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Revisiting ‘‘Steady-State’’ Monotonic and Cyclic
Deformation: Emphasizing the Quasi-Stationary
State of Deformation

HAËL MUGHRABI

High-temperature creep, cyclic deformation in saturation, and a number of technologically
important processes are typical examples of the so-called ‘‘steady-state’’ deformation. These
cases are usually defined in terms of the constancy of the mechanical parameters. Moreover, it is
usually assumed that the deformation-induced microstructure undergoes no further changes.
However, clear evidence shows that non-negligible microstructural changes continue to occur in
the so-defined steady-state high-temperature creep and in cyclic saturation. It can be shown that
the so-called ‘‘steady-state’’ deformation is actually a quasi-stationary deformation which is
characterized by the initial development of a ‘‘mechanical steady state’’, which is followed with a
delay by a ‘‘microstructural steady state.’’ Only the latter can then be considered as a true steady
state. A deeper analysis reveals a persistent slight increase of the dislocation density, with
geometrically necessary dislocations in the cell walls/subgrain boundaries, causing the latter to
transform gradually into sharper boundaries with higher misorientations. These findings, based
on a detailed analysis of a wide range of experimental studies, are found to be almost identical
for both high-temperature creep and cyclic deformation in saturation and are hence considered
as characteristic of quasi-stationary deformation. The analysis clarifies, as a by-product, specific
effects which arise from the increasing heterogeneity of the dislocation pattern (patterning).
Thus, a marked decrease of the arrangement factor ‘‘alpha’’ in the Taylor flow stress is noted, as
patterning proceeds, in agreement with predictions of the so-called composite model. Since this
effect is compensated partially by the increase of the dislocation density, the flow stress remains
rather insensitive to subtle microstructural changes. Based on these facts, the need for revision
of current flow-stress formulations in future dislocation modeling is emphasized.

https://doi.org/10.1007/s11661-019-05618-x
� The Author(s) 2020
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I. INTRODUCTION

THE so-called ‘‘steady-state’’ deformation is fre-
quently encountered under a variety of circumstances in
different areas of science and engineering. Quite gener-
ally, one speaks of a ‘‘steady-state’’ process, when the
variables that define the behavior are unchanging in
time. There exists a wide range of different ‘‘steady-
state’’ processes of scientific and/or technological impor-
tance, such as

– Different types of deformation processing, e.g.,
rolling, extrusion, drawing,[1,2]

– Severe plastic deformation (SPD) such as ECAP
(Equal Channel Angular Pressing) or HPT
(High-Pressure Torsion),[3,4]

– Geological events, such as motion of tectonic plates,
earth quakes,[5,6]

– Cosmology, e.g., expansion of the universe,[7] and so
on.

Modeling of the so-called ‘‘steady-state’’ processes is
popular and mathematically convenient, because the
equations simplify considerably, when the differential
changes of the behavior reduce to zero. Here, our interest
is focussed on a materials science topic of fundamental
importance in crystal plasticity, namely on the so-called
‘‘steady-state’’ deformation, as evidenced in

– High-temperature creep, and in
– Cyclic deformation in saturation.

In these two cases, ‘‘steady-state’’ deformation is
generally defined in terms of the constancy of the
mechanical parameters which define the deformation,
e.g., the stress and the strain rate. However, itmust also be
kept inmind that crystal plasticity is always closely related
to variations of the dislocation microstructure. This raises
the question: ‘‘Is the microstructure constant in so-called
‘‘steady-state’’ deformation in the two cases under con-
sideration?’’ The main objective of the present work is to
discuss and to clarify this question, based on experimental
data andon current concepts of crystal plasticity.A strong
motivation for this approach lies in the increasing evidence
that, in the so-called ‘‘steady-state’’ deformation, small
but nonetheless non-negligible microstructural changes
occur, as was documented earlier.[8,9] This important
aspect and its implications will be discussed in detail
subsequently. It follows that, strictly speaking, there is no
true steady state, defined in terms of constancy of both
stress (deformation strength) andmicrostructure. For this
reason, it is more appropriate to speak of a ‘‘quasi-sta-
tionary deformation,’’ as will be detailed subsequently.

II. CUSTOMARY DEFINITIONS OF ‘‘STEADY
STATE’’ IN UNIDIRECTIONAL DEFORMATION,
HIGH-TEMPERATURE CREEP AND CYCLIC

DEFORMATION

Unidirectional ‘‘steady-state’’ deformation: In this
case, a ‘‘steady-state’’ situation can be obtained, if the
stress–strain curve approaches a horizontal limit at a
certain stress r, as shown schematically in

Figure 1.[10] Then, ‘‘steady state’’ is defined as stress
r = const.
High-temperature creep[10]: In this case, ‘‘steady

state’’ is obtained typically in the secondary creep stage,
when a linear relation between strain e and time t is
observed, compare Figure 2(a). Thus, steady state is
defined as strain rate _e = const., as shown in
Figure 2(b).
Cyclic deformation[11–13]:

(a) Stress control: In this case, ‘‘steady state’’ is
obtained after cyclic hardening or softening, when
the plastic strain amplitude, i.e., half the plastic
strain range

Depl
2 , approaches a constant value.

(b) Strain control: Steady state is obtained, when the
stress amplitude (half the stress range, i.e., Dr2 after
cyclic hardening (or softening) at a given plastic
strain range Depl,i (i = 1,2,3,…) approaches a
constant value (i.e., Dr

2 = const. = saturation
stress).

Figure 3 illustrates cyclic deformation at constant

plastic strain amplitude, i.e.,
Depl
2 = const. Figure 3(a)

shows schematically hysteresis loops, with cyclic hard-
ening at constant plastic strain amplitude until a
stable hysteresis loop develops in saturation. Cyclic
hardening curves, with different constant cyclic stress
amplitudes in saturation, are shown in Figure 3(b) in a
plot of stress amplitude Dr

2 vs number of cycles N (or the
cumulative plastic strain epl,cum = 2NÆDepl, for different
plastic strain ranges Depl,i (i = 1,2,3).
The dependence of the cyclic saturation stress ampli-

tude Dr
2

� �
s
on the plastic strain amplitude

Depl
2 , namely the

so-called cyclic stress-strain curve (cssc), is of funda-
mental importance in basic formulations of cyclic

Fig. 1—Steady state in monotonic unidirectional deformation,
defined as r = const. Adapted with permission from Ref. [10].

Fig. 2—Steady state in high-temperature creep, defined as _e = const.
(a) Strain e vs time t. (b) Strain rate _e vs time t. Adapted with
permission from Ref. [10].
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stress–strain and also of fatigue life laws.[11–13] In this
work, cyclic deformation in the present context will be
discussed in Section VII. There, the discussion will be
confined to experimental data from strain-controlled
cyclic deformation tests, as shown in Figure 3.

III. DISTINCTION BETWEEN MECHANICAL
‘‘STEADY-STATE’’ DEFORMATION

AND MICROSTRUCTURAL ‘‘STEADY-STATE’’
DEFORMATION: THE CONCEPT

OF ‘‘QUASI-STATIONARY DEFORMATION’’

In the following, compelling evidence will be pre-
sented showing that, during high-temperature creep and
also during cyclic deformation in saturation, mild but
substantial microstructural changes continue to occur
persistently after the so-called ‘‘steady state,’’ defined as
described in Section II, has been achieved. Thus, the
dislocation density continues to increase mildly, while
the dislocation pattern becomes more heterogeneous
(cell formation). These microstructural changes cease
only after substantial further deformation, when finally
a state of constant microstructure is attained. Thus,
‘‘steady state’’ in a microstructural sense lags behind
‘‘steady state’’ in a mechanical sense.

It is therefore expedient to distinguish between
‘‘mechanical steady-state’’ and ‘‘microstructural stea-
dy-state’’ deformations and to emphasize that, in a
general sense, it is more appropriate to speak of a
‘‘quasi-stationary deformation,’’ compare also Refer-
ences 9, 14, 15 as will be detailed subsequently. In the
following, ‘‘steady state’’ will not be written in inverted
commas any longer.

IV. CRITERIA FOR ONGOING CHANGES
IN DISLOCATION DENSITY AND
ARRANGEMENT IN MECHANICAL
STEADY-STATE DEFORMATION

A. Microstructural Characterization

The analysis of microstructural changes in mechanical
steady state will be based on a wide range of published
earlier experimental data, most of which have not been
analyzed comprehensively in similar fashion before.
Essentially, the data refer to experimental documentation
of mechanical properties, accompanied by measurements
of electrical resistivity,magnetic properties,X-ray diffrac-
tion, and direct observations by TEM (transmission
electron microscopy). These data provide information on

(a) dislocation cell/subgrain size d
(b) spacings s between dislocations in networks
(c) dislocation density q
(d) lattice misorientations h, indicative of geometri-

cally necessary dislocations (GNDs)
(e) dislocation arrangement (heterogeneity,

patterning).

As will be discussed in Section IV–B, characteristic
features of quasi-stationary deformation are that, after
mechanical steady state has been attained, a small but
non-negligible persistent increase of the dislocation den-
sity q is noted, stemming, for example, from a continuing
decrease of the spacings s (mesh size) in the dislocation
networks, and also from increases of the density of
geometrically necessary dislocations (GNDs) in the
dislocation cell walls/subboundaries, as evidenced from
increasing misorientations across the cell walls/sub-
boundaries, compare References 8, 9. These findings

Fig. 3—Cyclic deformation. (a) Plot of cyclic stress amplitude r = Dr
2 against the plastic strain epl (hysteresis loop), showing cyclic hardening

until a stable hysteresis loop is attained in saturation. (b) Cyclic hardening curves: cyclic stress amplitude Dr
2 for different plastic strain amplitudes

Depl
2 , vs number of cycles N or cumulative plastic strain epl,cum until attainment of cyclic saturation stress amplitude Dr

2

� �
s
.
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show that the dislocation density continues to increase in
steady state and thus contradicts the current general
opinion that the dislocation density is constant in steady
state. Very recently, and in a somewhat different context,
Huang arrived at the same conclusion.[16]

Another important feature of deformation-induced
dislocation distributions is that dislocations are not
distributed randomly but tend to cluster, forming
dislocation wall and cell structures. It is important to
clarify whether and how this phenomenon of the
so-called dislocation patterning, compare Kubin,[17]

affects the constitutive equations of plasticity.

B. Assessment in Relation to Taylor Flow-Stress Law

The microstructural data will be related to the (shear)
flow stress s, as described by the Taylor flow-stress
law[18]:

s ¼ aGb
p
q; ½1�

where G is the shear modulus, b the modulus of the
Burgers vector, and a a geometrical factor that takes into
account the arrangement of the dislocations. Thus, the
a-factor should, for example, provide evidence of dislo-
cation patterning. Usually, a value of a � 0.35 to 0.4 is
used, as estimated for dislocation intersection, i.e., forest
cutting, first by Saada[19] and later by Schoeck and
Frydman.[20] Variations of the a-factor and changes of the
dislocation density during the so-called steady-state

deformation are normally not considered.[21–23] In fact,
one finds in the literature statements like ‘‘paradoxically,
realistic strain hardening properties in uniaxial deforma-
tion are obtained without accounting for dislocation
patterning’’[21] or that there exists ‘‘a relative insensitivity
of the dislocation strengthening relation to the arrange-
ment of the microstructure.’’[23] However, in the present
work, evidence will be provided, showing that as the
dislocation density continues to increase mildly during
mechanical steady-state deformation, the a-factor varies
and can in fact decrease by about 20 pct. This conclusion
was first drawn qualitatively about 45 years ago from a
study on cyclically deformed a-iron single crystals in
cyclic saturation[24] and has been substantiated since,
compare References 8, 9, 25. In the next Section, it will be
shown in a simple dislocation model that the a-factor is
expected to decrease as the dislocation distribution
becomes more heterogeneous in the process of clustering
of dislocations and/or the development of a cell structure.

V. CONSIDERATION OF THE EFFECTS
OF HETEROGENEITY OF DISLOCATION
MICROSTRUCTURES IN DEFORMED
MATERIALS ON THE FLOW STRESS

A. General Features

Examples of dislocation microstructures in different
deformed metals and alloys are shown in Figure 4 for

Fig. 4—Examples of dislocation arrangements in different materials after tensile, cyclic, and high-temperature creep deformations, to illustrate
the large variety and heterogeneity of deformation-induced dislocation patterns. (a) Tensile-deformed copper single crystal, primary glide plane,
single slip, reprinted with permission from Ref. [26]. (b) Tensile-deformed copper single crystal, [001]-orientation, multiple slip, reprinted with
permission from Ref. [27]. (c) Cyclically deformed a-iron single crystal of single slip orientation, see also Ref. [28]. (d) Cyclically deformed
copper polycrystal, ‘‘labyrinth’’ structure, reprinted with permission from Ref. [29]. (e) Creep-deformed stainless steel AISI 304, reprinted with
permission from Ref. [30]. (f) Creep-deformed Al-Zn alloy, reprinted with permission from Ref. [31].
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unidirectional deformation[26,27] (Figures 4(a) and (b)),
cyclic deformation[9,28,29] (Figures 4(c) and (d)), and
high-temperature creep[30,31] (Figures 4(e) and (f)). It is
obvious that these dislocation microstructures are rather
complex and differ considerably. Nonetheless, they have
one thing in common. In all cases, the distribution of the
dislocations is rather heterogeneous, with areas of low
and high local dislocation densities, respectively.

B. Description in Terms of the Two-Component
Composite Model

It is desirable to describe at least semi-quantitatively
the properties and the flow stresses of deformed mate-
rials containing different heterogeneous dislocation
distributions. In the simplest possible procedure, the
flow stress for a homogeneous dislocation distribution
with a total mean dislocation density q is described in
terms of the Taylor flow stress sTaylor and denoted as
shom with an arrangement factor ahom:

sTaylor ¼ aGb
ffiffiffi
q

p ¼ shom ½2�

shom¼ahomGb
ffiffiffi
q

p
: ½3�

Usually, the value of ahom is considered to lie in the
range ahom � 0.35 to 0.4 which is characteristic of
dislocation cutting, as stated earlier.

In the case of a heterogeneous dislocation distribu-
tion, the simplest approach is to describe the flow stress
shetin terms of the two-component composite
model[25,32,33] which considers only dislocation cell wall
regions of high local dislocation density qw with a
volume fraction fw and cell interior regions of lower
local dislocation density qc with a volume fraction fc.
For simplicity, the a-factor is taken to be the same in the
cell walls and in the cell interiors. Then, the flow stress
shet can be written in terms of a rule of mixtures with the
weighted contributions of the dislocation cell walls and
cell interiors:

shet ¼ fwaGb
ffiffiffiffiffiffi
qw

p þ fcaGb
ffiffiffiffiffi
qc

p ½4�

When the terms are lumped together, the flow stress
shet can be expressed as

shet ¼ ahetGb
ffiffiffi
q

p
; ½5�

with an arrangement factor ahet. As shown earlier,[33] it
is easy to show that, in general, ahet < ahom, and that
the arrangement factors ahom and ahet are related in a
simple one-dimensional model in good approximation
as

ahet � 2ahom
ffiffiffiffiffiffiffiffi
fwfc

p
½6�

In this model, one finds ahet<ahom in all cases, except
in the case of a homogeneous distribution, characterized
by fc = fw, where one finds ahet = ahom, as expected. In
this limit, there is no distinction between cell walls and
cell interiors. Thus, in the model described earlier, the

terms fc and fw are interchangeable.[9,33] With increasing
heterogeneity, the volume fraction fc of cell interiors
decreases with increasing deformation to typical values
in the range of, say 0.3 to 0.1. Inserting these values into
Eq. [6], one obtains, with ahom � 0.4, values of
0.24< ahet < 0.36 in the range of 0.1< fc< 0.3.
It follows from the cross check that, at the same time,

fw increases, in agreement with the experimental finding
that the volume fraction of the walls increases with
increasing deformation.[27] It is pointed out that, in the
original work[33] and in an earlier publication,[9] the
range of values of the volume fractions were formulated
in terms of 0.1< fw< 0.3 instead of 0.1< fc< 0.3, and
the same basic conclusions regarding ahet were drawn.
However, strictly speaking, this formulation would have
implied incorrectly that the volume fraction of walls
would decrease with increasing deformation, in dis-
agreement with experiment.[27]

In summary, it is predicted that the arrangement
factor ahet is expected to decrease with increasing
heterogeneity of the dislocation distribution in the
course of increasing deformation, from approximately
0.36 to about 0.24, i.e., by about 30 pct. In the following
sections, based on the assessment of substantial exper-
imental evidence. this rather large effect will be substan-
tiated and verified.

C. Comparison of the Effects of Heterogeneity
and of the Basinski Flow-Stress Correction
on the Arrangement Factor a in the Taylor Flow-Stress
Law

Basinski modified the Taylor flow-stress equation,
based on the argument that, when a dislocation bows
out between two obstacles, the spacing between the
obstacles, i.e., 1/�q, should appear in the flow-stress
equation as an outer cut-off radius.[34] Thus, Basinski
proposed the following corrected flow-stress law:

sBas ¼ aGb
ffiffiffi
q

p
ln1=

ffiffiffi
q

p
: ½7�

When the logarithmic term is lumped into the
a-factor, the effect of the Basinski correction corre-
sponds qualitatively also to a decrease of the a-factor in
the Taylor flow-stress law, as in the previously discussed
case of increasing heterogeneity. However, as elaborated
by Sauzay and Kubin,[23] the Basinski correction corre-
sponds (only) to a modest decrease of the a-factor,
namely 11 pct per decade in dislocation density. Thus,
for example, assuming a value a= 0.35 for a dislocation
density of 1013 m�2, a value a = 0.31 would follow, if
the dislocation density increased by one order of
magnitude to 1014 m�2. In other words, a tenfold
increase in dislocation density would cause the a-factor
to decrease by less than only 12 pct.
By comparison with the effect of heterogeneity in the

composite model, an important conclusion follows:
Even without any increase of dislocation density (!),
the effect of increasing heterogeneity during deforma-
tion on the a-factor is significantly larger than the effect
of the Basinski correction, and can amount up to about
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20 to 30 pct. To the author’s knowledge, this rather
strong effect of heterogeneity on the ‘‘effective’’ value of
the arrangement factor a (for a given constant disloca-
tion density!) has generally not been considered in the
past or in more recent comprehensive discrete disloca-
tion dynamics modeling (DDD) simulations, compare,
for example, the work of Kubin and co-workers.[21,22]

The present statements will be substantiated amply in
the following by a large body of experimental evidence.

VI. STEADY-STATE HIGH-TEMPERATURE
CREEP DEFORMATION

A. The Assumption That the Dislocation Density
Remains Constant

Under the so-called steady-state conditions, it is
assumed that the flow stress s remains constant, i.e.,

s ¼ aGb
p
q ¼ const: ½8�

This implies that the dislocation density q does not
change, i.e., that the dislocation production and anni-
hilation rates are equal and compensate each other. At
the same time, the a-factor is considered to remain
constant during deformation. In the present work, these
assumptions are questioned in the light of experimental
observations. Further details follow in the next section
by considering the assumptions that are made in order
to derive a constant steady-state creep rate.

B. Assumptions Underlying the Derivation
of a Steady-State Creep Rate: The Recovery Creep
Model[35] Revisited

As stated earlier and as is well known, the condition
for steady-state creep is strain rate _e = const. In the
context of the present work, it is important to discuss
critically the underlying assumptions that lead to this
definition of steady-state creep. For this purpose, the
derivation of the well-known recovery creep model[35] is
recalled.

Quite generally, the shear flow stress can be expressed
according to Seeger[36] as follows:

s ¼ sG þ s� _e;Tð Þ; ½9�

where sG represents the so-called athermal stress that
depends on temperature only through the temperature
dependence of the shear modulus G and is given by the
Taylor flow-stress law, as introduced in Eq. [1]:

sG ¼ aGb
ffiffiffi
q

p ðwitha ¼ const:Þ

On the other hand, s� _e;Tð Þ is the so-called effective or
thermal stress that contains the dependence on temper-
ature T and strain rate _e. Following Bailey and Orowan,
see Cottrell,[35] the differential change of the (axial) flow
stress r can be written in terms of a strain-dependent
hardening term h and a time-dependent recovery term r
as follows:

dr ¼ @r
@e

deþ @r
@t

dt ½10�

dr ¼ h � de� r � dt ½11�

Steady state is attained, when the dislocation pro-
duction rate _qþ is exactly balanced by the dislocation
annihilation rate _q�, i.e.,

_qþ ¼ _q� ½12�

Then, dr = 0, and one obtains from Eqs. [10] and
[11] the well-known following result for the ‘‘steady-s-
tate’’ creep rate:

_ess ¼ � r

h
½13�

In the following, one major point will be to show that
the assumption made in Eq. [12] and the assumption
made earlier, namely that the dislocation densities (and
hence the flow stress) remain constant, Eq. [7], are not
exactly fulfilled in the course of deformation. In fact, it
will be shown that during the quasi-stationary defor-
mation of an initially undeformed material, after a
mechanical steady state has previously been attained, a
persisting increase of the dislocation density is found,
implying that in violation of Eq. [12].

_qþ> _q�: ½14�

It will also be shown that, at the same time, the
arrangement factor a decreases non-negligibly during
quasi-stationary deformation. These two effects are
largely self-compensating, thus rendering the overall
effect on the flow stress marginal. A more detailed
discussion will be given in Sections VI–C and VII–C.

C. Experimental Assessment of Microstructural Changes
After Attainment of Mechanical Steady State
(Microstructural Steady State is Not Attained)

In many metals and alloys, dislocation cell/subgrain
structures form in high-temperature creep. Figure 5
shows two examples of dislocation subboundaries of a
creep-deformed Al-11 wt pctZn alloy.[31] In general,
such subboundaries consist of networks composed of
dislocations of two or more interacting slip systems. The
spacings s in the subboundaries can be determined from
such micrographs. Here, it is of interest to note that,
even during the so-called steady-state creep, after the
strain rate has become constant, these cell structures
continue to undergo appreciable changes. According to
our earlier definitions, compare Section III, this case of
mechanical steady-state creep is simply a preliminary
stage in the process of quasi-stationary creep deforma-
tion. In the subsequent assessment of the microstruc-
tural changes which persist in this stage of creep
deformation, the following features of the dislocation
pattern should be documented carefully: changes of the
cell/subgrain size d, changes of the dislocation spacings s
(mesh size), changes of the dislocation density q, and
changes of the lattice misorientations h across the cell
boundaries.
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In Figures 6(a) and (b), the variations of the subgrain
size d and the mesh size s in creep-deformed Al-11 wt
pctZn alloy[31] are shown. Even after the so-called steady
state has been attained, defined by constancy of the
subgrain size d beyond a strain of about 0.24 (marked by
the red bold broken vertical line in the figure), the
dislocation spacings s (mesh size) in the networks
continue to decrease. In the same work, an even stronger
change after entering the steady-state regime is found
for the misorientations h across the subgrain bound-
aries, as shown in Figure 7.

In line with this work, Blum,[10] in a study on
creep-deformed Al-5 at. pctZn, also noted that the

dislocation spacings s continued to decrease after the
subgrain size d had become constant, as shown in
Figure 8. In addition, Blum was able to show that the
a-factor decreased systematically by about 25 pct with
increasing strain e, namely from 0.38 to 0.27, as the
strain increased from 0.02 to 0.32, compare Table I.
This behavior is in satisfactory semi-quantitative agree-
ment with the prediction derived in Section V–B.
Kassner et al.[37,38] found very similar results, as those

shown in Figure 6 for creep-deformed Al-11 wt pctZn
alloy, in a study of creep-deformed 304 stainless steel.
These data are shown in Figure 9. In another study,
Kassner and McMahon showed that, in creep-deformed

Fig. 5—Two examples of different dislocation subboundary microstructures in creep-deformed Al-11 wt pctZn alloy. Reprinted with permission
from Ref. [31].

Fig. 6—Variations of the subgrain size d and mesh size s in creep-deformed Al-11 wt pctZn alloy. (a) Decrease of dislocation subgrain/cell sizes
until attainment of steady state, i.e., d = const. (b) Continued decrease of dislocation spacings s (mesh size) after attainment of steady state.
Adapted with permission from Ref. [31].
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aluminum, some low-angle boundaries transform into
high-angle boundaries[39] with larger misorientations
with increasing strain, compare Figure 10. In summary,
it is evident that in the so-called steady-state creep, after
the subgrain size has become constant, the misorienta-
tions continue to increase, while at the same time the

dislocation spacings s decrease. The decrease of s at
constant cell size d implies that the overall dislocation
density q has increased. Since misorientations are
generally accommodated by geometrically necessary
dislocations (GNDs), it is suggested that GNDs con-
tribute appreciably to the increase of the dislocation
density. In related work, Kassner and Perez-Prado[37]

substantiated the noted increase of misorientation angle
and the continuing decrease of the dislocation spacings
by considering other published work on different
materials.
In summary, after attainment of mechanical steady-

state creep deformation, defined by the constancy of the
cell/subgrain size, the following microstructural changes
continue persistently:

(a) the dislocation spacings s (mesh size) in the cell
wall networks continue to decrease

(b) the lattice misorientations h across the sub-
grain/cell boundaries continue to increase, indica-
tive of an increasing content of GNDs

(c) the overall dislocation density q, with an appre-
ciable GND content, increases

Fig. 7—Continued increase of misorientations h across subgrain
(cell) boundaries after attainment of steady state (_e = const. d =
const.) in creep-deformed Al-11 wt pctZn alloy. Adapted with
permission from Ref. [31].

Fig. 8—Creep deformation of Al-5 at. pctZn alloy well into steady
state (strain rate _e = const., top subfigure, and subcell size d =
const., medium subfigure). Note continued decrease of dislocation
spacings s after attainment of steady state (medium subfigure). The
variations of the dislocation density q and of the volume fraction
fsub of subcells are also shown. Adapted with permission from Ref.
[10].

Table I. Variation of a-Factor with Increasing Creep Strain e
in Creep-Deformed Al-5 at. pctZn ALLOY

e a

0.02 0.38
0.05 0.33
0.32 0.27

Values According to Blum[10]

Fig. 9—Variations of the subgrain size d and mesh size s in
creep-deformed stainless steel AISI 304.[37,38] (a) Decrease of
dislocation subgrain sizes until attainment of steady state, i.e., d =
const. (b) Continued decrease of dislocation spacings s after
attainment of steady state. Adapted with permission from Ref. [37].
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(d) the a-factor decreases systematically with increas-
ing creep strain.

Finally, it should be noted that the microstructural
changes observed during quasi-stationary high-temper-
ature creep do not come to a halt, because typical creep
strains are rather small and do not exceed some 10 pct.
Thus, a final constant steady-state microstructure is
usually not reached. In contrast, to be shown subse-
quently, in cyclically deformed materials, where large
cumulative plastic strains of some 100 pct are reached,
the microstructure ultimately attains a true microstruc-
tural steady state.

D. Insensitivity of the Flow Stress to Small
Microstructural Changes

The preceding discussion has shown that non-negli-
gible microstructural changes occur at constant flow
stress in quasi-stationary creep. In order to understand
this behavior, the following flow-stress equation in the
form introduced by Ashby,[40] with a modification by
the author,[41] is discussed:

s ¼ aGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs þ bqG

p
½15�

In this equation, qs and qG denote the densities of
statistically stored and geometrically necessary disloca-
tions, respectively. The factor b takes into consideration
that only a fraction b<1 of the geometrically necessary
dislocations that act as forest dislocations enhances the
flow stress.[41,42] Based on the preceding discussion of
the observed microstructural changes, it follows that the
term qs þ bqG increases during deformation. However,
since the a-factor decreases at the same time, these two
effects are almost self-compensating. Altogether, the
increase of qs þ bqG thus has little effect on the flow
stress.

VII. STEADY-STATE CYCLIC DEFORMATION
IN SATURATION

A. Relation Between Steady-State Cyclic Deformation
and Cyclic Slip Irreversibility

In cyclic deformation, dislocations glide to and fro. At
very small strain amplitudes and hence very small
dislocation glide paths, it becomes improbable that
two dislocations of opposite sign will annihilate mutu-
ally when they meet. For a particular type of disloca-
tions, arranged in groups of n dislocations, the condition
that dislocations will not annihilate can be formulated
for a plastic shear strain amplitude cpl and an annihi-
lation distance y in terms of a parameter b as follows[42]:

b ¼
2cply

bn
<1 ½16�

This implies that as long as b<1, the same dislocations
can travel to and fro reversibly without any microstruc-
tural changes, whereas for b ‡1, annihilations will occur
and slip becomes irreversible. In this latter case, steady
state will be maintained through a dynamic equilibrium
between generation and annihilation of dislocations.
Under conditions of partly irreversible slip, a cyclic slip
irreversibility p can be defined as the ratio between the
irreversible part cpl,irr of the shear strain amplitude and
the shear strain amplitude cpl as follows:

p ¼
cpl;irr
cpl

½17�

Thus, slip will be reversible for p = 0 and increasingly
irreversible for p > 0. In the first (trivial) case, steady
state is maintained without any microstructural changes,
whereas in the second case, steady state obtains through
a dynamic equilibrium between generation and annihi-
lation of dislocations.

Fig. 10—Creep-deformed aluminum.[39] (a) Low-angle grain boundaries at e = 0.6. (b) Increasing fraction of high-angle grain boundaries at e =
7.89. (c) Increasing misorientations, referring to (b) at e = 7.89. Reprinted with permission from Ref. [39].
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B. Experimental Assessment of Persisting
Microstructural Changes After Attainment of Mechanical
Steady State and Final Approach to a Microstructural
Steady State

Figure 11 shows a sequence of TEM micrographs
obtained on copper single crystals after cyclic deforma-
tion to quite different numbers of cycles.[43] The spec-
imens are viewed in ð1�21Þ sections along the line
direction of the primary edge dislocations and perpen-
dicular to the primary Burgers vector b. The sequence
shows, from left to right, the well-known ‘‘ladder’’
structure of persistent slip bands (PSBs) with primary
edge dislocation walls in the early stage (number of
cycles N = 5000), and the variations observed at a later
stage (N = 1.34 9 105 cycles) and at a much later stage

(N = 3.6 9 106 cycles). The very high number of cycles
in the latter case could only be obtained by performing
the cyclic deformation in vacuum, whereby fatigue
failure is delayed by about a factor 10.[43] In this
sequence of micrographs, there is a very slight increase
of the cyclic stress amplitude, resulting from a weak
‘‘secondary’’ cyclic hardening.[44] The main purpose is to
illustrate the nature of the very slow specific microstruc-
tural changes that occur during prolonged cycling at
almost constant stress amplitude. In early saturation
(number of cycles N = 5000), no dislocations are
located along the interface between the PSB ladder
structure and the adjacent so-called matrix (vein)
structure, compare References 43, 45. Then, after N =
1.34 9 105 cycles, the PSB–matrix interface has become

Fig. 11—Microstructural changes in ‘‘ladder’’ structure (primary edge dislocation walls) of persistent slip bands (PSBs) in fatigued copper single
crystals, based on unpublished work in Ref. [43]. (a) Early stage, N = 5000 cycles. (b) Later stage, N = 1.34 9 105 cycles. (c) Much later stage,
N = 3.6 9106 cycles.

Fig. 12—Cyclic hardening and increasing lattice misorientations in cyclically deformed copper single crystals.[46] (a) Cyclic peak shear stress s vs
number of cycles N, shear strain amplitude cpl = 4.5910�3. Saturation (indicated by vertical red arrows) occurs after ca. 200 cycles. (b)
Broadening of X-ray rocking curves for reflections of type {200} as a function of number of cycles N. Saturation occurs after about 2000 cycles.
Adapted with permission from Ref. [46].
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wiggly and is decorated with secondary dislocations,[43]

and a kind of cell structure has developed inside the
PSBs. The varying background contrast indicates
noticeable misorientations with respect to the matrix
structure. Finally, after even larger numbers of cycles (N
= 3.6 9 106 cycles), the regular dislocation walls have
been completely replaced by closed cell structures,
elongated along the direction of the Burgers vector,
with marked misorientations. In the present context, it is
important to note that the microstructural changes
observed, namely an increase of (secondary) dislocation
density, including GNDs (inferred from the misorienta-
tions) and the actual misorientations develop very
slowly at almost constant stress amplitude.

These findings will be addressed in more detail in the
subsequent Figures 12, 13, 14, and 15, which illustrate
different types of evolutions of the dislocation
microstructure in real so-called steady-state cyclic
deformation. Referring to the work of Wilkens

et al.,[46] Figure 12(a) shows on the left two cyclic
hardening curves (cyclic peak shear stress s vs number of
cycles N). Referring to the curve for the larger plastic
shear strain amplitude cpl = 4.5 9 10�3 (saturation is
indicated by a vertical arrow after about N = 200
cycles), Figure 12(b) shows the development of misori-
entations, as measured by the broadening of X-ray
rocking curves for reflections of type {200} as a function
of number of cycles. It is important to note that
saturation of the broadening is observed about a factor
of 10 later than mechanical cyclic saturation, namely
after about 2000 cycles. Since the misorientations are
essentially accommodated by GNDs, these results imply
that the density of the GNDs continues to increase well
beyond mechanical saturation at constant stress.
Figure 13 from the work of Polák[47] shows the

development of the torsional shear stress in copper
polycrystals fatigued in torsion at 77 K and the
corresponding changes of the electrical resisitivity Dqel

Fig. 13—Cyclic deformation in torsion of thin copper wires at 77 K.[47] With permission of Academia, Prague. (a) Shear stress s vs number of
cycles N. (b) Corresponding changes of the electrical resistivity Dqel as a function of N. Adapted with permission from Ref. [47].

Fig. 14—Cyclic hardening and increase of coercive force Hc in cyclically deformed nickel single crystals at room temperature. (a) Up to 200
cycles. (b) Up to 2000 cycles. Note that, in the original thesis: units of coercive force Hc are in mOe, and the units of the stress are in kg/mm2.
Adapted with permission from Ref. [48].
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as a function of number of cycles. The electrical
resisitivity change Dqel is directly proportional to the
total defect density, i.e., essentially to the total density of
deformation-induced dislocations and point defects.
Polák showed by annealing experiments that about 50
pct of the electrical resistivity changes are due to the
dislocations. Referring only to the curves for the largest
amplitude in Figure 13, the following is noted. Whereas
saturation of the torsional stress occurs already after
about 100 cycles, the change in electrical resistivity
saturates only after about 1000 cycles, i.e., a factor of 10
later. It follows that the density of defects continues to
increase long after mechanical saturation has been
attained.

In ferromagnetic materials like a-iron and nickel,
measurements of the coercive force Hc can be used
advantageously to study the evolution of defect den-
sity.[24,48] Since the coercive force Hc is directly propor-
tional to �q,[24] it is directly proportional to the flow
stress s. The cyclic saturation behavior of both a-iron
single crystals[24] and nickel single crystals[48] has been
studied by magnetic measurements of the coercive force.
In Figures 14(a) and (b), results obtained on cyclically
deformed nickel single crystals are shown. It is evident
that the coercive force Hc continues to increase beyond
almost 2000 cycles, whereas the shear stress amplitude s
has saturated already after about 400 cycles. Quite
similar results were obtained in the studies on a-iron
single crystals.[9,24] In both cyclically deformed a-iron
single crystals and nickel single crystals, a truly
microstructural steady state, characterized by attain-
ment of a constant value of the coercive force Hc,
comparable to a saturation of the electrical resisitivity
changes in Figure 13, was not attained. This is
attributed to the fact that the number of cycles was
too small. In all probability, the coercive force would
have saturated, had the number of cycles been suffi-
ciently large.

To summarize, the conclusions drawn from
Figure 14, together with the similar conclusions drawn
from Figure 13, and the observations that follow from
Figure 12, provide proof that, in the so-called steady-
state cyclic saturation, the density of the defects,

essentially dislocations, continue to increase and that
GNDs constitute a substantial part of the increasing
dislocation density. As will be discussed in more detail in
Section VII–D, it follows from the results of Polák’s
work on torsionally deformed copper[47] and from the
cyclic deformation studies on ferromagnetic a-iron
single crystals[24] and nickel single crystals[48] that the
arrangement factor a must have decreased systemati-
cally, as the dislocation density continued to increase
after mechanical steady state had been attained.
Finally, Figures 15(a) and (b) show TEM micro-

graphs of the dislocation distribution in cyclically
deformed a-iron single crystals[28] in early saturation
and in deep saturation, respectively. These micrographs
document that, during continued cycling deeper in
saturation, the cell boundaries become sharper, and
the overall dislocation density and the misorientations
(which are indicative of GNDs) increase. This finding
matches the conclusions drawn earlier from Figures 12,
13, and 14 and confirms that, at more or less constant
stress, non-negligible microstructural changes occur and
persist. The explanation follows along similar lines as
explained earlier in Section VI–C in the case of
high-temperature creep.

C. Explanation of Constancy of Flow Stress During
Simultaneous Increase of Dislocation Density

Referring again to the flow-stress equation, Eq. [1]:

s ¼ aGb
p
q;

the simultaneous constancy of both s and q, can only be
explained as follows:

(a) either a = const., and q = const. (trivial!)
(b) or q has increased, while a has decreased as a

result of a change in the dislocation arrangement.

Since the first case is trivial, the second case, i.e., a
decrease of the arrangement factor a as a result of a
change of the dislocation arrangement, is more probable
and considered realistic and will be considered in more
detail subsequently.

Fig. 15—TEM micrographs of the dislocation distributions in cyclically deformed a-iron single crystals.[9,28] (a) Early saturation. (b) Deep in
saturation. Reprinted with permission from Ref. [9].
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D. Semi-quantitative Estimate of the Decrease
of the a-Factor in Mechanical Cyclic Saturation

The decrease of the arrangement factor a during
mechanical saturation can be estimated as follows. In
the case of Polák’s measurements of the electrical
resisitivity of copper deformed in torsion at 77K,[47]

the electrical resistivity continued to increase after the
shear stress had already become constant (mechanical
saturation) by about 55 pct until it reached a constant
value (microstructural saturation). Since this increase is
proportional to the dislocation density q, it follows that
a must have decreased by a factor 1/�1.55, i.e., from the
initial value a � 0.4 to a � 0.32.

In a similar fashion, the decrease of a can be estimated
also, based on the change of the coercive force Hc in the
cases of cyclically deformed nickel and a-iron single
crystals. In this case, the coercive force Hc increased by
� 50 pct in cyclic ‘‘mechanical’’ saturation, hence, a
must have decreased accordingly. Since Hc is propor-
tional to �q, a must have decreased by a factor of 1/1.5,
i.e., from a � 0.4 to a � 0.27. Within the limits of this
crude estimate, this result is in satisfactory agreement
with the values found above, based on electrical
resisitivity measurements.

These estimates are of necessity only approximate.
Nonetheless, it can be concluded that the arrangement
factor a decreases non-negligibly by 20 pct or more with
increasing deformation (and increasing heterogeneity) in
cyclic saturation in the so-called steady state. The
qualitative agreement of this behavior with the predic-
tions of the composite model (Section V–B) is gratify-
ing. Moreover, it should be noted that the present
results for cyclic deformation are in line with the
findings in the case of high-temperature creep, Table I.
It is concluded that the heterogeneity of the dislocation
distribution has an appreciable effect on the flow stress
and that this has hitherto been overlooked.

VIII. SUMMARY OF PERSISTENT
MICROSTRUCTURAL CHANGES DURING

‘‘MECHANICAL’’ STEADY-STATE
DEFORMATION IN BOTH HIGH-TEMPERATURE

CREEP AND IN CYCLIC DEFORMATION
IN SATURATION

First, it is noted that the persistent microstructural
changes that continue to occur in both the so-called
steady-state high-temperature creep, defined by constant
strain rate, and in steady-state cyclic saturation, defined
by the constancy of the stress amplitude during
strain-controlled cyclic deformation, are very similar
or even identical. In both cases, the following
microstructural changes continue persistently:

(a) The dislocation arrangement undergoes continu-
ous changes.

(b) The lattice misorientations h across the cell
boundaries continue to increase, indicative of an
increasing content of GNDs.

(c) The overall dislocation density q, with an appre-
ciable GND content, continues to increase.

(d) The a-factor decreases systematically from a
starting value of a � 0.4 by about 20 pct or more
with increasing cyclic or monotonic creep
deformation.

There is one important difference between the two
cases of the so-called steady-state deformation that must
be noted. In tensile high-temperature creep, a truly
microstructural steady state is usually not attained,
simply because the creep strains to failure (in the order
of only up to some 10 pct) are too small. In contrast, in
steady-state cyclic deformation, after a very large
number of cycles, very high cumulative plastic strains
of the order of 10 can be reached. For this reason, a
truly microstructural steady state can be attained after a
sufficiently large number of cycles, as documented in
Figures 12 and 13.

IX. VALIDITY OF EMPIRICAL RELATIONSHIPS
BETWEEN FLOW STRESS AND

MICROSTRUCTURAL PARAMETERS

An important conclusion of the preceding consider-
ations is that, in quasi-stationary deformation, at a
particular stress, the dislocation microstructure lags
behind the microstructure that would develop under
truly steady-state conditions (mechanically and
microstructurally). If one considers on the other hand
a material that has been deformed under non-steady-
state conditions at different temperatures to a particular
stress, one could expect that the microstructure would
lag behind the microstructure that would have devel-
oped under truly steady-state conditions. Somewhat
surprisingly, a large body of experimental evidence
indicates, in first approximation and within the scatter,
that in both cases the dislocation density and the
cell/subgrain sizes depend in much the same way on the
stress, especially if the stress is corrected for the
temperature dependence of the elastic constants, as
probably first shown by Pratt.[49] As discussed in more
detail earlier,[8] based on a large number of related
studies, referring to high-temperature creep deforma-
tion,[50] cyclic deformation,[51,52] and tensile straining at
constant strain rate,[53] the shear flow stress s in all these
cases is usually related to the cell/subgrain size d as
follows:

s � C
Gb

dm
; ½18�

where C is a constant. The exponent m is frequently
about 1 and the constant C about 10. In some cases,
especially in the case of stronger boundaries/cell walls,
lower values of m like 0.5 (corresponding to a Hall–
Petch type hardening) have been found.[54] It is inter-
esting to note that Mandigo[55] was able to show for a
variety of materials deformed under widely different
conditions, that the dislocation densities q and the cell
sizes d are always related as follows:

d � B � q�1=2; ½19�
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where B is a constant. Combining Eq. [18] with m = 1
and Eq. [19], the Taylor flow-stress law (Eq. [1]) is
obtained. All of the above relations are similar to those
obtained by Staker and Holt for tensile-deformed
copper.[53]

The important conclusion is that, irrespective of the
type and details of deformation, the semi-empirical
relationships (1), (15), (18), and (19) are usually obeyed
at least approximately, even when the data are not
obtained in steady-state deformation, as discussed in
more detail earlier.[8] While these considerations show
that the above empirical laws are able to describe the
gross features of the dislocation pattern, it is also clear
that they are unable to capture the more subtle
microstructural details that evolve in the transition
from mechanical to microstructural steady state, as
discussed in this work. Finally, it is noted that Eq. [18],
with m = 1, is actually the ‘‘law of similitude’’,
according to which the dimensions of a given dislocation
pattern simply shrink inversely to the stress, as intro-
duced by Kuhlmann-Wilsdorf.[56]

X. MAJOR CONCLUSIONS
AND IMPLICATIONS

A. Definitions of Mechanical, Microstructural,
and Quasi-stationary Deformation

The preceding analysis and discussion of available
published work on both high-temperature creep and
also cyclic deformation in saturation have provided
clear evidence for persisting ongoing microstructural
changes in the so-called steady-state deformation. Thus,
correctly speaking, what is commonly called steady-state
deformation should in fact be referred to as quasi-sta-
tionary deformation. In general, this comprises the initial
attainment of a mechanical steady state and, finally, also
a microstructural steady state with a ‘‘constant’’
microstructure, characterized by a dynamic equilibrium
between the production and annihilation of microstruc-
tural defects.

B. Rectification of Basic Assumptions and Statements

It follows from the preceding survey of experimental
details and the discussion that a correct description of
the transition to a steady-state deformation must
address the following aspects:

(1) The quasi-stationary nature of the deformation
must be considered.

(2) This implies that a distinction must be made
between the initial attainment of a mechanical
steady state and the transition to a final
microstructural steady state.

(3) In mechanical steady state, the dislocation density
is not constant but continues to increase, i.e., _qþ>
_q�.

(4) Only later, in the approach to a truly microstruc-
tural steady state, the dislocation density tends to
a constant value, resulting from a balance

between the production and annihilation of dis-
locations. In this case, _qþ = _q�, Eq. [12].

(5) As shown and explained, future analysis of the
so-called steady-state deformation, or more pre-
cisely quasi-stationary deformation, must con-
sider that the arrangement factor a is not a
constant but decreases noticeably (by about 20
pct) during mechanical steady-state deformation,
as a result of increasing heterogeneity of the
dislocation distribution. This finding is supported
by the fact that the dislocation density increases,
although the stress is constant (Sections VI–B and
VII–A, VII–C) and is in line with the predictions
of the composite model, when the dislocation
distribution becomes more heterogeneous (Sec-
tions IV–B and VII–B).

C. Implications with Regard to Future Work
and Dislocation Modeling of Plastic Deformation

The present analysis has provided evidence of details
of the microstructural evolution that occur during
quasi-stationary deformation. These details have been
overlooked and/or ignored in earlier work. Thus, in a
more rigorous approach, the following changes and
details in the evolution of the dislocation microstructure
at constant stress (!) deserve more attention and should
be considered explicitly, where necessary:

(a) The continuous increase of the overall dislocation
density q, with an appreciable GND content.

(b) The continuous increase of lattice misorientations
h across the cell walls/boundaries, accommodated
by an increasing content of GNDs.

(c) The marked effect of the heterogeneity of the
dislocation distribution, which is reflected during
quasi-stationary cyclic and high-temperature
creep deformation in a systematic decrease of
the arrangement factor a � 0.4 by about 20 pct
with increasing heterogeneity.

Current flow-stress laws, in which it is assumed that
the arrangement factor a is constant, are inadequate to
describe satisfactorily all details of the microstructural
evolution and the stress-strain behavior. As discussed
earlier, the simple Taylor flow-stress law could be
retained in a formal sense, if one used adjusted
‘‘effective’’ values of the a-factor.[9] However, it would
be much more satisfactory, if refined flow-stress laws
and microstructure-based constitutive equations were
developed which consider explicitly the interaction of
different slip systems and take into account the effects of
heterogeneity (patterning).
Considering the impressive progress made in disloca-

tion modeling, analytically or by 3D Discrete Disloca-
tion Dynamics (DDD)[21,22,57–60] some years ago and
also very recently,[61,62] it is hoped that eventually it will
be possible to model in some detail the specific
microstructural features of plastic deformation which
are revealed in experiment, including the evolution of
the a-factor, during monotonic and/or cyclic hardening
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or softening, and also in quasi-stationary deformation.
Then, with this capability, dislocation modeling could
become a predictive tool rather than only a technique
that strives in many cases just to confirm and/or
reproduce what is known from experiment.
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