ and fc are the volume fraction of the c¢¢ and
c phases, respectively. The volume fraction can be esti-
mated from the {004} c¢¢/{200} c peak intensity ratio
Ic
00
004

Ic
200

in Figure 6(a) via the equation[16]:

Ic
00

004

Ic200
¼

k004ð Þ4 gc00
� �2

fc00

k200ð Þ4 gc
� �2

fc
½12�

where k is the diffracted neutron beam wave length, g
the scattering length density. The intensity ratio was
measured to be 1/8, the scattering length densities of the
two phases, gc ¼ 7:206 � 1010 cm�2 and gc00 ¼
7:328 � 1010 cm�2 were adopted from Reference 29.
Therefore, the volume fraction of the c¢¢ phase was
estimated to be 10 pct, with an uncertainty of ±1 pct
due to the uncertainty of the measured intensity ratio.
The average stresses in the c matrix at various temper-
atures were calculated from Eq. [11] and the results are
plotted in Figure 13. Misfit stresses of 329 MPa and
186 MPa in tension were found in the matrix along the

a-axis and c-axis directions, respectively, at RT. As
expected, the tensile misfit stresses decreased with
increasing temperature, which were 224 MPa and 132
MPa along a-axis and c-axis at 664 �C, respectively.

H. Stress-Free Transformation Strain of the c¢¢ Phase
As mentioned in Section II–A, the SFTS eT� for an

inhomogeneity is different from the SFTS eT for an
equivalent inclusion. The SFTS eT in Eq. [9] was
calculated for the equivalent inclusion, and the SFTS
eT� of the c¢¢ phase can be calculated using Eq. [2]. Since
no experimentally determined values can be found from
literature, the SCECs of the c¢¢ phase is adopted from
the literature which were derived by first principle
calculations[18] and listed in Table IV. Similar to the
justification of the SCECs of the c phase in Sec-
tion IV–E, the SCECs of the c¢¢ can be justified by
comparing the calculated DECs to the measured DECs
of the c¢¢. DECs of the c¢¢ have been measured using
neutron diffraction in a previous study[30] as listed in
Table V, along with the calculated DECs from the
adopted SCECs using the program ‘DECcalc’.[25] The
discrepancies between the calculated and measured
DECs are generally acceptable and thereby, the adopted
SCECs of the c¢¢ seem appropriate.
Using the elastic constants for the c and c¢¢ phases in

Tables II and V, and the equivalent SFTS eT in Eq. [9],
the SFTS eT� at RT was calculated using Eq. [2] to be

eT�11
eT�22
eT�33

2

4

3

5 ¼
0:0086
0:0086
0:0313

2

4

3

5 ½13�

These SFTS eT� agree well with those values reported
in literature for IN718 aged at 750 �C for 4 hours,[5]

wherein the c¢¢ precipitates were believed to maintain
high coherency with the matrix.
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Fig. 13—Average internal stresses in the c matrix. It is shown a
larger tensile stress existed along a-axis compared to c-axis, both
stresses declined with increasing temperature. Uncertainties were
estimated using Eq. [11] based on the uncertainties of misfit stresses
in the c¢¢ phase, the uncertainty of estimated volume fraction would
give a systematic discrepancy of 10 pct in stress level.

Table IV. SCECs of the c¢¢ Phase for RT Adopted from Ref. [18]

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)

274 175 151 295 110 100

Table V. DECs of the c¢¢ Phase at RT Obtained by
Experimental Measurements[30] and Calculations from the

Adopted SCECs[18] Using the Matlab Program ‘DECcalc’

Applying the Kröner Model[25]

hkl 112 004 200 204 220 116 312

Calculated (GPa) 264 221 205 248 241 241 229
Measured (GPa) 244 221 165 218 226 239 204
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I. Thermal Expansion

The linear coefficient of thermal expansion (CTE) of
the c and c¢¢ phases can be obtained by the deviation of
the polynomial plots in Figure 7. The variation of CTEs
with temperature is shown in Figure 14, CTE of the c¢¢
phase along a-axis is similar to that of the c phase, while
CTE along c-axis of the c¢¢ phase is apparently smaller.
This is consistent with Figure 7 which shows that the
lattice strain along c-axis is less than that along a-axis
and the c phase. However, one should note that these
CTEs were obtained in the constrained state, and
thereby could be different from those measured in
stress-free state when one phase is isolated from the
other.

The misfit stresses decreased by 30 pct from RT to
664 �C, meanwhile, the stiffness decreased by 22 pct,
which indicates that about 70 pct of the decrease in
misfit stresses is due to the decrease in stiffness and
about 30 pct of the decrease is due to the different CTEs
of the two phases.

V. DISCUSSION

A. Coherent c¢¢ Precipitate
The use of Eshelby’s method requires the c¢¢ precip-

itate is fully coherent with the c matrix. It is generally
believed that the c¢¢ is highly coherent with the c matrix
when the precipitate size is relatively small. This can be
revealed by the high level of coherency strain field
around the precipitates that have been shown in TEM
images in the literature,[5, 19, 31] on contrast, no misfit/
interfacial dislocation around the precipitates have been
reported to the authors’ best knowledge. Two situations
may reduce the coherency: (i) the misfit is relatively

large. For plate-shaped precipitate, when the misfit
eT33>0:1, suggested by Weatherly,[32] a dislocation loop
may form at the interface. In the current material, the
misfit eT33 � 0:03, which is not large enough for the
formation of dislocation loop; (ii) the precipitate grows
beyond a critical size. It is logical to assume that the
gamma double prime precipitates form initially fully
coherent with the gamma matrix. When the c¢¢ precip-
itate grows beyond a critical size, formation of stacking
faults within the precipitates may occur and trigger the
loss of coherency.[33, 34] The critical diameter has been
suggested to be > 90 nm by a few studies.[5, 34] The
diameter of c¢¢ in the studied material is around 55 nm,
which is much less than the critical diameter for loss of
coherency. Therefore, it is reasonable to consider the c¢¢
precipitates maintaining a fully coherent bonding with
the c matrix, or perfectly glued with the matrix in the
context of Eshelby’s theory.

B. High Level of Misfit Stress

The results show that the misfit stresses in the c¢¢
phase are very high, since they are hydrostatic in
compression. Such high level of stresses would not lead
to failure of the precipitates. The misfit stresses in the c¢¢
precipitate are highly anisotropic. The magnitude of
misfit stress along the a-axis is much larger than that
along the c-axis due to the anisotropic misfit strain.
Eshelby’s theory[35] predicts that the misfit stresses in a
plate-like precipitate decrease faster along the normal
direction than that along the parallel direction of the
habit plane when the precipitate grows.
Many studies have shown that large misfit stresses (or

called coherency stresses or internal stresses) can exist in
multi-phase materials when lattice misfit occurs due to
phase transformation or thermal contraction. Thermal
misfit stress with a magnitude of 800 MPa in compres-
sion was reported by Harjo et al. in the ferrite phase of a
Fe-Cr-Ni alloy which consisted of 32 pct volume frac-
tion of the ferrite phase and 68 pct of the austenite
phase.[36] In their study, the diffraction measured
stresses agreed fairly well with the stresses predicted
using Eshelby’s theory. In the cementite with a volume
fraction of 11 pct in the as-drawn steel wire, residual
tensile stresses as high as 2000 MPa has been
reported.[37] Withers et al.[9] also pointed out that the
misfit stresses in the fiber for an aligned Al/SiC
composite are reversely proportional to the volume
fraction of the fiber. The internal stress in the fiber can
be up to 1400 MPa compressive along the longitudinal
direction when the volume fraction is 10 pct, while the
compressive stress was only 600 MPa when the volume
fraction was 40 pct.[9] Meanwhile, the average tensile
stresses in the matrix decrease with decreased fiber
volume fraction.[9] Recently, phase field simulations
predicted that the misfit stresses in c¢¢ precipitates with a
volume fraction of 16 pct in IN718 can reach 1 GP in
compression at 790 �C.[7] All these studies showed that
high level of misfit stresses can exist in the second phase
with an apparently lower volume fraction compared to
the matrix phase.

0 100 200 300 400 500 600 700
6

8

10

12

14

16

18

20

22
γ
γ" a-axis
γ" c-axis

C
TE

 (1
0-6

/°
C

)

Temperature (°C)

Fig. 14—Coefficients of thermal expansion of the c and c¢¢ phases
obtained from the deviation of the polynomial relationships in
Figure 7. The CTE of the c phase was the average value obtained
from bank 1 and bank 2.
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In IN718, although the misfit stresses in the c¢¢
precipitates are at a high level, the low volume fraction
of the c¢¢ precipitates allows the average stress in the c
matrix to be kept at a relatively low level. The misfit
strains were calculated from the lattice spacings which
sampled from a relatively large sample volume. The c
lattice spacing in the vicinity of the c¢¢ precipitate can be
much different from the measured average lattice
spacing. The magnitude of local misfit stress is therefore
much higher than that at a position in the matrix far
from the precipitate. Lattice strains at different distances
from the surface of a coherent precipitate measured by
convergent beam electron diffraction showed that most
of the strain is relieved in the matrix at a distance
comparable to the size of the precipitate.[38] The
presence of a high level of coherency strain around the
c¢¢ precipitates is often observed in TEM bright field
images[31, 39, 40] indicating large misfit stress in the
vicinity of the c/c¢¢ interface. Withers et al.[9] proposed
that rather than the local fluctuations in stress, it is the
mean stresses in the two phases that determines much of
the mechanical behavior. The local stress will not
promote the motion of dislocations, but can encourage
the occurrence of microplasticity which is often respon-
sible for the onset of plasticity.[9]

C. Loss of Coherency

It has been seen that a large magnitude of internal
stress is established in the c¢¢ phase. Such high stresses
can be partly relieved by relaxation mechanisms such as
cracking, loss of coherency, interface gliding, local
dislocation glide and diffusion.[9] The relaxation of
internal stresses may have effects on the thermal stability
of IN718, which is an important concern for the
applications of IN718 at elevated temperatures. Thermal
stability of IN718 largely depends on the resistance of
phase transformation from the meta-stable c¢¢ phase to
the equilibrium d phase. Sundararaman et al.[33] sug-
gested that such a phase transformation could be trigger
by the formation of stacking faults in the c¢¢ precipitates,
which is correlated to the loss of coherency.

Loss of coherency has been observed in the c¢¢
precipitates when they grow beyond a critical size. The
critical size to coherency loss was proposed to be about
90-100 nm.[5, 34] The precipitates in this study with an
average diameter about 56 nm, were believed to main-
tain full coherency with the matrix. The large misfit
stress is expected to be relieved by the loss of coherency
through different mechanisms correlated to the dimen-
sions of the precipitates and the amount of dislocations
at the interface.[32, 41] Sundararaman et al.[33] observed
that it is the generation of stacking faults in the c¢¢ that
leads to coherency loss. The experiment by Slama [5]

showed that after aging for 50 hours, the eT11 reduced
significantly compared to that only aged for 4 hours,
while the eT33 showed little change, indicating that
coherency loss happens along the habit plane. This

would be expected since the magnitude of misfit stress
r11 is much larger than r33 when the c¢¢ precipitates grow
to a few tens of nanometers in diameter, the misfit stress
r11 is more favorable to be relaxed. On the other hand,
for a given particle size and aspect ratio, such findings
indicate that a smaller level of internal stresses will be
less favored for the loss of coherency, and thereby
achieving a better resistance to phase transformation
and thermal stability. According to Withers et al.,[9] a
smaller level of internal stresses may be achieved by
having a larger fraction of the c¢¢ phase; however, this is
limited by the solubility of Nb in IN718. Another way to
adjust the internal stresses is by changing the chemical
composition, particularly the content of Nb, of which a
higher content leads to a larger lattice misfit and a lower
content to a less misfit along c-axis.[42] A profound
thermal stability of IN718 can be achieved by forming
the compact morphology which consist of a cube-shaped
c¢ core coated by c¢¢ shell,[43] or by increasing the volume
fraction of the c¢ phase comparable to that of the c¢¢
phase.[44]

VI. SUMMARY

In this study, the misfit stresses in IN718 as a function
of temperature have been characterized using Eshelby’s
inclusion theory. The key findings are:

1. The constrained misfit strains in a stress-induced
variant selection heat treated IN718 are character-
ized using neutron diffraction at various tempera-
tures, showing a very small positive constrained
misfit strain along the a-axis (~0.1 pct) and a much
larger constrained misfit strain along the c-axis
(2.95 to 3.30 pct).

2. The coefficient of thermal expansion of the c phase
is found to be very similar to that of the c¢¢ phase
along a-axis, while the coefficient of thermal
expansion of the c¢¢ phase along c-axis is smaller
compared to that along a-axis.

3. The calculated misfit stresses showed large com-
pressive and anisotropic misfit stresses in the c¢¢
precipitates: 3.0 GPa along the a-axis and 1.7 GPa
along the c-axis at RT, which reduced to 2.0 GPa
and 1.2 GPa at 664 �C, respectively.

4. Tensile stresses calculated in the matrix showed a
magnitude of ~ 329 MPa at RT and ~ 186 MPa at
664 �C.

This study reports a simple and reasonably accurate
method to calculate misfit stresses from the constrained
misfit strain obtained by in-situ diffraction experiment
showing a large level of compressive misfit stresses in the
highly coherent precipitates. This work is expected to
deepen the understanding of misfit stress which plays an
important role in the precipitation strengthening alloys.
The proposed method can be extended to in-situ heat
treatment or creep studies.
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APPENDIX

For the case of inclusions embedded in an anisotropic
matrix, explicit expressions for anisotropic Green’s
functions are not available, the technique used in
calculations of Eshelby tensor S in isotropic matrix is
not applicable. Mura[10,27,28] gave explicit expressions
for the cases of spheroid inclusion in cubic crystals.
When the inclusion has an ellipsoidal shape, the stress
field inside the inclusion is constant and can be
expressed in the form of a surface integral on a unit
sphere. The surface integral can be reduced to a line
integral from the surface integral and is ready for
numerical calculations.

Eshelby tensor S can be expressed

Sijmn ¼
1

8p

� �
Cpqmn Gipjq þ Gjpiq

� �
½A1�

For the spheroid inclusion which principal directions
are coincident with the matrix crystalline directions, the

nonzero components of Gijkl are:

G1111 ¼ G2222

¼ 2p
a

Z1

0

1� x2

pq
1� x2 þ q2x2
� �

l2ð1� x2 þ q2x2Þ
�

þ bq2x2
�
dxþ p

a

Z1

0

1� x2
� �2

p pþ qð Þ b 1� x2 þ q2x2
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þ cq2x2
� �

dx

½A2a�
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�G1313 ¼ �G2323

¼ � 2pl kþ lð Þ
a
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q2x2 1� x2
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where:

k ¼ C12 ½A3a�

l ¼ C44 ½A3b�

l0 ¼ C11 � C12 � 2C44 ½A3c�

q ¼ a1=a3 ½A3d�

a ¼ l2 kþ 2lþ l0ð Þ ½A3e�

b ¼ a�1ll0 2kþ 2lþ l0ð Þ ½A3f�

c ¼ a�1l02 3kþ 3lþ l0ð Þ ½A3g�

b ¼ l kþ lþ l0ð Þ ½A3h�

c ¼ l0 2kþ 2lþ l0ð Þ ½A3i�

p ¼ 1� x2 þ q2x2
� �3þbq2x2 1� x2

� �
1� x2 þ q2x2
� �n

þ 1

4
1� x2
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b 1� x2 þ q2x2
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q ¼ 1� x2 þ q2x2
� �3þbq2x2 1� x2

� �
1� x2 þ q2x2
� �n o1=2

½A3k�

here C11, C12 and C44 are the Voigt elastic constants
of the c matrix, which are equivalent to C1111, C1122

and C2323, respectively. a1 is the average major axis
and a3 the average minor axis of the c¢¢ precipitates.
The elastic constants are estimated in Section IV–E,

the average dimension is measured in Section IV–A.

Therefore, the nonzero components of Gijkl are calcu-
lated as:

G1111 ¼ G2222 ¼ 3:1784 ½A4a�

G3333 ¼ 12:4511 ½A4b�

G1122 ¼ G2211 ¼ 3:0154 ½A4c�

G1133 ¼ G2233 ¼ 0:9799 ½A4d�

G1212 ¼ � 0:5709 ½A4e�

G1313 ¼ G2323 ¼ �1:6127 ½A4f�

G3311 ¼ G3322 ¼ 3:0804: ½A4g�

From Eq. [A.1], with the estimated elastic constants

Cpqmn and calculated Gijkl; the Eshelby tensor for the
case of anisotropic matrix at RT is obtained:

Sijmn ¼
0:1599 0:0201 �0:0194
0:0201 0:1599 �0:0194
0:3278 0:3278 0:8531

2

4

3

5: ½A5�
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2. Haël. Mughrabi: Acta Mater., 2014, vol. 81, pp. 21–29.
3. J.M. Oblak, D.F. Paulonis, and D.S. Duvall: Metall. Trans., 1974,

vol. 5, p. 143.
4. R. Cozar and A. Pineau: Scr. Metall., 1973, vol. 7, pp. 851–54.
5. C. Slama, C. Servant, and G. Cizeron: J. Mater. Res., 1997,

vol. 12, pp. 2298–2316.
6. D.M. Collins, L. Yan, E.A. Marquis, L.D. Connor, J.J. Ciardiello,

A.D. Evans, and H.J. Stone: Acta Mater., 2013, vol. 61,
pp. 7791–7804.

7. N. Zhou, D.C. Lv, H.L. Zhang, D. McAllister, F. Zhang,
M.J. Mills, and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270–
86.

8. J.D. Eshelby: Proc. R. Soc. London Ser. A, 1957, vol. 241,
pp. 376–96.

9. P.J. Withers, W.M. Stobbs, and O.B. Pedersen: Acta Metall., 1989,
vol. 37, pp. 3061–84.

10. T. Mura: Micromechanics of Defects in Solids, Springer, Amster-
dam, 1987.

11. A.J. Allen, M.A.M. Bourke, S. Dawes, M.T. Hutchings, and
P.J. Withers: Acta Metall. Mater., 1992, vol. 40, pp. 2361–73.

12. M.R. Daymond and M.E. Fitzpatrick: Metall. Mater. Trans. A,
2006, vol. A37, pp. 1977–86.

13. J.D. Robson: Acta Mater., 2016, vol. 121, pp. 277–87.
14. H.J. Stone, T.M. Holden, and R.C. Reed: Acta Mater., 1999,

vol. 47, pp. 4435–48.
15. E.M. Francis, B.M.B. Grant, J. Quinta da Fonseca, P.J. Phillips,

M.J. Mills, M.R. Daymond, and M. Preuss: Acta Mater., 2014,
vol. 74, pp. 18–29.

16. R.Y. Zhang, H.L. Qin, Z.N. Bi, J. Li, S. Paul, T.L. Lee,
B. Nenchev, J. Zhang, S. Kabra, J.F. Kelleher, and H.B. Dong:
Metall. Mater. Trans. A, 2019, vol. 50, pp. 5421–32.

1872—VOLUME 51A, APRIL 2020 METALLURGICAL AND MATERIALS TRANSACTIONS A



17. P.E. Aba-Perea, T. Pirling, P.J. Withers, J. Kelleher, S. Kabra, and
M. Preuss: Mater. Des., 2016, vol. 89, pp. 856–63.

18. Y.C. Lin, X.-Y. Jiang, S.-C. Luo, and D.-G. He: Mater. Des.,
2018, vol. 139, pp. 16–24.

19. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall.
Trans. A, 1992, vol. 23, pp. 2015–28.
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