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Plastic deformation of metallic materials is an inherently anisotropic process as a result of the
presence of preferential orientations in their crystallographic texture. Crystal plasticity
modeling, which allows simulating the response of polycrystal aggregates taking into account
their texture and other microstructural parameters, has been extensively used to predict this
behavior. In this work, crystal plasticity models are used to deal with the opposite problem:
given a desired behavior, determine how to modify a texture to approximate this behavior in the
most efficient way. This goal can be expressed as an optimization problem, in which the
objective is to find the texture with the best formability properties among all the possible ones.
An incremental optimization method, based on the gradient descent algorithm, has been
developed and applied to different initial textures corresponding to typical steel and aluminum
sheet products. According to expectations, the textures found present a stronger c fiber
component. Moreover, the method sets the basis for the development of more complicated
optimization schemes directed toward optimizing specific materials and forming processes.
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I. INTRODUCTION

SHEET metal forming is one of the main manufac-
turing processes in industry worldwide. Deep drawing of
metal sheets is an essential operation in the production
of vehicles, many construction elements and electronic
devices, and industrial and home appliances. It is
therefore essential to know how the properties of a
metal sheet affect its capacity to be deformed and the
quality of the final products. Indeed, the scientific
community has extensively studied all kinds of problems
related with sheet metal forming,[1] making use of the
most advanced techniques in the fields of finite element
modeling[2] and crystallographic texture analysis[3] as
they have become available.

To obtain the best results in a deep-drawing process, a
metal sheet must deform with a specific anisotropic
behavior. An ideal sheet would be one that can
accommodate any arbitrary shape without experiencing
any variation in thickness. More realistically, metal
sheets used in industrial processes are selected such that
the strain in the direction normal to the sheet plane
takes a value as low and uniform as possible.

A. Quantitative Indicators of Formability

Several magnitudes have been proposed to quantify
the formability of metal sheets.[4] The Lankford coeffi-
cients, or r values,[5] and the contraction ratios, or q
values, defined by Bunge,[6] are both widely used.
Although these parameters are not an intrinsic material
property, but affected by external factors such as
specimen geometry and applied strain,[7,8] it is possible
to use r and q values to compare different materials as
long as these factors are carefully controlled. The r and q
values are correlated, but r values present some incon-
venience when used for quantitative data analysis[9]—in
particular for optimization problems—because of the
possibility of infinite values. For convenience, only q
values will be used in the following.
Optimal formability properties will be obtained when

the q value in every direction parallel to the sheet plane
is equal to one. In practice, the aim is that the q values
become as high as possible, while being the same for
every direction. This condition will be evaluated using

JESÚS GALÁN-LÓPEZ is with the Materials Innovation Institute
M2i, Van der Burghweg 1, 2628 CS, Delft, The Netherlands and also
with the Materials Science and Engineering Department, Faculty 3mE,
Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The
Netherlands. Contact e-mail: j.galanlopez@m2i.nl LEO A.I.
KESTENS is with the Materials Science and Engineering
Department, Faculty 3mE, Delft University of Technology and also
with the Department of Materials Science and Engineering, Faculty of
Engineering and Architecture, Ghent University, Technologiepark
903, Zwijnaarde, 9052, Ghent, Belgium.

Manuscript submitted April 12, 2018.
Article published online August 21, 2018

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 49A, NOVEMBER 2018—5745

http://crossmark.crossref.org/dialog/?doi=10.1007/s11661-018-4869-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11661-018-4869-8&amp;domain=pdf


the arithmetic mean and standard deviation of all the q
values between 0 and 90 degrees at 15-degree intervals*.

These magnitudes will be represented with the symbols
lq and rq, respectively, defined as:
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Optimum formability will correspond to the case for
which all the q values are one, which implies lq ¼ 1 and

rq ¼ 0.

B. Crystal Plasticity Modeling

Several crystal plasticity models have been devel-
oped[3,10] to perform predictions of how the mechanical
properties and texture of polycrystalline materials
evolve with plastic deformation. Although some of the
models available nowadays are based on much more
elaborated premises than the first models proposed by
Taylor and Sachs,[11,12] the models based on these
theories[13] still offer one of the best compromises
between accuracy and complexity.

Initially, the models based on the Taylor theory were
only applied to individual crystal orientations and sharp
textures.[14–16] Further developments by Van Houtte
allowed performing simulations involving arbitrary
textures[17] and using these models to predict formability
properties.[13,18,19] For example, Schouwenaars et al
showed that Taylor models can successfully predict the r
values for different low-carbon steel sheets, the evolu-
tion of texture during tensile deformation, and also the
evolution of the r values.[9] In more recent studies,
Wronskia and Bacroix applied the Taylor–Bishop-Hill
theory to study asymmetrically rolled steel to determine
the formability obtained using different rolling param-
eters.[20] This theory has also been applied to the
investigation of aluminum sheets,[21,22] and the results
are comparable to those obtained by more complicated
plasticity models. Another example is the work of An
et al., where different versions of the Taylor model were
used for the calculation of yield loci used in FE
simulations.[23]

Nevertheless, the Taylor theory also has some limita-
tions. For example, Wu et al. showed that the method
does not produce acceptable results when applied to
prestrained aluminum.[24] More generally, Yoshinaga
and coworkers proved that the Taylor theory produces

poor results when applied to model very sharp tex-
tures.[25] In this case, more advanced models are
required in which grain morphology is taken into
account, as shown by Delannay and Barnett.[26]

Other researchers have dealt with the problem using
an analytical approach, completely phenomenologic
such as Rees,[27] in combination with the Taylor model
as done by Huang and Man[28] or applying advanced
hardening laws as in the work of Lee et al.[29,30]

Recently, more advanced crystal plasticity models have
been developed, which take into account the neighbor-
hood of each grain to calculate the behavior of the
polycrystal. These models have been proved useful for
the calculation of anisotropy of metal sheets, as for
instance in the work of Sidor et al.[22] which shows that
the most accurate predictions of r values for aluminum
sheets subjected to asymmetric rolling are obtained
using the ALAMEL model,[22] although only marginally
better than using models based on the Taylor theory (or
VPSC). Other models that have been tried in this
context include the VPSC model,[22,31] a combination of
Taylor with ALAMEL used by Gawad et al.[32,33] or the
N-site interaction model by Delannay, Kalidindi and
Van Houtte.[34] Even full-field solutions using crystal
plasticity finite element modeling (CPFEM) have been
applied to the problem by the group of Raabe and
Roters in the Max-Planck Institut für Eisenforschung[35]

and also using crystal plasticity fast Fourier transforms
(CPFFT) to solve crystal plasticity problems in the
frequency domain.[36] But it should be noted that a
higher level of complexity does not always translate into
a more accurate solution.

C. Optimization of Crystallographic Texture

Although some researchers have identified theoretical
maxima for r values at simplified conditions (for
example, O’Brien et al. found in Referance 37 a
maximum of r ¼ 3 for an ideal [111] texture), not many
published studies specifically consider the problem of
finding the ideal texture for optimum formability.
Studies by Delannay et al. have attempted to optimize
textures using a components-based description,[38] but
the range of textures that can be represented by this
method is limited. The most notable effort to date is the
microstructure-sensitive design methodology by Adams
et al., which attempts to solve the problem defining the
set of possible solutions in the Fourier space, first
applied to the optimization of texture for improved
elastic properties[39] and later extended to cover a full
range of microstructural features and the optimization
of different thermal and mechanical properties.[40] More
recently, Liu and coworkers from MIT presented a
machine-learning approach that was applied to the
optimization of a Fe-Ga alloy microstructure for
enhanced elastic, plastic and magnetostrictive proper-
ties.[41] The most important advantage of this method,
which is its capacity to find global optima, is also its
biggest drawback, since it is not immediately obvious
how this information could be applied to improve an
existing texture.

*The more traditional �q and Dq indicators, calculated on the basis of
the q0, q45 and q90 values only, are not used here to avoid incorrectly
interpreting the cases for which q0 þ q90 ¼ 2q45 as lack of planar
anisotropy.
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D. Overview

In this article, a new optimization method for the
improvement of the formability properties of textures is
presented. After this introduction, the texture analysis
and crystal plasticity methods used are described as well
as how the gradient descent algorithm has been imple-
mented for the optimization of a generic function
dependent on texture and for the particular problem
of sheet formability. The method is then applied to the
optimization of several typical BCC and FCC textures.
Finally, the obtained results are discussed and some final
conclusions are derived.

II. OPTIMIZATION METHOD AND MODELING

The goal of the optimization method is to find how to
modify an existing texture to improve its formability.
More specifically, the method will determine how this
texture must be altered to improve its associated q
values as predicted by a given crystal plasticity model,
which in this case will be a model based on the
Taylor–Bishop-Hill theory. However, to present the
problem in the most general way, the method is first
introduced for a general objective function and later
specialized for the case of sheet formability.

A. Orientation Distribution Function

The starting point of the optimization is an initial
texture. This texture can be the result of a measurement
in an existing material, performed using the elec-
tron-back-scatter-diffraction (EBSD) or X-ray diffrac-
tion (XRD) techniques, or a modeled texture, as, for
example, a perfectly random texture or a fiber texture.
In practice, a given texture will be represented by its
associated orientation distribution function (ODF),
which correlates an intensity (or probability) with each
possible orientation. This function can be expressed as a
series expansion using the harmonic method of
Bunge[42]:

g u1;U;u2ð Þ ¼
X1

l¼0

Xþl

m¼�l

Xþl

n¼�l

Cmn
l Tmn

l u1;U;u2ð Þ ½2�

where an orientation is defined by the three Euler angles
ðu1;U;u2Þ, the functions Tmn

l ðu1;U;u2Þ are the gener-
alized spherical harmonics of order l, m, n, which are
known, and the Cmn

l coefficients—called C-coeffi-
cients—are a set of coefficients that unequivocally define
a texture.

Theoretically, expression [2] defines an infinite series.
In practice, only a finite number of terms of the series
expansion can be used. For cubic materials, it is known
that l ¼ 22 usually is a sensible value, since it offers
enough accuracy for most purposes and, as Bunge
proved, is the maximum that can be determined by
conventional XRD characterization techniques.[42] As a
consequence of truncating the series, the estimated ODF
is sharper than the real function. On the one hand, for
certain orientations, the ODF will take negative values,

which is obviously incorrect in a probability function.
On the other hand, the negative values have associated
opposite values, which are overestimations of the real
ODF, commonly called ‘‘ghost peaks.’’
Different methods have been developed to correct an

existing ODF to guarantee its positivity and eliminate
the associated ghost peaks. The exponential method
presented in Reference 43 consists of two phases: in the
first one, the GHOST method,[44] is used to find an
initial approximation. Then, non-negativity of the ODF
is enforced by minimizing the error with respect to an
exponential (always positive) function. This two-step
procedure will be the one used in this work whenever a
texture needs to be corrected. Nevertheless, it has to be
noted that applying the ghost correction method
inevitably smooths the function. Therefore, negative
values and ghost peaks cannot be completely eliminated,
and a compromise must be made.
In this work, the MTM-FHM software for texture

analysis,[45] developed by Van Houtte in KU Leuven,
has been used for the calculation of ODFs, its graphic
representation and ghost correction**. All the ODFs are

calculated using l ¼ 22, and negative values in the ODF
are allowed only if (in absolute value) they are less than
10 pct of the maximum.

B. Texture Optimization Using the Gradient Descent
Method

The goal of the optimization process is to find the
texture for which an objective function is minimized
(maximization and other problems can be easily
expressed as a minimization problem). In the most
general form, this function will be a vector-valued
function, such that each of its components is defined as a
multivariate function of the C-coefficients. The problem
consists in finding the set of coefficients that minimize all
the components of the objective function. When opti-
mizing a crystallographic texture, and specially if this
texture corresponds to a commercial product, the
possibilities to modify the processing method usually
are very limited. Additional conditions can be intro-
duced in the problem in the form of constraints, but it
will still be desirable to know how a current texture can
be modified to improve its properties in the most
efficient manner, what the obtained improvement would
be, and how the original texture can be gradually
modified to reach this goal. Therefore, the gradient
descent methods will be preferred instead of a deriva-
tive-free optimization. The necessary constraints will
highly depend on the specific process and therefore will
not be treated here.
It is acknowledged that a gradient descent method is

only able to find local minima. However, the solution
approaches these minima in the fastest possible manner,
such that a maximum improvement is obtained with

**Some programs have been slightly modified, for example, to
output their results with higher precision or produce ODF graphs with
a consistent color scale.
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small, incremental modifications. In practice, the capac-
ity to modify existing production methods is very
limited; therefore, it is of more interest to find how to
improve an existing texture in the most efficient way
than in the right direction to reach a theoretical global
minimum that will most likely correspond to an
extremely sharp texture, impossible to obtain with
current techniques. In case it is possible to further
improve from a local minimum, the method can be
extended, for example, using simulated annealing tech-
niques[46] or a stochastic gradient method.[47]

In a gradient descent method, the minimum is
approximated first calculating (or estimating) the gradi-
ent of the function to optimize and then using this
gradient to find a new solution that reduces the error in
the direction of maximum descent. In the case of texture
optimization, textures are represented by their ODF
and, therefore, it can be considered that the objective
function F, of m components, takes as input a set of n
C-coefficients (F ¼ FðCÞ). A first-order (linear) estima-
tion of the gradient of the function, rFðCÞ, is then
calculated as:

rFijðCÞ ¼
@FiðCÞ
@Cj

¼
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.
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� �
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2

6666666664

3

7777777775

½3�

with C0
j ¼ C1;C2; . . . ;Cj þ Dc; . . . ;Cn, where Dc repre-

sents a small perturbation applied to the coefficient j. In
theory, this linear approximation will approach the
exact derivative when jDcj ! 0, and therefore it is
desirable that Dc is as low as possible. However, if the
variation applied is too low, the deviation may be of the
order of numerical fluctuations, leading to an erroneous
gradient estimation. Again, it will be necessary to find a
compromise solution.

Once the estimation of the gradient is available, the
direction of maximum descent is obtained solving DC in
the following linear system:

�FðCÞ ¼ rFðCÞDC ½4�

Since, in most problems, the number of C-coefficients n
will be larger than the number of components of the F
function m, the system [4] will in general be underde-
termined. Therefore, the problem has infinite solutions,
and some criterion is needed to chose a specific one. In
this study, a solution is chosen arbitrarily, simply
selecting the one obtained when solving [4] using the
least-square method (more explicitly, the system is
solved using the LAPACK[48] function dgelsd from
Numpy). The introduction of additional constraints
would further reduce the number of possible solutions.

A new texture is then found applying a small change
in the direction defined by the solution of [4]:

C0 ¼ Cþ kDC ½5�

The factor k in [5] is defined differently in distinct
variations of the gradient descent method. Some of the
most advanced algorithms determine which is the largest
trust region in which the estimation of the gradient can
be considered valid in order to achieve the fastest
convergence. In the case under consideration, fast
convergence is not desirable, because the goal of the
method is not only to find the optimum values but, more
importantly, to determine how to gradually modify an
existing texture to approach that optimum. To generate
a large number of intermediate steps, the value of k will
be chosen such that the total relative variation in the
C-coefficients does not exceed a limit value K, i.e., k is
chosen such that:

k
P

i DCiP
i Ci

<K ½6�

The set of C-coefficients C0 given by [5] does not
necessarily correspond to a valid ODF because of the
possible appearance of negative values. Therefore, if the
minimum value of the ODF is lower than a defined limit,
the ghost correction method described in Section II–A
will be applied until the desired conditions are met. An
additional advantage of using a ghost correction method
is that it allows limiting the solution space to the even
C-coefficients of the ODF series expansion, such that the
solution space corresponds with the different measure-
ments that can be performed using XRD techniques,
whereby only the even part of the ODF can be
reconstructed from pole figures and odd coefficients
are calculated using ghost correction. Consequently, it
will be necessary to evaluate the objective function for a
total of nþ 1 different ODFs, where n is the number of
independent even C-coefficients in the ODF (125 in the
common case of l ¼ 22 and orthorhombic symmetry).
After the ghost correction method has been applied, a

new texture that produces a lower value of the objective
function is obtained. Another run of the method can be
performed on this new texture until a minimum is
reached or some other stop criterion is met.

C. Texture Optimization for Improved Formability

In this work, texture will be optimized for improved
sheet formability. The objective function is defined as a
function of two components: one is related to the
average of the q values lq and the other to its standard

deviation rq:

FðCÞ ¼
wð1� lqðCÞÞ

ð1� wÞrqðCÞ

" #
½7�

The factor w is a weight that varies depending on the
distance to the objective and a selected tolerance, and if
the solution is converging or diverging. The values lq
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and rq are calculated using the q values given by the
method described in Section II–D and the equations
defined in [1].

An optimization step will consist on first evaluating
the function F with the initial C-coefficients calculating
the q values using the Taylor model (see Section II–D)
and the corresponding lq and rq magnitudes with [1];

estimate the gradient using [3], which will have two
components, one relative to lq and the other to rq, both
of them defined as a function of the Euler angles, and
then solving the linear system in [4]; applying the ghost
correction method if the minimum value of the ODF is
lower than the 10 pct of its maximum, and, finally,
calculating new C-coefficients using [5] and [6], such that
the variation with respect to the previous ones is not
larger than 10 pct (i.e., K ¼ 0:1). This entire process is
represented in Figure 1.

D. Prediction of q Values Based on the Full Constraints
and Relaxed Taylor Theory

The q values corresponding to a given texture and
crystal structure are calculated using a crystal plasticity
model. The Taylor assumption will be applied, which
considers that the strain in every material point is equal
to the macroscopic one. Furthermore, some criterion is
needed to know which of the possible slip planes are
activated to accommodate deformation. The Bishop-
Hill theory[17,49] gives a partial solution of the problem
under the hypothesis that the slip planes activated are
those that minimize the total energy. An additional
condition is needed to obtain a unique solution. The
criterion followed is to choose the solution that mini-
mizes not only the energy, but also its derivative.[50]

In addition to the full constraints Taylor assumption,
the relaxed constraints case will be considered.[51]

Relaxations are introduced in the model adding addi-
tional degrees of freedom in the form of ‘‘pseudo-slip

systems’’ with a critical resolved shear stress of zero. For
instance, the ‘‘pancake’’ model, in which it is assumed
that grains have a pancake-like shape parallel to the
sheet and therefore deform freely in shear along normal
planes, defines two additional pseudo-slip systems:

Ks
mþ1 ¼

001

000

000

2

664

3

775K
s
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001

000

2

664

3

775 ½8�

The implementation of the models used in this study
will again be the one found in the MTM-FHM software
package, where the q values are calculated using a
precomputed solution of the Taylor–Bishop-Hill prob-
lem in the form of a series expansion of Taylor factors
for each possible combination of loading direction in the
sheet plane and contraction ratio (such that 21 equis-
paced values in the domain 0 � q � 1 are considered for
each loading direction). Once a database with all the
possible Taylor factors has been built, it is possible to
find the q values for any texture and loading direction in
a very efficient way. Further details can be found in the
software manual[45] and Reference 13.

III. OPTIMIZATION OF BCC AND FCC
TEXTURES

The method presented in the previous section is
applied to several textures typical for the FCC and BCC
rolled sheets that are employed for press-forming
operations in automotive products, whereby deep
drawability is of crucial importance.
The ODFs of all the initial textures are shown in

Figure 2. It is observed that the BCC1 and BCC2
textures (Figure 2(a)) are typical for a cold-rolled BCC
material, with a strong c fiber and also some intensity

TAYLOR/PC GRADIENTS

SOLVE LINEAR 
SYSTEM

NEW 
ITERATION 

1 2 

3 5 

> 0 
< 0 

> 0 
< 0 

4 
GHOST 

CORRECTION 

> 0 
< 0 

> 0 
< 0 

XRD or
EBSD

q 

Fig. 1—Optimization algorithm: starting with an initial texture, the initial lq and rq values are calculated (1), as well as their gradients with
respect to texture components (2), and used to find the direction of maximum descent and a new texture in that direction (3). Finally, the ghost
correction method is applied if needed (4), before proceeding to a new iteration (5).
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along the a fiber, specially in BCC2, which also shows a
higher intensity around the rotated cube component.
FCC textures [Figure 2(b)], on the other hand, show
strong Goss and P components, characteristic of a
material subjected to recrystallization in an annealing
process after cold rolling.

Figure 3 shows the q values predicted for the initial
textures using different sets of slip systems, while Table I
shows the average and standard deviation for each case.
Table I additionally lists the values for a randomly
textured polycrystal. For BCC textures, either two
systems, f110gh111i and f112gh111i, or also a third
one, f123gh111i, are considered, in both the full
constraints (Taylor) and relaxed constraints (pancake)
models. In the case of FCC textures, the only slip system
considered is f111gh110i, again using the Taylor and
pancake models.

Some differences are observed depending on the
model used, particularly in the case of BCC textures.
However, the effect of the additional slip system is quite
limited. Indeed, although the q values obtained are
larger when using three slip system families, their
variation with the angle is similar to the two slip system
families case. Due to the small differences observed, in
the following only two slip systems will be considered�.

In addition to the rolled sheet textures just presented,
random BCC and FCC textures are studied. In a
random texture, all the orientations have equal proba-
bility and, therefore, the ODF is a constant function.
When the Taylor model is used, a random texture will
show an isotropic behavior independently of its crystal
structure, which means that transversal and normal
strains are always equal to half the longitudinal one and
therefore:

qrnd;a ¼ 0:5 8 a ) lq ¼ 0:5; rq ¼ 0 ½9�

However, when the pancake model is used, some
anisotropy is introduced because the orientation of the
additional slip systems, introduced to provide extra
degrees of freedom, is defined based on the orientation
of the plate and not the crystallographic orientation,
which is the case for conventional slip systems. There-
fore, in this case, lq only reaches 0.433 for BCC and

0.465 for FCC, as can be seen in Table I.

A. Formability Gradient Distribution Function

The gradient of the lq and rq values with respect to
the C-coefficients is estimated using the method
described in the previous sections: given an initial
texture, a small perturbation Dc is applied to each
coefficient (see Figure 4), and the q values calculated
with a crystal plasticity model are compared with those
of the initial texture. As discussed before, it is necessary
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Fig. 2—Selected sections of the ODFs of the initial textures: (a) BCC textures (u2 ¼ 45 deg section). (b) FCC textures (sections at u2 ¼ 0, 45 and
65 deg). On top, the minimal and maximum values of the ODF are displayed.

�This decision is arbitrary. In practice, two or three slip systems
would be chosen depending on which one better approximates the
experimental results.
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to find a value for Dc that is neither too large or too
small. After some preliminary trials, it was decided to
use a value of Dc ¼ 0:01 for every gradient calculation,
independently of the crystal structure and plasticity

model used. This decision will be further discussed in
Section IV–C.
Figures 5 and 6 show the distribution functions of the

gradients of the average and standard deviation of the
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Fig. 3—Initial q values of the (a) BCC and (b) FCC textures in Fig. 2, calculated for seven different directions between 0 and 90, at 15-degree
intervals. At right, a box plot showing the quartiles and limits for each model. See also Table I.

Table I. Average and Standard Deviation of the q Values of the Initial (a) BCC and (b) FCC Textures

Taylor Pancake

f110gþf112g f110gþf112gþf123g f110gþf112g f110gþf112gþf123g

Material lq rq lq rq lq rq lq rq

(a)
BCC1 0.687 0.006 0.656 0.008 0.694 0.004 0.698 0.009
BCC2 0.607 0.004 0.604 0.008 0.618 0.004 0.611 0.007
BCCrnd 0.500 0.000 0.500 0.000 0.434 0.000 0.433 0.000

Taylor Pancake

Material lq rq lq rq

(b)
FCC1 0.377 0.007 0.352 0.004
FCC2 0.402 0.010 0.374 0.006
FCCrnd 0.500 0.000 0.465 0.000

See also Fig. 3
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predicted q values for the initial BCC and FCC textures,
respectively. Since the gradient is calculated with respect
to every coefficient, the rate of change of the formability
indicators is defined for every orientation in the Euler
space and can therefore be represented as a distribution
function using the harmonic series expansion method,
analogous to an ODF. Figure 5 shows that, in all cases,
texture components in the u2 ¼ 45 degree section with
U>30 degrees increase the lq value, while for U<30

degress it decreases. The gradient is less pronounced for
BCC1, since higher initial q values (see previous section)
offer fewer possibilities of improvement. There are some
slight differences depending on which plasticity model is
used, but they all show very similar trends. When

observing the standard deviation gradients, it is seen
that the components along the c fiber always exhibit a
negative value (therefore reduce anisotropy on the sheet
plane), as could be expected. Other components increase
or reduce the standard deviation value depending on the
intensity of the initial texture.
It may seem counterintuitive that negative values are

present in the rq gradient of random textures. Indeed,
since the initial value is zero and, by definition, the
standard deviation is positive, the initial gradient should
also be ‡ zero for every orientation. The appearance of
negative values is again an artifact resulting from
approximating the function using a finite series. How-
ever, since for rq ¼ 0 the weight given to the standard
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-0.67        14.64 -0.67        14.64-0.67        14.64 -0.67        14.64

Fig. 4—Perturbation applied to the initial texture corresponding to the first seven even C-coefficients (for Dc ¼ 1). Maximum and minimum
values are displayed on top.
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Fig. 5—Initial gradient distribution function of the average q values (lq) and their standard deviation (rq) for the textures in Figure 2 using the
Taylor and pancake models, calculated using Dc ¼ 0:01. Maximum and minimum values are displayed on top.
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deviation equation in [7] will be zero, this inaccuracy will
not affect the results.

In the case of FCC textures, shown in Figure 6, it is
observed that both plasticity models yield very similar
results for lq and rq gradients.

B. Optimized Textures

Using the gradients, a new texture with better
formability properties can be obtained applying the
described method. Figure 7 shows the results of apply-
ing this method to different initial textures of commer-
cially available sheet products iteratively, for a total of
500 optimization steps using a K value (see Eq. [6]) of
0.1. In the graph, the evolution of lq and rq is

represented with respect to the average variation of the
ODF, measured using a discretization of the texture in
the Euler space at 5-degree intervals, such that:

var ¼ 1

n1 � n � n2
X

u1

X

U

X

u2

gNðu1;U;u2Þ � g0ðu1;U;u2Þð Þ

½10�

where g0ðu1;U;u2Þ is the initial ODF, gNðu1;U;u2Þ the
optimized texture for step N, and n1, n and n2 are the
number of values for u1, U and u2, respectively (with a
step of 5 degrees and orthorhombic symmetry,
n1 ¼ n ¼ n2 ¼ 17).

Figure 7 shows that, as was the objective, formability
properties are improved. While lq approaches (although
does not reach) the optimal value of one, rq is reduced
and kept below the prescribed tolerance of 0.001. The

graphs show that, for all the textures with the same
crystal structure, the rate at which lq increases is almost

constant for both plasticity models, until it reaches a
plateau, corresponding to a local equilibrium point. The
final value obtained is different for each texture,
showing that the equilibrium point is indeed a local
optimum, as can be expected from a gradient descent
method. The rq value also decreases in a similar way in
every case. However, when BCC textures are optimized,
a change of slope is observed, such that after a relatively
slow decrease, there is a sudden reduction until levels
below tolerance are reached.
Figure 8 shows that both the Taylor and pancake

models produce very similar textures. The optimized
BCC textures progressively become sharper than the
original ones, specially around the c fiber, which
becomes considerably stronger. During the first part of
the optimization, most of the components far away from
this fiber are weakened until the components with low U
values disappear. From this point, which approximately
corresponds to the change of slope in the rq graph in
Figure 7(a), the c fiber becomes more uniform over u1,
better approaching an ideal fiber. Section IV–D will
further discuss the evolution of the c fiber components
during the optimization process.
Figure 9 shows the evolution of the FCC textures.

Also in this case, the differences between the results
obtained with the two plasticity models are hardly
noticeable. Similar to BCC textures, all the studied FCC
textures become sharper during the optimization. Even-
tually, most of the components far away from the a fiber
are reduced until they almost disappear, and the Goss
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Fig. 7—Evolution of average and standard deviation of q values for (a) BCC and (b) FCC textures with respect to ODF variation.
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and P components, which were already dominant in the
FCC1 and FCC2 textures, become even stronger. It is
remarkable that, while a very uniform fiber is obtained
when optimizing a random texture, the optimized FCC1
and FCC2 textures (particularly the latter) show
stronger Goss and P components, as in the correspond-
ing original textures. The different results are once more
a consequence of using a method that finds local
minima. Nevertheless, in all cases the q values are
significantly improved.

IV. DISCUSSION

A. Local Minima

The texture optimization method presented is based
on the gradient descent algorithm and therefore is only
capable of finding local minima, but not global ones.
Initially, it is assumed that producing the textures
corresponding to local minima will already suppose a
challenge for the industry, and therefore there is not an
urgent need to find global optima with even better
properties. However, this assumption must be verified,
checking that the solutions found indeed represent a
significant improvement.

Observing the results from the previous section, it is
obvious that the optimal textures found effectively show
a pronounced increment in formability, and therefore
the results obtained can be applied to the improvement
of industrial processes. Nevertheless, as previously said

in the introduction, it must be noted that the method
presented may be easily extended to also search for
global minima, for example, using some randomization
of the solution using the temperature concept of
simulated annealing algorithms. This approach may be
preferable when additional constraints are introduced in
the problem.
In industrial applications, it is generally known which

theoretical textures are needed to obtain optimum
properties. However, reaching these textures with actual
techniques is not an option. To modify current pro-
cesses, the industry wants to know how to achieve the
maximum improvement with minimum changes. A
gradient descent optimization provides exactly this
information. For example, Figure 10 shows the first
increment of the optimization (using the Taylor model)
for the three BCC textures. Although all the textures
reach a similar optimum (see Figure 8), close to a
gamma fiber, and the BCC1 and BCC2 textures were
very similar [Figure 2(a)], there are subtle differences in
the increments shown in Figure 10. Knowing that
modifications to an existing texture should approach
the results from Figure 10 is more useful information
than the knowledge of an unreachable optimum texture.

B. Crystal Plasticity Model

It was already well known, as mentioned in the
introduction, that the Taylor and pancake models give
different predictions of q values. Similar results are
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Fig. 8—BCC textures obtained during the optimization process. On top, the variations of the ODF [see (10)], lq (in bold) and rq, corresponding
to each texture, are displayed on the first line and the maximum and minimum values on the second one. For each case, the ODF sections
corresponding to three different instants of the optimization are shown: at the beginning of the process, the approximate middle and the end of
the process.
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Fig. 9—FCC textures obtained during the optimization process. On top, the variation of the ODF [see equation [10]], lq (in bold) and rq,
corresponding to that texture, as well as the maximum and minimum values. For each case, the ODF sections corresponding to three different
instants of the optimization are shown: at the beginning of the process, the approximate middle and the end of the process.
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obtained in this study. Indeed, Figure 3 shows that, in
general, the Taylor model returns slightly higher lq
values. There are also appreciable differences in the
variation of the values with respect to a. While for FCC
materials both models give a similar trend but with
higher rq values using the Taylor model, for BCC
textures the pancake model gives higher standard
deviation. Moreover, although the highest r value is

always found at 90 deg with respect to the rolling
direction, the minimum is found at lower a values using
the pancake model.
Despite these differences, the gradients presented in

Figures 5 and 6 are very similar independently of the
model used, specially the lq gradient. There are some

differences observed in the gradient of rq but, as can be
seen in Figures 8 and 9, the obtained textures for an
equivalent variation of the ODF are actually almost
identical.
It remains to be studied how the method would

behave using other plasticity models, as, for example,
the ALAMEL[52] or VPSC[53] models. However, the
larger complexity of these models makes them much less
suitable for its usage in an iterative method as the one
presented here, where the spectral technique used to
solve the Taylor–Bishop-Hill theory offers an excep-
tionally high performance. Nevertheless, it is possible to
considerably speed up the optimization process per-
forming different simulations in parallel. Moreover, it
can be presumed that using more elaborated models will
become a feasible option with further advancements in

Fig. 10—Increment with respect to the original textures in Fig. 2(a)
after the first optimization step from Section III using the Taylor
model.

0.680

0.685

0.690

0.695

0.700

0.705

0.710

0.715

0.720

0.725

0.730

 0.0001  0.001  0.01  0.1 1

 (-)  (-)  (-)

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0.740

 0.0001  0.001  0.01  0.1 1
0.500

0.550

0.600

0.650

0.700

0.750

 0.0001  0.001  0.01  0.1 1

 (
-)

BCC1 BCC2 BCCrnd

1.000 
0.750 
0.500 
0.250 
0.100 
0.075
0.050 
0.025 
0.010 

(a)

0.300

0.400

0.500

0.600

0.700

0.800

0.900

 0.0001  0.001  0.01  0.1 1
0.300

0.400

0.500

0.600

0.700

0.800

0.900

 0.0001  0.001  0.01  0.1 1
0.500

0.550

0.600

0.650

0.700

0.750

 0.0001  0.001  0.01  0.1 1

 (-)  (-)  (-)

 (
-)

FCC1 FCC2 FCCrnd

1.000 
0.750 
0.500 
0.250 
0.100 
0.075
0.050 
0.025 
0.010 

(b) 

Fig. 11—Value of lq obtained for k ¼ 0:01; 0:025; 0:050; 0:075; 0:1; 0:25; 0:50; 0:75; 1 and Dc ¼ 0:0001; 0:001; 0:01; 0:1; 1 after 50 optimization steps
for (a) BCC and (b) FCC textures.
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computing capacity�. Therefore, this option is already

being investigated and currently is a work in progress.

C. Choice of Optimization Parameters

In Sections III–A and III–B, the optimization param-
eters Dc and K were set to the values 0.01 and 0.1,
respectively. The Dc value, defined in Eq. [3], defines the
perturbation applied to estimate the gradient, while K,
defined in [5], limits the relative change between con-
secutive optimization steps. This section discusses in
more depth the validity of the chosen values. With this
goal, 50 optimization steps are performed using all the
BCC and FCC textures for different k values ranging
from 0.01 to 1.0 and Dc values from 0.0001 to 1.0.

Figure 11 shows the lq value obtained for each case
using the Taylor model (analogous results are obtained
for rq and using the pancake model, not shown in the
figure). As can be seen, in general the highest lq values

are obtained for 0:001<Dc<0:1. Moreover, the q values
obtained are comparatively insensitive to the variation
of Dc in this range. Therefore, Dc ¼ 0:01 indeed appears
to be a sensible value for the calculation of gradients, at
least for the textures considered in this study.

When the results for different values of K are
considered, it is seen that the optimization can be
performed in fewer steps using values higher than the
selected one of 0.1. Indeed, the graphs show that, for a
fixed number of optimization steps, the best formability
is obtained for the value K ¼ 1:0. Therefore, if it were
desired to achieve convergence as fast as possible, it
would be advisable to increase the value of K. However,
in this case, it is considered that a lower value is
preferable, because it will produce a higher number of
intermediate textures, making easier to analyze and
compare the obtained results. Evidently, this decision
will imply that a higher number of iterations is needed to
reach a given objective.

D. Comparison of Obtained Textures with Ideal c Fiber
Texture

As shown in Section III–B, all the textures progres-
sively develop a stronger c fiber during the optimization
process. In this section, the textures are compared with
an ideal c fiber texture in a quantitative way, using the
method described in the Appendix.
The evolution of the d and R values during the

optimization process is shown in Figure 12. The
figure clearly shows that the distance to the c fiber, as
well as the radius of the fiber textures, consistently
decreases as the formability properties are improved.
This is also observed when looking at the equivalent
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Fig. 12—Evolution of the radius of the skeleton line R and its distance to the c fiber d during the optimization of the (a) BCC and (b) FCC
textures.

�The Taylor method was also considered prohibitively computa-
tionally expensive not so long ago,[15] but nowadays it can be solved
almost instantly by a standard computer.

5758—VOLUME 49A, NOVEMBER 2018 METALLURGICAL AND MATERIALS TRANSACTIONS A



Fig. 13—Obtained BCC (a) and FCC (b) fiber textures. On top, the corresponding distance to the ideal c fiber d (in bold) and the radius of the
fiber texture R.
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fiber textures obtained from the textures in Figures 8
and 9, which are displayed in Figure 13.

Figure 13 also shows additional details about the
topology of the obtained fiber texture and its evolution
during the optimization process. In particular, the
figure shows that, while for BCC textures the fiber
texture consistently becomes more concentrated, in the
case of FCC materials there also are some weaker
components outside of this fiber (for approximately U ¼
54 deg and u2 ¼ 45 deg, U<54 deg), distributed sym-
metrically with respect to u2 ¼ 45 deg.

V. CONCLUSIONS

A new optimization method for the improvement of
the formability properties of crystallographic textures
has been presented. The method, based on the gradient
descent algorithm, makes use of a linear estimation of
the gradient of the average and standard deviation of
the q values predicted by the Taylor model to find a local
minimum. Although the optimal textures, correspond-
ing to a strong c fiber, were already well known, the
added value of the method is that it provides a path of
incremental changes toward an optimal solution in the
most efficient way.

The method has been applied to the optimization of
several BCC and FCC textures, corresponding to typical
sheet products and an ideal random texture. It has been
shown that the textures obtained indeed offer better
formability as predicted by the model, with significantly
higher and more uniform q values, than the original
ones. As was expected, optimizing the textures involves
a reinforcement of the components closer to the ideal c
fiber.

Although the obtained results do not offer many
novelties in terms of the description of the optimum
texture, as it was already known that the textures with
the strongest c fibers would have better formability, the
method shows that the calculation of a gradient based in
a crystal plasticity model is an useful tool for the
identification of components with the potential to
improve formability. Therefore, the optimization

method developed may be used as the basis for more
complicated studies, in which a similar gradient of the
variation of texture components with respect to pro-
cessing parameters is used for the optimization of
specific materials and production processes.
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APPENDIX

A Equivalent Fiber Texture and Comparison with Ideal
c Fiber Texture

This Appendix describes how to calculate, for a
generic texture, an equivalent fiber texture, consisting
only of a single and homogeneous (constant radius) fiber
parallel to the /1 direction in the Euler space and how to

(b) (a) 

Fig. A1—Schematic diagram of the calculation of fiber textures integrating over u1 (a) and the d and R magnitudes (b), corresponding to the
distance to the c fiber at u2 ¼ 45 deg and U ¼ 54:7 deg and the radius of the fiber texture.
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compare this equivalent texture with an ideal c fiber
texture.

The calculation of the equivalent texture is performed
in two steps. First, the g u1;U;u2ð Þ texture is converted,
after discretization on a 5-degree grid, to an equivalent
g0 U;u2ð Þ texture consisting of fibers parallel to u1

(Figure A1(a)), such that:

g0 U;u2ð Þ ¼ 1

n1

X

u1

gðu1;U;u2Þ ½A1�

where n1 is the number of u1 values (with a step of
5 deg and orthorhombic symmetry, n1 ¼ 17). Then, g0

is converted to a texture consisting of a single fiber
with center ðu0

2;U
0Þ and radius R, calculated as:

ðu0
2;U

0Þ ¼
P

U

P
u2
g0ðU;u2Þu2P

U

P
u2
g0ðU;u2Þ

;

P
U

P
u2
g0ðU;u2ÞUP

U

P
u2
g0ðU;u2Þ

 !

½A2a�
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P

U

P
u2
g0ðU;u2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u0

2

� �2þ U� U0ð Þ2
q

P
U

P
u2
g0ðU;u2Þ

½A2b�

Once the equivalent single-fiber texture has been
calculated, it can be compared with an ideal c fiber
texture. This ideal fiber is defined as parallel to u1 with
u2 ¼ 45 deg and U ¼ 54:7 deg. The ideal and calculated
textures are compared using two parameters: the first
one is the radius of the calculated texture R, given by
[A2b], which will approach zero as the calculated texture
becomes closer to an ideal one; the second parameter is
the distance d from the center of the calculated fiber,
given by [A2a], and the center of the ideal texture [see
Figure A1(b)], such that:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0
2 � 45

� �2þ U0 � 54:7ð Þ2
q

: ½A3�
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