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The Relationship Between
Microstructural Evolution and
Mechanical Properties of Heavy Plate
of Low-Mn Steel During Ultra Fast
Cooling
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We describe here the electron microscopy and me-
chanical property studies that were conducted in an in-
dustrially processed 20- and 40-mm C-Mn thick plates
that involved a new approach of ultrafast cooling (UFC)
together with significant reduction in Mn-content of the
steel by ~0.3 to 0.5 pct, in relation to the conventional
C-Mn steels, with the aim of cost-effectiveness. The
study demonstrated that nanoscale cementite precipita-
tion occurred during austenite transformation in the
matrix of heavy plate during UFC, providing significant
precipitation strengthening. With decrease in UFC stop
temperature and consequent increase in the degree of
undercooling, there was a transition in the morphology
of cementite from lamellar to irregular-shaped na-
noscale particles in the 20 mm heavy plate. With the
increase in plate thickness, nanoscale cementite pre-
cipitated in bainitic lath at the surface of 40 mm heavy
plate, which significantly increased the strength and
decreased the elongation. Simultaneously, microstruc-
tural evolution in hot-rolled sheets was studied via
simulation experiments using laboratory rolling mill to
define the limits of microstructural evolution that can
obtained in the UFC process and develop an under-
standing of the evolved microstructure in terms of pro-
cess parameters.
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Thermomechanical controlled processing (TMCP)
involving ultra fast cooling (UFC) technology is being
currently applied to industrial production,[1–3] with the
aim to reduce the consumption of alloying elements and
make the steel making process economically viable.[4,5]

Heavy plate products of C-Mn steel are processed by
TMCP for structural applications.[6] However, there is
difficulty in obtaining uniform microstructure in heavy
plates because of non-uniform deformation and non-
uniform distribution of accelerated cooling along the
thickness direction that leads to inhomogeneous mi-
crostructure across the plate thickness.[7,8]

In order to obtain near-uniform microstructure and
similar mechanical properties from the surface to the
center of plate, fast and effective cooling process is
necessary. In this regard, the ongoing developments in
UFC technology,[9,10] with strict control and faster
cooling rate on the run-out table, provides a high degree
of undercooling and potential for control of microstruc-
ture and phase transformation in water-cooled plates
during the cooling process.[11]

In the present study, the potential of UFC in the
processing of C-Mn heavy plates together with reduc-
tion in Mn-content is illustrated. UFC factors such as
UFC stop temperature and the accompanying relation-
ship between microstructural evolution, mechanical
properties, and cooling rate is elucidated.
The nominal chemical composition of steel (in wt pct)

was Fe-0.16 pctC-0.18 pctSi-1.0 pctMn-0.015 pctP-
0.003 pctS. Heavy steel plates of 20 and 40 mm thick-
ness were industrially processed using the UFC process.
Keeping in mind the microstructural and mechanical
property benefits that may be derived from the UFC
process, Mn-content was reduced by ~0.3 to 0.5 wt pct
in relation to the conventional composition of 1.3 to
1.5 pct specified in grade Q345B steel. The rolling
temperature was ~1373 K (1100 �C) and finishing roll-
ing temperature was controlled at ~1123 K (850 �C).
The parameters of hot rolling for 20 mm plate are
presented in Figure 1. The start-cooling and stop-
cooling temperature of UFC was ~1073 K and 873 K
(800 �C and 600 �C), respectively.
To define the limits or boundaries of microstructural

evolution that can be obtained in UFC, simulation
experiments were carried out using F450 mm ex-
perimental rolling mill equipped with ultra fast cooling
equipment. Here sheets were processed rather than
plates because of the load capacity of the mill. The
microstructural evolution experienced in sheets during
the UFC process can be considered as the ultimate limit
in heavy plates. Different UFC stop temperatures were
considered in the simulation experiment and the surface
temperature of plate was measured by infrared thermal
imaging equipment with the temperature range of 223 K
to 1273 K (�50 �C to 1000 �C) and accuracy of 1.5 pct
of reading or ±1.5 K and the repeatability of 1 pct of
reading or ±1 K.
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Metallography specimens for microstructural ex-
amination were prepared by grinding, polishing, and
etching with 4 pct nital solution. The microstructure of
the specimens was observed using a combination of
optical microscope (OM—LEICA DMIRM), scanning
electron microscope (SEM—ZEISS ULTRA 55), and
electron microprobe (EPMA—JXA 8530F). Thin foils
were prepared for the observation of fine cementite in
transmission electron microscope (TEM TECNAI-G2)
by twin-jet electropolishing. The electrolyte was 10 pct
(volume fraction) perchloric acid in methanol, main-
tained at 248 K (�25 �C) (potential of 30 V, and current
of 45 mA.).

Standard tensile tests were carried out in the longi-
tudinal direction using a SANS tensile testing machine
at a cross-head speed of 3 mm/min. Charpy v-notch
impact tests (heavy plate) were carried out using samples
of dimensions 5 mm9 10 mm9 55 mm via a JBW-
500 impact testing machine.

Tensile properties of industrially processed 20-mm-
thick plate of C-Mn steels processed via UFC, namely,
yield strength, tensile strength, pct elongation, and
toughness at 293 K (20 �C), were 386± 10 MPa,
518± 15 MPa, 25± 2 pct, and 202± 20 J, respectively,
which met the mechanical property standard of Q345B
steel. In order to verify the uniformity of mechanical
property in the whole plate, at least three samples were
prepared for the full-thickness tensile test.

Microstructure across the thickness of 20 mm plate,
as observed by OM and SEM, is presented in Figures 2
and 3, respectively. The microstructure was nearly
homogeneous in the thickness direction and consisted
of ferrite and pearlite (Figure 2), without banded
structure forming in the microstructure, although the
volume fraction of ferrite increased from the surface to
the center of the plate. More importantly, from Fig-
ure 3(a), it can be seen that fine-scale precipitation of
cementite occurred at the surface of plate (see below for
TEM) as compared to the traditional lamellar pearlite
structure. However, the cementite particles were
relatively coarse at one-quarter thickness from the
surface (Figure 3(b)) and lamellar in morphology at
mid-thickness of plate (Figure 3(c)).

The TEM micrograph of cementite precipitates is
presented in Figure 4, and the cementite particles are
less than ~100 nm and distributed randomly in the
microstructure. The chemical analysis of precipitates by
energy dispersive X-ray spectroscopy in TEM confirmed
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Fig. 1—Process parameters for hot rolling for 20 mm steel plate.

Fig. 2—Optical micrographs of 20 mm plate (a) surface (b) quarter
thickness from the surface and (c) center.
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the presence of carbon-containing particles (Fig-
ure 4(b)). Figure 5 shows the elemental distribution for
nanoscale cementite precipitates, as studied by EPMA.
It reveals that the diffusion of interstitial element C was
restrained by UFC such that the nanosize cementites
were precipitated, instead of conventional lamellar
morphology in pearlite phase. The non-carbide forming
element Si, indicated an opposite distribution compared
to C, and the substitutional element Mn was uniformly

dispersed with no obvious segregation taking place
during UFC process.
In simulation experiments with hot-rolled steel sheets,

slabs were rolled from 70 to 7 mm thickness via nine
passes by F450 mm rolling mill in the laboratory. The
start rolling temperature was ~1373 K (1100 �C) and the
finish rolling temperature was controlled to be ~1163 K
(890 �C). Pass reduction was below 10 and 15 pct for the
first and last two passes, respectively, while the pass
reduction for the middle pass was greater than 15 pct.
The variation in temperature and pass reduction for
each pass during hot rolling was consistent with the
process parameters of industrial trial (Figure 1). The
hot-rolled strips were subjected to UFC process with the
stop-cooling temperature in the range of 853 K to
1013 K (580 �C to 740 �C). Figure 6 is a schematic of
the hot rolling experimental procedure.
The TEM micrographs of cementite in the experimen-

tal steels after hot rolling with different UFC stop
temperatures are presented in Figure 7. The Figure 7
shows that cementite morphology changes from the
lamellar structure to nanosized precipitates with de-
crease in the UFC stop temperature, which is consistent

Fig. 3—SEM micrographs of 20 mm plate (a) surface (b) quarter
thickness from the surface and (c) center.
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Fig. 4—(a) Bright-field TEM micrograph of nanoscale cementite pre-
cipitated at the surface and (b) energy dispersive analysis of cemen-
tite.
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with the microstructural transition trend observed in the
plate from the surface to the mid-thickness, processed
through UFC.

Figure 8 summarizes tensile data for experimental
sheets after hot rolling with different UFC stop tem-
peratures. It can be seen that both yield strength and
tensile strength increased with decrease in the UFC stop
temperature, while the total elongation decreased with
decrease in UFC stop temperature, confirming that the
nanoscale cementite precipitation (Figure 7) is beneficial
for strengthening.

In the industrially processed 40 mm C-Mn steel plate,
the start and finish rolling temperature was controlled to
be ~1373 K and 1123 K (1100 �C and 850 �C), respec-
tively. The hot rolling parameters of 40 mm plate are
presented in Figure 9. Hot-rolled heavy plate after

rolling was subjected to UFC process with stop-cooling
temperature of 753 K (480 �C), but the surface tem-
perature of plate increased to 883 K (610 �C) in several
seconds, because of the heat transfer from the mid-
thickness of the plate to the surface.
Tensile properties including yield strength, tensile

strength, pct elongation, and toughness at 293 K (20 �C)
for 40 mm plate by UFC were 397± 15 MPa,
516 ±20 MPa, 26± 2 pct, and 189± 25 J, respectively,
which also met mechanical property standard for Q345B
heavy plate.
Light and SEM micrographs across the thickness of

40 mm plate are presented in Figures 10 and 11,
respectively. The bainite lath with nanosized dispersed
cementite precipitates was formed at the surface, while
the microstructure in other region consisted of ferrite

Fig. 5—(a) Microstructure of nanoscale cementite and elemental distribution of (b) Carbon (c) Silicon and (d) Manganese in nanoscale cementite
precipitation area.
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and pearlite (cementite with the similar structure de-
scribed above. i.e. nanoscale precipitation).

UFC process and the following thermomechanical
treatment experiment were carried out to simulate the
formation of bainite lath layer with uniform cementite
precipitation. Experiment slabs were hot-rolled from 70-
to 7-mm-thick strips via nine passes on the laboratory
mill. Next strips were subjected to UFC after finish
rolling, and the UFC stop temperature was controlled to
be 773 K (500 �C). Subsequently, plastic deformation
from 7 to 6.5 mm was given in a single pass, holding for
20 minutes at 773 K (500 �C). Finally, strips were
cooled to room temperature in air. Figure 12 shows a
schematic of the hot rolling experiment to simulate the
surface condition in the 40 mm plate.

High magnification SEM micrographs of bainite in
the hot-rolled 40 mm plate and sheet for the simulated
surface condition of the 40 mm plate are presented in
Figure 13. The microstructure in simulated surface
condition of 40 mm plate was lath-type bainite. In
comparison to the surface microstructure of the hot-
rolled plate, the presence of high degree of deformation
and longer holding time in the simulation experiment of
sheet led to the precipitation of a higher density of
nanoscale cementite, which is the limit condition (sig-
nificant deformation, faster cooling rate, and longer
holding time) for hot-rolled plate.

Figure 14 summarizes the engineering stress–strain
plots for experimental sheets for different hot rolling
processes. The strength was significantly improved after
UFC and thermomechanical processing. However, the
elongation decreased with increasing strength, as ex-
pected.

The salient features of UFC technology briefly are (a)
reduction in the diameter of cooling outlet and increase
in the number of outlets for improving the uniformity in
cooling, (b) increase of water pressure for cooling with
tilt jet for flow to have adequate energy and impact to
break the vapor film present between the water and steel
surface. In view of the above characteristics, there is
more fresh water directed on the steel surface per unit
time to achieve a comprehensive nuclear boiling rather

Rolling temperature 
1100oC

670oC

740oC

580oC

Process C

Process B

Process ATe
m

pe
ra

tu
re

, o C

Time, s

UFC

UFC stop temperature

Finishing temperature 
890oC

1200oC, 120min

Fig. 6—Experimental procedure for ultra fast cooling (UFC) process
of steel.

Fig. 7—Typical TEM morphology of cementite precipitation with
different UFC stop temperatures (a) 1013 K (740 �C), (b) 943 K
(670 �C), and (c) 853 K(580 �C).
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than film boiling.[12–17] The above are the reasons why
UFC technology can achieve very fast cooling effect on
the surface by forced convection and heat transfer.
However, the cooling process is achieved by heat
conduction inside the plate, and cooling effect slows
down with increase in thickness.[18,19] Thus, the tem-
perature gradient along the thickness of plate needs
consideration.

According to the cooling conditions during the UFC
process, the steel plate was considered as an infinite flat
plate without the internal heat source. Only considering
the temperature change in the thickness direction and
ignoring changes in the width and length direction, the
calculation model was simplified as a one-dimensional
unsteady heat conduction differential equation:

@T

@s
¼ a

@2T

@x2
ð0<x<d; s>0Þ; ½1�

where T is absolute temperature, K; s is time, s; x is
the distance from the surface, mm; d is plate thickness,
mm; a ¼ k

qcp
, namely thermal diffusivity; k is the ther-

mal conductivity, W/(m K); cp is specific heat capacity,
J/(kg K), q is density of steel, 7850 kg/m3.

Heat transferring condition on the surface can be
given by

�k
@T x; sð Þ

@x
jx¼0 ¼ ax T 0; sð Þ � Tf½ � ðs>0Þ; ½2�

where Tf is the water temperature; ax is heat transfer
coefficient, W m�2 K�1, which can be fitted from the
experience date, such as flow intensity of water q
(L m�2 min�1) and surface temperature T,

ax ¼ 1:078� 105 � q0:43068e�0:00935T: ½3�

Based on the UFC database model, the temperature
plots of steel plate were calculated and simulated, and
gradients in temperature and cooling rate through
20 mm plate are presented in Figure 15.
It can be seen that the cooling rate at the surface of

the plate is significantly faster than in the mid-thickness
during the UFC process, such that the UFC stop
temperature is lower on the surface. In UFC, the
austenite transformation temperature at the surface of
the plate decreases significantly with increase in cooling
rate, and a high degree of undercooling is obtained with
consequent increase in free energy difference, which
provides a higher driving force to accelerate the interface
speed during austenite transformation.[20,21]

Meanwhile, the application of UFC reduces the trans-
formation temperature and time to some extent such that
rate of diffusion of carbon decreases significantly and the
supply of carbon atoms is insufficient. The diffusion of
carbon is limited in undercooled austenite and the
cementite growth is controlled by diffusion of carbon. If
the carbon diffusion rate is less than the moving speed of
the interface, then the cementite cannot grow continuous-
ly to form a lamellar structure, but precipitates as
nanosized particles, in the special case of eutectoid
decomposition. But if the diffusion rate of carbon is
greater than themoving speed of interface and the carbon
atoms are adequately available, cementite forms as a
continuous lamellar morphology.[22]

It was proven in hot rolling experiments of sheets that
cementite morphology is consistent with the UFC stop
temperature, and the lower stop-cooling temperature
with fast cooling rate promoted the formation of
nanoscale cementite. Additionally, nanoscale cementite
contributes to the precipitation strengthening of C-Mn
steel, and the effect increases with the decrease in the
UFC stop temperature.
When the plate thickness increases, although the

cooling condition between the surface and the fluid does
not significantly change, the cooling in the mid-thickness
of the plate is weak. Thus, the surface effect of heavy
plate merits consideration.
In Figure 16 are presented the temperature curves of

40 mm plate during the cooling process. There is
significant variation in surface temperature during the
cooling process. The cooling rate on the surface is very
fast and the temperature decreases during the UFC
process, and increases rapidly after water-cooling be-
cause of the heat transferred from the mid-thickness to
the surface.
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Fig. 8—Effect of UFC stop temperature on mechanical properties of
hot-rolled sheet.
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Fig. 9—Processing parameters of hot rolling for 40 mm steel plate.
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When the surface is cooled directly from austenite
through the two-phase region and eutectoid decompo-
sition temperature to bainite region, bainite begins to
form depending on the cooling rate. During transfor-
mation of austenite to bainite, the element, C, is

supersaturated in bainite, because there is no time for
carbon diffusion in the UFC process and the diffusion
coefficient of carbon decreases as the temperature falls.
After the cooling process, the surface gets reheated in

the pearlite region for some time by the heat transferred
from the mid-thickness, and the supersaturation of
carbon in bainite begins to precipitate in the form of
cementite particles. At this time, the deformation can
increase the nucleation rate of cementite by strain-

Fig. 10—Optical micrographs of 40 mm plate. (a) surface (b) quarter
thickness from the surface and (c) center.

Fig. 11—SEM micrographs of 40 mm plate (a) surface (b) quarter
thickness from the surface and (c) center.
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induced precipitation and the holding process will
provide adequate time for cementite to precipitate.[23–
25] This result was also confirmed by thermomechanical
processing of experiment of steel sheets such that a large
number of nanoscale cementites precipitated in lath
bainite after plastic deformation and holding process.

In fact, during hot rolling, the austenite becomes
work hardened because of high degree of deformation

and strain accumulation at the surface compared to the
center.[26–28] In the UFC process, at the surface, a
number of dislocations are retained and deformation
energy is stored, as shown in Figure 17. During the
surface reheating process after UFC (i.e., when the heat
is transferred from the mid-thickness to the surface and
the surface temperature increases, as shown in Fig-
ure 16, which corresponds to the holding time in
Figure 12), dislocations are paths for diffusion of
carbon and provide favorable sites for nucleation of
cementite, and the stored deformation energy also
provides the necessary driving force for cementite
precipitation.[29,30]

The research described here provides an exciting new
prospect in the processing of carbon steels with
nanoscale cementite. The UFC technology developed
by RAL, with the high cooling capacity and high
precision control was successfully applied after the hot
rolling experiments to obtain cementite precipitation
and understand the mechanism of formation. When
cementite is effectively refined to the scale of a few
nanometers, it provides significant precipitation
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Fig. 13—SEM micrograph of bainite layer with nanoscale cementite
precipitation in (a) plate and (b) hot-rolled sheet.
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strengthening effect. Thus, cementite is viewed as a
viable option to replace precipitates of microalloying
elements and consequently reduce the alloy cost and
maintain strength.

Our future and current research effort is aimed at
optimizing the processing parameters for nanoscale
cementite precipitation in low and middle carbon steels.
Furthermore, the microstructural evolution and me-
chanism of nanoscale cementite in a non-equilibrium
state will be elucidated, together with the establishment
of precipitation model. The impact of research is far
reaching because of the need to pioneer a new frontier of
high strength-low cost carbon steels for engineering
applications.

Application of UFC technology is also important
from other perspectives. For instance, 0.1 wt pct reduc-
tion in manganese in steel will save ~$1.5/ton in

industrial production cost. In this research, the reduc-
tion in Mn-content was ~0.3 to 0.5 pct, which is
expected to increase the profit margin by ~$6/ton. The
crude steel production of China reached 822.7 million
tons in 2014. Industrial application of the research
described here would provide significant economic
benefit.
It is also pertinent to indicate that the effective control

of cooling path during the UFC process is currently
being applied to a wide range of microalloyed steels for
varied applications that include line pipe and off-shore
platforms steels, to list a few.

1. A high density of nanoscale cementites precipitates
during austenite transformation in the heavy plate
during the ultrafast cooling process, which provides
precipitation strengthening.

2. The lower UFC stop-cooling temperature at fast
cooling rate promotes the formation of nanoscale
cementite. From the surface to mid-thickness, there
was a transition in the morphology of cementite
from nanoscale particles to lamellar structure in the
20 mm heavy plate during the UFC process.

3. The thin layer of lath bainite with nanoscale cemen-
tite at the surface of the 40 mm plate enhances
strength and decreases elongation.

4. The fast cooling rate, the low UFC stop-cooling
temperature, large deformation, and reheating pro-
cess plays a determining role in the formation of
lath bainite with nanoscale cementite precipitates in
the surface of the heavy plate.
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