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The development of new Ni-base superalloys with a complex composition consisting of eight or
more alloying elements is a challenging task. The experimental state-of-the-art development
cycle is based on the adaption of already existing compositions. Although new alloy
compositions with potentially improved material properties are expected to be similar to
already known superalloys, this procedure impedes efficiently finding these compositions in the
large multi-dimensional design-space of all alloying elements. Modern alloy development
combines numerical optimization methods with experimental validation to guide the develop-
ment towards promising compositions. In this work, an improved numerical multi-criteria
optimization tool using CALPHAD calculations and semi-empirical models for alloy
development is presented. The model improvements to its predecessor are described and the
successful application for the development of rhenium-free single-crystal Ni-base superalloys
ERBO/13 and ERBO/15 is revisited. The optimization tool is described and the designed alloys
are discussed regarding phase stability. Finally, a possible phase stability model extending the
optimization tool and improving the alloy composition predictions is presented.
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I. INTRODUCTION

DESIGNING new single-crystal Ni-base superalloy
is a challenge due to competitive requirements on the
material properties and the complexity of the material
composition with eight or more alloying elements.
Additionally, modifying a single element concentration
usually influences more than one alloy property and the
identification of individual effects is difficult. State-of-
the-art alloy development comprises targeted adaption
of existing alloy compositions for experimental testing.
Consequently, alloy compositions of potentially

improved material properties within the huge design-
space spanned by all alloying elements are widely
unexplored until today.
Modern alloy development combines numerical opti-

mization methods with experimental validation to guide
the development towards promising compositions.
Instead of a single alloy composition which satisfies all
multiple optimization criteria in a multi-component
design-space, there exist a number of alloy compositions
representing the Pareto front. All compositions on the
Pareto front are optimal in the sense that it is not
possible to improve one criterion without worsening
another. Numerical approaches now try to determine all
possible Pareto front compositions in the design-space
for certain multiple optimization criteria. The general
ansatz is to collect as many experimental data on alloy
systems as available and develop interpolation and
extrapolation models for unknown compositions.
The CALPHAD method (CALculation of PHAse

Diagrams, today Computer Coupling of Phase Dia-
grams and Thermochemistry)[1] allows the prediction of
many physical properties of complex multi-component
alloys, e.g., phase fractions, phase compositions, or
precipitate driving forces at any temperature by using
Gibbs free energy databases. Until today, the
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improvement of the underlying databases is ongoing,
especially in the field of superalloys.[2–4]

Several studies applying various approaches have
been published in the field of superalloys. One example
is a combinatorial brute-force algorithm for scanning
large design-spaces using model characteristics like creep
resistance, microstructural stability, castability, density,
and cost.[5] Lass applied computational thermodynamics
to design a Co-Ni-base superalloy out of six elements
avoiding the formation of secondary phases.[6] A mesh
adaptive search algorithm in combination with a
CALPHAD software is used to determine several design
objectives, the optimum alloy compositions, and pro-
cessing conditions. A further improvement for the
optimization of processing conditions, is the integration
of the c¢-precipitation kinetics[7] considering higher
computational effort for the phase evolution prediction.
Another approach is the combination of CALPHAD
computations together with artificial neural networks,[8]

whereby this approach is only valid within a small
parameter variation to well-known alloy compositions.
Global optimization techniques together with large
experimental databases are applied for designing alloys
with optimum composition.[9–11] Promising results are
achieved by coupling genetic search algorithms with
CALPHAD computations.[9,12,13] Li et al. proposed a
computational framework combining genetic algo-
rithms, CALPHAD computations, and mechanistic
material models to optimize the alloy composition
within the ternary system Ni-Al-Cr.[14] However, the
coupling of a genetic algorithm to additional, compu-
tationally expensive models, prevent the optimization
within a large n-dimensional design-space. Therefore,
simplified surrogate models need to be defined,[15] which
are easy to couple into a multi-criteria optimization
problem.

In this work, the numerical multi-criteria optimiza-
tion tool MultOpt++ using a genetic search algorithm,
CALPHAD calculations, and semi-empirical as well as
surrogate models for alloy development is presented. Its
successful application for the development of rhe-
nium-free single-crystal Ni-base superalloys ERBO/
13[16,17] and ERBO/15[18,19] is revisited. One important
goal during the optimization process is the replacement
of rhenium by other refractory elements like tungsten
and molybdenum. The higher amount of refractory
elements may cause phase instability and the evolution
of detrimental, brittle topologically close-packed (TCP)
phases.[20–22] Since the described optimization procedure
does not apply for phase stability of Ni-base superal-
loys, we present a possible route to develop a surrogate
model for integration into the optimization procedure.

II. NUMERICAL APPROACH

The numerical approach in our simulation-assisted
alloy development is based on a multi-criteria, mul-
ti-start optimization model using sequential quadratic
programming described earlier.[16] The semi-empirical
equation model for the room-temperature density as
well as the model for the temperature-depended misfit

by Caron et al.,[23] and the model for solid solution
strengthening index ISSS by Fleischmann et al.[24] are
applied. Thermodynamic equilibrium material proper-
ties are provided by the CALPHAD method. These
computations are only applied to a subset of possible
compositions and the results are approximated by a
Kriging surrogate model.[15,25]

All alloying elements with their concentration range
set up the design-space. The probability to find the
global optimal composition is increased by choosing
various starting points across the whole design-space.
Within this space, optimum alloy compositions for
certain optimization criteria are searched applying the
surrogate and semi-empirical models. The accuracy of
the surrogate models is improved by refining the
approximation with the current set of optimal compo-
sitions before each restart.

A. MultOpt

The first implementation of the optimization tool
(termed MultOpt, Matlab-based[16]) uses a single-crite-
rion optimization function, i.e., only one goal can be
optimized at a time. However, the optimization of
Ni-base superalloys demands multiple optimization
goals, e.g., maximizing the solid solution strengthening
index and minimizing the density. Accordingly, in this
multi-criteria optimization, the solid solution strength-
ening index is optimized while sampling the density and
holding constant during optimization. A final alloy
composition is found by further post-processing the
Pareto front, i.e., choosing the ideal composition to
satisfy additional criteria. This program flow leads to a
multi-start, multi-criteria optimization with limited
computational effort. However, the method works less
well, if more than two criteria are optimized, because
each additional criterion increases the number of
dimensions of the sampling domain. In addition, the
Pareto front contains maximally as many compositions
as the number of sampling points for the density.
Therefore, an improved optimization routine which
allows single-start, simultaneous multi-criteria optimiza-
tion without limitations on the number of optimization
criteria is presented in the present paper.

B. MultOpt++

The new plugin-based structure of the optimization
tool MultOpt++ (C++-based) replaces every part of
the previous alloy-by-design computational routine and
is easily extendable by new features. All property
models, surrogate modeling methods, execution modes,
starting point selection algorithms, optimization library
kernels, and other components are represented by a
certain plugin. This allows to combine, for example,
models based on different thermodynamic databases or
even different CALPHAD applications. It is also pos-
sible to apply different optimization algorithms to
improve calculation effort or result accuracy.
A simplified schematic representation of the mul-

ti-criteria optimization tool for finding the Pareto front
is shown in Figure 1.
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It mainly consists of four steps: The selection of
appropriate starting points in the design-space, the
pre-processing of all surrogate property models, the
execution of the optimization engine, and the post-pro-
cessing of the Pareto front if necessary.

1. Starting point selection
The alloy designer has the possibility to manually

select starting points if available or use the latin
hypercube sampling for an optimal selection of starting
points. The improved latin hypercube sampling[26]

provides a better distribution of starting points within
n-dimensional design-spaces requiring higher computa-
tional effort.

2. Pre-process property models
If surrogate property models are applied, they need to

be initialized before the first run and improved in each
iteration of the optimization routine. The starting points
are used for the determination of the initial surrogate
models, i.e., the property function is evaluated for all
starting points and the interpolation is applied by the
Kriging algorithm. In further iterations, the surrogate
model is improved by minimizing the maximal predicted
model error provided by the Kriging algorithm or the
maximal expected improvement factor as proposed by
Jones et al.[27] The Kriging approximation model is
dynamically linked into MultOpt++ as external C-com-
piled Matlab DACE-toolbox library.[28]

3. Optimization engine
The insights of the MultOpt++ optimization engine

are illustrated in Figure 1 (right). As demonstrated by
many researches in a wide range of approaches,

evolutionary algorithms are effective for solving mul-
ti-objective optimization problems.[29–32] Therefore, the
first optimization step is performed by an evolutionary

algorithm provided by the powerful optimization library
Geneva ‘‘Ivrea - Via Arduino’’ 1.6.1*. Since evolution-
ary algorithms typically need many iterations, the last
optimization is optionally performed by a deterministic
search algorithm. This step requires the transformation
of multi-criteria to a single-criterion optimization prob-
lem, in a similar way as in MultOpt. The Geneva library
provides further probabilistic algorithms as simulated
annealing, swarm intelligence, and deterministic algo-
rithms like the gradient descents algorithm. The last one
is applied to improve the Pareto front in the last
optimization step. Optionally, this step can be combined
with one of the other probabilistic search algorithms to
benefit from the multi-point start with already Pareto
optimal and not random-selected individuals which
results in fewer steps with higher computational effort.
In the case of optimization with direct usage of objective
functions without surrogate models, the Pareto front is
the direct result and post-processing as well as multiple
optimization runs are skipped.

4. Post-process pareto front
If surrogate models were applied during the opti-

mization run, a post-processing of the Pareto front is
necessary. The properties of the predicted optimal
compositions have to be recalculated by the direct
calculation of the objective functions. For surrogate

goals, constraints,

Pareto front

single-criteria

gradient descent

pre-process
property models

post-process
Pareto front

surrogate
models?

yes

no

surrogate
models?

yes

no
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convergence?
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Fig. 1—Schematic representation of the multi-criteria optimization with new evolutionary algorithm-based optimization engine of MultOpt++
software.

*Gemfony scientific UG, Eggenstein-Leopoldshafen, Germany

4136—VOLUME 49A, SEPTEMBER 2018 METALLURGICAL AND MATERIALS TRANSACTIONS A



optimization goals, the Pareto selection and for surro-
gate constraint properties, the feasibility check has to be
repeated, respectively. During post-processing, the cur-
rent Pareto front may worsen and has to be merged with
the Pareto front from the previous optimization run.
The final optimal points are starting points for the next
optimization run also resulting in an improvement of
surrogate models within relevant concentration space. If
the Pareto front converges, i.e., the optimal values of
each single Pareto point cannot be improved within n
consecutive optimization runs, the optimization is fin-
ished. The number of iterations n is adjustable with a
default value of 20.

III. ALLOY DEVELOPMENT REVISITED USING
MULTOPT++

The numerical optimization tool MultOpt was
already successfully applied in previous studies.[16,18]

Starting point was CMSX-4� which is a second-gener-
ation single-crystal Ni-base superalloy[33] that is suc-
cessfully applied in, e.g., aircraft turbines.[34,35] By the
addition of 3 wt pct rhenium, a high-temperature creep
lifetime is reached due to an extremely low diffusion
coefficient. However, the resulting disadvantage is the
impossibility of a complete solutionizing and elimina-
tion of segregation. More importantly, rhenium is a rare
material which is very expensive and prone to specula-
tive manipulation. Therefore, we tried to develop a
rhenium-free Ni-base superalloy with similar creep
properties as CMSX-4�. The numerical results of
previous studies[16,18] are revisited with the modified
tool MultOpt++ and presented here.

The basic idea in our previous alloy development
effort was as follows. Rhenium as a solid solution
strengthener can be replaced by other refractory ele-
ments like tungsten and molybdenum. Refractory ele-
ments, however, are heavy, i.e., they increase the

density. Tungsten and molybdenum are not as effective
as rhenium and one needs higher amounts to account
for this, i.e., the density will increase even more. We
noticed that certain ‘‘control elements’’ like titanium
and tantalum can be used to change the c/c0 partitioning
behavior.[36–39] This means by addition of the control
elements, the solid solution strengtheners can be pushed
from the c0-precipitates, where they are less efficient, into
the matrix, where they are wanted. With this strategy,
alloys with the minimum amount of refractory metals
are obtained.
In a first development campaign,[16] we varied mostly

tungsten and tantalum and obtained alloy ERBO/13[17]

as a result. In our development, we tried to keep
c0-volume fraction and lattice misfit at 1100 �C as close
to CMSX-4� as possible. We focused on the partitioning
behavior of tungsten during the optimization. In
CMSX-4�, tungsten is only slightly enriched in the
matrix phase. Therefore, we aimed on an increasing
amount to compensate the rhenium effect on creep
resistivity. The density, solid solution strengthening
index, and lattice misfit of the optimum composition
ERBO/13 and the reference CMSX-4� are shown in
Figure 2. Calculations are performed using
MultOpt++. The second isoline at � 0.2 pct lattice
misfit shows the Pareto front for the optimization
constraints. The solid solution strengthening index of
ERBO/13 (6.6 at. pct) is found at 8950 kg/m3. This
demonstrates that the current set of strong restrictions
prevents achieving the desired index of 7.7 at. pct for
CMSX-4�, because densities above 9000 kg/m3 are not
desired.
In a second, more successful campaign,[18] we varied

molybdenum and titanium and obtained ERBO/15.[19]

For ERBO/15, the lattice misfit constraint was some-
what relaxed. Since the main disadvantage of ERBO/13
is the very high density, the strong constraints on the
lattice misfit and the c0-phase fraction are opened to the
ranges of � 0.5 to � 0.1 pct and 43 to 47 mol pct,

Fig. 2—Optimization of rhenium-free alloys using MultOpt++. Pareto front representing the maximum possible solid solution strengthening
index ISSS in dependency of the alloy density and lattice misfit d at d 1100 �C. The exact constraint on the lattice misfit of � 0.2 pct comparable
to CMSX-4� causes the high density of the optimal composition ERBO/13. By allowing lower misfits down to � 0.5 pct, an optimum
composition ERBO/15 was found with a lower density and the same solid solution strengthening index as CMSX-4�. The colored lattice misfit
values are only valid for the rhenium-free alloys of the optimization and not for CMSX-4�. Table shows chemical composition (in wt pct,
balance is Ni) (Color figure online).
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respectively. The optimization goals are a minimum
density, similar creep resistivity to CMSX-4�, and a
rhenium-free alloy composition. The resulting color
code of the lattice misfit and the optimal composition
ERBO/15 are also shown in Figure 2. The highest solid
solution strengthening index can be found for the
minimum lattice misfit of � 0.5 pct. By choosing the
index of CMSX-4�, the optimal composition ERBO/15
with a minimum density of 8300 kg/m3 is found.

In order to verify our predictions, ERBO/13 as well as
ERBO/15 were prepared in the form of small buttons by
arc melting and subsequently analyzed regarding phys-
ical properties and creep performance.[16,18] Despite
weaknesses in the thermodynamic databases, the mul-
ti-criteria optimized alloy compositions agree well with
most design constraints. This holds true for semi-em-
pirical models (e.g., density or price) as well as thermo-
dynamic properties (e.g., c0-phase fraction or lattice
misfit). Exemplary, the largest mismatch is found for the
solid solution strengthening index of ERBO/13, where
the experimental determined value is roughly 8 pct lower
than the numerical prediction.

Due to a reduced solid solution strengthening index
for ERBO/13, its creep resistance is slightly lower than
for CMSX-4�. Although ERBO/15 also contains no
rhenium, the creep strength is comparable to that of
CMSX-4� at low stresses.[18] Therefore, its specific creep
strength is even higher due to a significantly reduced
density. However, in the high-stress, low-temperature
regime CMSX-4� seems superior to both ERBO com-
positions, which indicates a lower relevance of the solid
solution strengthening in contrast to c0-strengthening.

As an approximation regarding TCP-susceptibility, we
used equilibrium calculation with Thermo-Calc engine
and database TTNI8 for both alloys.[40] The phase
amounts and solvus temperatures of the overall TCP
content were compared to CMSX-4� for both alloys.
ERBO/13 shows the lowest solvus temperature and
TCP-phase amount among these three alloys. ERBO/
15, however, shows also amuch lower solvus temperature
but a higher TCP-phase content at 950 �C and below.

IV. FURTHER OPTIMIZATION
OF THE MULTOPT++ APPROACH

The optimization tool MultOpt++ was successfully
applied to revisit the alloy development of ERBO/13
and ERBO/15 (see Section III). The improved execution
and software structure simplified the optimization pro-
cedure, since multiple criteria can be optimized at once.
The necessity of dividing additional optimization goals
into several single-criteria optimization steps is omitted.
Additionally, the plugin-based structure allows easily
adopting the routine to new optimization problems and
novel property models as well as optimization algo-
rithms. The result of the calculation, i.e., the suggested
optimal composition to be tried out in experiment, could
be recomputed with minimal variations, e.g., in the
cobalt and tungsten contents for ERBO/15 (see
Figure 2). Further development of the MultOpt++

tool will focus on important aspects regarding superal-
loys that are currently neglected (processability or phase
stability) or only indirectly accounted for (creep resis-
tance) by the optimization tool. Therefore, we focus
within this section on an approach to introduce a
surrogate model for phase stability.
Since decades, it is a challenging task to predict the

phase instability of Ni-base superalloys causing the
formation of TCP-phases. This is due to the fact that the
TCP-phase precipitation is a complex time-tempera-
ture-depending process of nucleation and growth and
during this process different TCP-phases as well as
precipitation sequences appear.[21,41,42] The development
of phase prediction started with Phase Computation
(PHACOMP), based on the electron configuration of
the alloying elements.[43] An improvement to this model
is new PHACOMP,[44] which is applied in combination
with CALPHAD computations until today.[5] Because it
suffers from poor and sometimes incorrect predictions, a
2D structure map representation of TCP-phase occur-
rences is suggested.[45] In addition to the influence of
electronic effects,[46] a composition-dependent size factor
is introduced to span up the 2D map. These maps are
applicable to experimentally observed TCP-phase pre-
cipitates in superalloys[47,48] and well suited to validate
TCP-phase predictions by combined CALPHAD and
phase-field simulations.
Numerical TCP-phase predictions require reliable

material databases, a careful simulation setup utilizing
thermodynamic computations applying these databases
and a final validation, e.g., by structure maps. In the
following sections, we describe a crossdisciplinary
approach for material database improvements followed
by a TCP-phase prediction simulation chain. Finally, we
present an idea how to introduce a surrogate model for
the TCP-phase prediction applicable in the numerical
optimization procedure.

A. Crossdisciplinary Material Database Improvement

More knowledge on TCP-phase formation in binary
and ternary systems is necessary to extrapolate correctly
to higher order systems. Current research connects
combinatorial thin-film experimentation and bulk
experimentation with ab-initio simulations to predict
TCP-phases in ternary systems.[4] These results are used
to improve existing material databases and thereby
improve the predictions on the full alloy composition.
In the following, the concept of Crossdisciplinary

Material Database Improvement (CMDI) is explained
by a general workflow schematic in Figure 3. Starting
point is an external input from existing databases or
calculations (dotted arrows). This input can for
instance be an interesting, yet unknown or not well-
known ternary system or composition range in which
TCP-phases are expected. Based on this initial input, a
thin-film material library of the interesting composition
rage will be fabricated on a 100mm diameter substrate
by magnetron sputtering using a wedge-type mul-
ti-layer approach.[49,50] The material library is annealed
and analyzed by energy dispersive X-ray spectroscopy
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(EDX), electric resistance measurements, and X-ray
diffraction (XRD). The results of the combinatorial
thin-film experimentation are direct inputs for the bulk
experimentation and arising questions are addressed by
ab-initio density-functional theory (DFT) calculations.
Compositions found to be of interest in the material
library are systematized in bulk by arc melting[51,52] and
analyzed by scanning electron microscope (SEM),
EDX, transmission electron microscope (TEM), and
nanoindentation as well. Structural stability and for-
mation energy for the phases found in the material
library are analyzed by DFT calculations.[53] DFT
calculations and bulk experimentation also exchange
their results for further refinement. The combination of
all three disciplines (combining combinatorial thin-film
experimentation, bulk experimentation, and DFT cal-
culations) enables a better understanding of each of the
results on its own but also contribute as experimen-
tal/calculated data input to the material database. The
updated material database can be used to predict phase
diagrams by CALPHAD.[54] The CALPHAD results
are crosschecked with the existing experimental data in
the library enabling a feedback loop to further refine
the CALPHAD predictions (dashed arrows). Figure 4
shows a summary of results from a recent study on the
Co-Ti-W system that applied the concept of CMDI.[4]

In Figure 4(a), an isothermal section of a ternary phase
diagram for the Co-Ti-W system predicted by CAL-
PHAD based on the existing database TCNi8 is shown.
Since experimental results as well as DFT calculations
indicate the presence of titanium in the l-phase, a
solubility of titanium is modeled by a preliminary
modification of the thermodynamic database.
Figure 4(b) represents an isothermal section of a
ternary phase diagram for the Co-Ti-W system pre-
dicted by CALPHAD based on the improved TCNi8
database. Due to the stabilizing effect of titanium that
was taken into account in the second simulation, the
single-phase region of the l-phase was enlarged into the
ternary (up to approx. 8 at. pct titanium) also the
existence range of the l-phase in the ternary Co-Ti-W
system was enlarged. By this, also the expected volume
fraction of the l-phase in the multi-phase regions
increased. These results demonstrate the suitability of
the CMDI approach to advantageously modify mate-
rial databases.

B. TCP-phase Prediction

Second and higher generation Ni-base superalloys are
highly alloyed with refractory elements like tungsten,
molybdenum, rhenium, and ruthenium, respectively, to
obtain excellent solid solution strengthening and creep
properties.[16,18,37,55,56] They solidify in a dendritic
microstructure causing microsegregation of alloying
elements, low melting eutectic phases, and unfavorably
shaped c0-precipitates.[57–59] An initial solution heat
treatment is normally applied to remove microsegrega-
tions and eutectic phases and to dissolve the c0-precip-
itates followed by further heat treatment steps to ensure
well-defined cubic c0-precipitates.[60,61] A full homoge-
nization heat treatment of these elements in reasonable
times is prevented due to a low diffusivity in combina-
tion with a preferred segregation into the dendrite cores
during solidification.[60,62,63] The remaining segregation
of refractory elements in the dendrite cores after heat
treatment causes the formation of intermetallic phases
(TCP) under service conditions.[64] In Ni-base superal-
loys, several brittle TCP-phases like r-, l-, P-, and
R-phases were found,[20–22] which additionally deplete
the solid solution strengtheners from the c-matrix.[65]

Experimental investigations showed that nucleation
occurs mainly on grain boundaries or on a previously
formed metastable r-phase within the c-region.[42,65] The
morphologies are various, e.g., plate-like, lath-type, or
globular[22,66] with a preferred directional growth and
coherency with {111}c or {100}c planes.[20–22] The
embrittlement under load due to TCP-phases in combi-
nation with a surrounding matrix of depleted alloying
elements results in degraded mechanical as well as
chemical properties.[37,42]

In order to minimize TCP-phase formation in newly
developed Ni-base superalloys, the numerical optimiza-
tion tool needs to be extended by a TCP-phase predic-
tion model. Since the evolution of TCP-phases is
influenced by manufacturing and service conditions, a
comprehensive numerical simulation is necessary, which
is illustrated in Figure 5. The casting parameters are
used to predict the primary dendritic arm spacing
(PDAS). All further simulation steps make use of
thermodynamic material databases according to the
superalloy base material. Here, the improved material
databases by the CMDI approach described in Sec-
tion IV–A are necessary to ensure a more reliable

Fig. 3—Schematic workflow of the CMDI approach realized by combining combinatorial thin-film experimentation, bulk experimentation, DFT
calculations, as well as CALPHAD calculations.
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prediction of the whole simulation chain. The solidifi-
cation simulation is a phase-field simulation which is
initialized with the primary dendrite arm spacing and
the alloy composition.[67] The result is a segregation
profile which is the input for an optimization tool to
predict the best heat treatment parameters to maximize
homogeneity.[68] The resuming segregation profile after
heat treatment is finally applied for phase-field simula-
tions to predict microstructural evolution of c/c0 con-
sidering the influence of multi-component diffusion on
nucleation and growth of TCP-phases. Once the whole
simulation chain is established and validated, it is

possible to extract information regarding designing,
processing, and material properties of the studied alloy
composition. Here, we only focus on the last result of
the TCP-phase evolution, which is finally converted into
a surrogate model for the application in the optimiza-
tion tool MultOpt++.

1. PDAS model
The casting parameters are determined by our new

investment casting process named Fluidized Carbon Bed
Cooling (FCBC).[69] Compared to the well-known
liquid-metal cooling (LMC) process,[70–72] FCBC applies

Fig. 4—Current (a) and improved (b) isothermal sections of a ternary phase diagram for the Co-Ti-W system predicted by CALPHAD.
Applying the CDMI approach the enlarged l-phase was detected. Adapted from Ref. [4], with permission (Color figure online).

PDAS model

PDAS

element mapping

element mapping

material database

parameters

CMDI approach

Fig. 5—Overview of TCP simulation chain: estimation of PDAS k followed by the simulation of the solidification during the casting process,
heat treatment, and TCP-phase formation. All simulations can make use of improved material databases by the CMDI approach.
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an inert gas fluidized bed of glassy carbon beads instead
of a bath of molten tin to carry a buoyant layer of freely
movable insulation particles.[73] The so-called Dynamic
Baffle[74] properly separates the heating and solidifica-
tion zones as it perfectly adapts the contour of the
solidifying component at any time during withdrawal.
The low-density Dynamic Baffle material is, similar to
the bed material, based on carbon. The Dynamic Baffle
is crucial to improve the temperature gradient in
investment casting. Dynamic Baffle, carbon’s superalloy
material compatibility and innovative process control
over previous fluidized bed attempts are key features in
the robust FCBC approach.[69]

Because the FCBC process achieves higher tempera-
ture gradients, increased withdrawal rates in comparison
to conventional investment casting devices are possible.
The resulting PDAS is predicted by the empirical model
k ¼ K� G�0:5 � v�0:25;[75] where K is a constant (1444
for Ni-base superalloys[76]), G is the temperature gradi-
ent, and v is the solidification velocity. In the case of
directional solidification casting, the solidification veloc-
ity is approximated by the withdrawal rate. The tem-
perature gradient G for a certain FCBC process setup
can either be determined by numerical simulation[77] or
by one sample experiment including the measurement of
the PDAS.[69] The lowest PDAS around 300 lm for a
single-crystal microstructure is achieved for a with-
drawal rate of 5.0mm/min. This reduction to the
industrial state of the art (larger 400 lm for the
geometry studied) significantly reduces element segrega-
tion and heat treatment durations.[62,78,79]

2. Casting simulation
The objective of the next step in the simulation chain

is to understand the formation of the as-cast microstruc-
ture which represents a starting point for subsequent
heat treatment simulations. The numerical approach
relies solely on the input of the casting parameters, the
nominal alloy composition, and the estimated PDAS.
The final output are concentration maps of all alloying
elements.

As modeling approach, the multi-component mul-
ti-phase-field model[80,81] is applied. The free energy
formulation of the system serves as basis considering
contributions of the interfacial, chemical, and elastic
energy. Following several mathematical operations[82]

and the use of the double-obstacle potential, the
phase-field equation can be formulated in antisymmetric
approximation

_/a ¼
X

b¼1;::;N

Mab rab /br2/a � /ar2/b þ
p2

2g2
ð/a � /bÞ

� ��

þ/
g

ffiffiffiffiffiffiffiffiffiffiffi
/a/b

q
Dgab

� X

a¼1;:::;N

/a ¼ 1;

where Mab represents the interface mobility, rab the
interface energy, g the interface width, and Dgab the
Gibbs free energy difference between the phases a and b.
Basically, /a is an indicator function used for tracking
the moving interface during the process of solidification

with values between 0 (solid bulk) and 1 (liquid melt).
The contribution of the Gibbs free energy is evaluated
by coupling to the software package Thermo-Calc. As a
result, an optimal thermodynamic description of the
solute partitioning in the system during the solidification
process is ensured. Diffusion is solved with respect to all
elements of the alloy composition. The amount of
phases is limited to liquid, c and primary c0.
The presented numerical approach for solidification

during casting is validated by experimental results of
directionally solidified CMSX-4� applying the vertical
Bridgman process.[83] As software tool, the commercial
software MICRESS� in combination with the databases
TCNI8 and MOBNI4 is used. The thermal gradient is
taken from previous work,[83] where this value has been
determined by a combined numerical and experimental
approach. In the model, the same withdrawal rates are
considered as in the case of solidification experiments.
The PDAS is taken as input for the simulations.
In Figure 6, the concentration distributions for

rhenium and aluminum gained by simulations (a, b)
and experiments (c,d) are presented, respectively.The
experimental concentration maps were determined by
electron microprobe analysis (EMPA).[84] For both
elements, a good agreement between the simulated and
the experimentally gained concentration distributions
can be observed, e.g., the rhenium concentration in the
center of the dendrite is 4.5 wt pct (a) and 4.9 wt pct (b),
respectively. We note that the experimentally deter-
mined composition of c¢ in the interdendritic regions lies
significantly below the theoretical equilibrium composi-
tion, which is probably due to the size of the electron
beam which averages c and c¢ regions.

3. Heat treatment optimization
The goal during solution heat treatment is to achieve

the highest diffusion coefficients by a maximum tem-
perature profile while avoiding incipient melting in order
to prevent diminishing the mechanical properties.[85–87]

The time-consuming experimental approach to define
the solution heat treatment by measuring incipient
melting temperatures for different heating rates by
differential scanning calorimetry[88] is circumvented by
a numerical heat treatment optimization procedure.[68]

The computed heat treatment needs an experimental
validation, because incipient melting temperature esti-
mation errors in the range of � 20K depending on the
alloy composition may occur due to inaccuracies in the
material databases.
The original optimization procedure consists of three

steps: pre-processing of experimentally measured the
as-cast concentration fields into a numerical represen-
tation, optimization of solution heat treatment, and the
prediction of a corresponding process window. The
pre-processing step is mainly redundant once the pro-
cedure is integrated in our simulation chain since
numerically predicted concentration fields are already
available from the casting simulations. During heat
treatment optimization, the maximum stepwise temper-
ature history is determined without incipient melting.
The phase-field model applied for heat treatment is a
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diffuse-interface approach,[81] which requires similarly to
the casting model the interface energy and mobility. The
software tool MICRESS� is applied using thermody-
namic and kinetic databases.[68] Since processing restric-
tions sometimes hinder applying maximum
temperatures, a process window with lowered maximum
temperatures is computed. The final results of the
simulation are the concentration fields for all elements
of the alloy composition after the optimal heat
treatment.

A comparison between microprobe measurements of
commercially purchased single-crystal plates and simu-
lation results of the chromium segregation in CMSX-4�

in the as-cast state and after heat treatment is shown in
Figure 7. The microprobe measurements (a) are pre-pro-
cessed to get a numerical representation of the
chromium concentrations (b). A well accordance
between the homogenized states in the experimental
and numerical results after heat treatment is reached, (c)
and (d), respectively.

4. TCP-phase simulation
One approach to approximate TCP-phase suscepti-

bility is the application of equilibrium calculations with
Thermo-Calc, as mentioned in Section III. The
TCP-phase precipitation model is based on the Kamp-
mann–Wagner binary system method and was extended
by Rettig et al.[40] for multi-component systems. On

every time step, the nucleation rate and precipitation
growth are evaluated. The nucleation rate depends on
the free enthalpy of nucleation, which is calculated using
the CALPHAD method. The precipitation growth
includes the thermodynamic equilibrium for the chem-
ical potential of precipitate and the matrix interface as
well as the flux balance for each element. A detailed
model description as well as simulation results are
presented in Reference 40 and validated in Reference 18.
This approach, as well as other existing models to

predict precipitation on TCP-phases are mainly based
on simple models, e.g., by using precipitate classes
without full-field resolution of the concentration
fields.[89,90] The complex behavior of TCP-phases in
c=c0 taking into account the microstructural evolution,
diffusion processes, available nucleation sites, interface
energies, and the interaction between TCP-phases is an
ongoing research topic. All these aspects can be com-
bined in phase-field simulations[82,91,92] and then applied
to TCP-phase precipitation in Ni-base superalloys.

5. TCP surrogate model
Due to the high computational effort, it is not possible

to include the whole TCP-phase precipitation simulation
chain into the optimization routine for the design of
complex Ni-base superalloys. Therefore, the main idea is
the approximation with a surrogate model, which is
coupled into the optimization procedure within the

Fig. 6—Comparison of simulated results and experimental measurements (vertical Bridgman process sample measured by EMPA) for the
concentration distribution of rhenium (a, c) and aluminum (b, d) in CMSX-4�, respectively (Color figure online).
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‘‘pre-process property models’’ step (Figure 1). This
approach has two necessary prerequisites. First, each
simulation tool and subsequently its combination into
the simulation chain needs to be validated by well-
known reference alloy compositions like CMSX-4�.
Second, a widespread numerical sensitivity analysis on
the simulation chain on a large design-space needs to be
executed to develop a regression-based model covering
the most important findings.

Our current approach for the development of a
regression-based model bases on the John-
son–Mehl–Avrami equation[93] for the time-dependent
transformation of nuclei

fVðt; c;TÞ ¼ f
eq
V ðc;TÞ 1� exp �kðc;TÞ � tnðc;TÞ

� �h i
;

where fVðt; c;TÞ is the time-dependent fraction of the
sum of all TCP-phases and f

eq
V ðc;TÞ is the TCP-phase

amount provided by thermodynamic equilibrium CAL-
PHAD calculations. The Avrami coefficients k and n are
assumed to be dependent on the concentration c and

temperature T and are to be derived. Although, the
evolution of different types of TCP-phases is much more
complex with nucleation and growth in parallel as well
as phase transformation, this approach is well suited to
model the overall time evolution.[18] The predictive
power of this surrogate model is defined by the exact
determination of these parameters, which have to be
evaluated by the regression analysis. Once all individual
simulation tools of the simulation chain are completely
validated, the regression analysis of TCP-phase predic-
tions from the whole simulation chain is the next
research step.

V. SUMMARY

In this paper, we present a numerical model which
was applied to revisit the development of different
Ni-base superalloys and describe a numerical approach
to predict the formation of TCP-phases for further
inclusion into the optimization procedure by a surrogate
model:

(b)(a)

(d)(c)

Fig. 7—Comparison of the chromium segregation of CMSX-4� measured by microprobe of purchased single-crystal plates (a, c) and simulated
by phase-field simulation (b, d). Shown are the as-cast states (a, b), and the states after heating up and holding at 1573 K (1300 �C) for 1 h (c,
d). Reprinted from Ref. [68], with permission (Color figure online).
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1. A single-start multi-criteria optimization tool
MultOpt++ based on a multi-start derivative is
presented. The simple extension to further (surro-
gate) models due to its plugin structure, the appli-
cation of multiple optimization goals, and an
improved post-processing of the Pareto front is
demonstrated.

2. The development of ERBO/13 and ERBO/15 is
revisited and the achievements as well as the
optimization weaknesses are discussed. Although,
models on important topics like TCP-phase forma-
tion are not applied, a set of newly designed and
highly promising alloy compositions was found.

3. A possible model extension for the multi-criteria
optimization regarding phase stability is presented.
The whole simulation chain combines different
numerical tools to finally predict the evolution of
TCP-phases. A development ansatz for a surrogate
model is presented including the coupling to the
multi-criteria optimization tool MultOpt++.
Besides the information on TCP-phase formation,
the simulation chain offers the possibility for further
surrogate models regarding designing, processing,
and material properties of Ni-base superalloys. These
improvements may help to find better rhenium-free
alloy compositions with properties more close to or
even better as the performance of CMSX-4�.
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