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A Pd nano-polycrystalline microstructure was simulated by molecular dynamics, including edge
or screw dislocations in one of the 50 grains, so as to produce a realistic model of nanocrys-
talline domain with line defect. The same crystalline domain was also studied, with or without
line defects, as a free-standing, isolated nanocrystal. Atomic coordinates of the selected domain
were used to generate powder patterns by means of the Debye scattering equation, and these
patterns were used as ‘‘experimental’’ data to test existing methods of line profile analysis in
controlled condition, i.e., with known type and density of defects. Results show that the
Krivolgaz–Wilkens theory of dislocation line broadening qualitatively agrees with the MD
model, but errors can be larger than 50 pct. A critical issue arises from the instability of the
Krivolgaz–Wilkens model when all line profile parameters are simultaneously refined: reason-
able results can be obtained by fixing or restricting some parameters.
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I. INTRODUCTION

DIFFRACTION line profile analysis (LPA) is exten-
sively used in materials science to gather information on
plasticity, to measure the extent of deformation and work
hardening, and to characterize nanocrystalline phases
(e.g., see References 1, 2 and references therein). Measur-
ing the size of coherently scattering domains is the most
common application of LPA, dating back to colloidal
metal studies of about one century ago,[3,4] whereas the
approach to determine type and quantity of lattice defects
is not only comparatively newer but also well established
and popular in applied research, especially in metallur-
gy.[1,2,5–7]

Most LPA studies and applications concern X-ray
diffraction (XRD) from powder or bulk polycrystalline
materials, as this is the most frequent case in metal
plasticity studies. Even if traditional methods to determine
the concentration of line andplanar defects can be found in
textbook,[4,7] the topic is still an object of active research
and methodological developments. Despite the broad
interest in methods and applications, surprisingly few
studies have investigated the validity and general reliability
of LPA results. This is probably due to the difficulty in
obtaining equivalent evidence from other experimental
techniques to validate LPA. For example, it is relatively
easy to observe dislocations by transmission electron
microscopy (TEM), but a quantification of their density
in the range of interest of LPA applied to extensively cold-
workedmetals (q> 1014 m�2) is quite difficult to obtain.[8]

A viable alternative to assess the validity of LPA is
using atomistic simulations to build polycrystalline
microstructures. Aggregates of crystalline domains can
be produced with controlled shape and size distribution,
including known type and amount of lattice defects.[9,10]

Molecular dynamics (MD) can be used to equilibrate the
simulated systems, thus providing atomic coordinates of
realistic microstructures, which can be used to simulate
the corresponding powder pattern by means of the
Debye scattering equation (DSE).[11,12] LPA methods
can then be used and tested against the simulated data,
which can be considered, to this specific purpose, as
equivalent to the experimental data typically collected
on plastically deformed materials. So far relatively few
papers have explored this approach, and generally using
simplified integral breadth methods.[13,14]

In this study, we focus on the effect of line defects,
observed in a nanocrystalline Pd domain inside a cluster
of grains providing a realistic environment, to assess the
effect of dislocations on the diffraction pattern. While the
general validity of the hypotheses underlying the Krivo-
glaz–Wilkens theory of dislocation line profile broaden-
ing[15–18] is confirmed by the present results, difficulties in
the practical use clearly emerge; existing methods based
on Wilken’s expressions for peak profile broadening
caused by dislocations[17,18] tend to be unstable when all
parameters are freely refined (i.e., allowed to be opti-
mized) against the experimental data, and the complexity
of the microstructural effects is also an issue not properly
considered by the existing LPA methods.

II. SIMULATED MICROSTRUCTURES AND
STRAIN FIELDS

A cluster of 50 randomly oriented Pd grains was
created as a realistic environment for a grain (labeled
G35) containing dislocations in one of the six
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{111}h110i primary slip systems of fcc Palladium (active
slip systems are actually twelve considering directions
and senses, but the latter are of no interest here).
Surrounding grains provide the necessary conditions to
stabilize dislocations inside G35, overcoming the strong
off-equilibrium condition. Periodic boundary conditions
(PBCs) guarantee full immersion of G35 within the
microstructure, so that the position of the studied grain
is unimportant. Figure 1(a) shows the Pd microstructure
after grains crossed by the PBCs have been reconstruct-
ed (see below for details). Atomic coordinates of G35,
highlighted in the figure, with or without edge or screw
dislocations are then used in the DSE[11,12,19] to generate
the powder pattern from a system made of G35 domains
with the given type and density of line defects. As shown
in the following, this approach allows us to single out
the effect of line defects and of grain boundary.[20]

Figure 1(b) shows G35 alone, a further condition
studied by MD to highlight the role of the free surface,
as opposed to the grain boundary surrounding G35 in
the 50 grain microstructure. Simulations were per-
formed on G35 with and without screw dislocations
along the six slip systems (Figure 2(a)), both in the
microstructure (i) and as an isolated nanocrystalline
domain (ii); G35 with an edge dislocation (Figure 2(b))
was also considered (iii), but only when G35 is immersed
in the 50 grain microstructure. In fact, the same domain
in isolated condition was unstable, with the edge
dislocation slipping out of the nanocrystal.

The cluster of grains was generated using a space
tessellation algorithm which allows the design of shape
and size distribution.[21,22] Pd grains were built as
roughly equiaxial polyhedral, with the volume size
distribution shown in Figure 1(b); it also reported the
distribution of diameters of spheres with same volume as
the polyhedral grains (mean 18.5 nm, standard de-
viation 2.5 nm). G35 is one of the two largest grains in
the microstructure, with an equivalent sphere diameter
of 22.3 nm.

After filling up with Pd atoms arranged according to
the fcc crystal structure[21,22] and random misorienta-
tion angle distribution (Mackenzie random texture of
polycrystal[23,24]), the microstructure was equilibrated
for 1ns by MD achieving a stable configuration. Large-
scale atomic/molecular massively parallel simulator
(LAMMPS[25]) and the embedded atom method
(EAM)[26] with Pd potential of[27,28] where used,
employing a Langevein Nose–Hoover NPT thermostat
[constant pressure and temperature of 0 atm and
300 K (27 �C), respectively] and an integration time
step of 1 fs. Next to the equilibration, a sequence (time
trajectory) of 100 uncorrelated snapshots of the
arrangement of atoms in space (frames) was collected
at 1 ps time intervals. Finally, the average microstruc-
ture was computed over the time trajectory, so as to
cancel out any dynamic contribution from the system
(e.g., the thermal vibration),[29] leaving only the static
atomic displacement. The latter includes the effect of
grain boundary relaxation, as already discussed in
similar simulations recently reported in the lit-
erature,[20,29,30] with or without the additional strain
field by screw or edge dislocations.

As highlighted in Figure 2, dislocations in G35
split in partials according to the expected decompo-
sition reaction[31]: ~b ¼ a

2 110h i fi ~bp ¼ a
6 121h i and ~bp ¼

a
6 21�1
� �

.
Different from the usual (ideal) assumptions of

dislocation theory and continuum mechanics models,
MD shows that the separation between partials
changes along the dislocation, which also deviates
from a straight line (Figure 2). As shown in Figure 3,

Fig. 1—(a) Simulated Pd microstructure with 50 grains: grains cros-
sed by the PBCs were reconstructed after MD. Grain number 35
(G35), the main object of this work, is highlighted (blue). (b) An iso-
lated G35 is shown, together with the distribution of grain volumes
(top abscissa, empty columns) and of diameters of spheres with same
volume (bottom abscissa, filled columns) (Color figure online).
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the strain field is just qualitatively similar to that of
ideal dislocations—screw dislocation with a nearly pure
deviatoric field, edge dislocation with compression and
tension regions—whereas details differ significantly
from the cylindrical symmetry of ideal dislocations.
Additional strain components are provided by the
grain boundary and the grain–grain interactions,[20]

thus forming a picture quite different from the basic
assumptions of the Krivolgaz–Wilkens theory.[15,16]

Figure 4 shows the deviatoric strain in G35 as a
function of the radial distance from the dislocation
axis. Values provided by MD at different distance were
integrated over concentric rings inside the cylindrical
volume (with D � 24 nm) sketched in the same picture.
The plot on the right side shows the trend at different
heights along the dislocation line, at the center (red)
and on top–bottom (near grain boundary) cross sec-
tions (blue), respectively. It also shows the expected
profile from continuum mechanics for a straight full
(unsplit) dislocation (dash-dot, black),[31] which agrees
with the MD predictions just approximately, (i) far
from top/bottom surfaces and (ii) in a range of radial
distances far from the dislocation core and from the
grain boundary region. In fact, MD simulations cor-
rectly give no divergence at the dislocation axis, and
show the raising component related to the grain
boundary strain. Similar considerations hold for G35
containing an edge dislocation. As shown in Figure 2,
partial separation is more visible in the edge case,
leading to a ribbon of faulted layers along the [111]
close packing direction.

Fig. 3—Strain field in grain G35 with screw (left) and edge (right)
dislocations. Strain is mapped on a cross section perpendicular to
the dislocation axis; volumetric and deviatoric components are
shown for both dislocation types.

Fig. 2—G35 with screw dislocations along the six h110i slip systems
(a); G35 with an edge dislocation, as observed along different projec-
tions (b). A coordination (Ackland) analysis is used to highlight a
region of hcp layers (red stripe), which results from the separation in
partials of the dislocation line (Color figure online).
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III. POWDER DIFFRACTION PATTERNS FROM
MD SIMULATIONS

The results shown so far make us confident that G35
can be considered as a realistic model of nanocrystalline
domain in a polycrystal, with or without dislocations, so
that the powder diffraction pattern generated by the
DSE can be used to assess the validity of existing line
profile analysis methods. Figure 5 shows a comparison
between the XRD powder pattern generated using the
starting (crystallographic) atomic coordinates of G35,
and the same G35 grain after MD equilibration inside
the 50 grain microstructure, with and without a screw
dislocation. MD generally introduces a slight peak shift,
as a result of the shrinkage of the starting crystallo-
graphic model caused by energy minimization, and a
profile broadening, which increases with the scattering
vector modulus (Q = 4psinh/k); the latter is an expected
feature of the introduction of an inhomogeneous strain
distribution, due to grain boundary, grain-to-grain
interaction and dislocations. The line defect clearly
gives the largest contribution, especially visible in the
high-angle reflections shown in Figure 5(c).

In Figure 6(a), we compare the powder patterns for
G35 each with a screw dislocation along one of the six
hhh0i slip systems of Figure 2, with the corresponding
average pattern (black line). The difference between the
average pattern and each cases is also shown, to
highlight the basic fact that, despite morphological

differences in G35 along different hhh0i directions, the
strain field—and line broadening induced—by the six
slip systems is qualitatively similar, although quantita-
tive differences are to be expected. The average pattern
is realistically compatible with the usual assumption that
all active slip systems be equally populated. Differences
observed in Figure 6(a) clearly stem from the non-
spherical shape of G35, which is not a strong feature of
the present cluster: larger differences are to be expected
for crystalline domains with markedly different cross
sections. Figure 6(b) shows a comparison between
patterns of G35 inside the polycrystalline cluster,
respectively, with screw and edge dislocation. Differ-
ences are much larger and more systematic than among
the six different slip systems (cf. residuals in (a) and (b)),
a clear indication of the specificity of the strain field of
the different dislocation types.

IV. POWDER PATTERN MODELING

The XRD powder patterns of G35 with the different
configurations discussed so far were analyzed by whole
powder pattern modeling (WPPM), a state-of-the-art
LPA. Full details on WPPM can be found in the
literature,[32,33] with special attention to the study of
dislocations.[34,35] The general philosophy is to model
the powder diffraction pattern using line profiles result-
ing from a convolution of microstructural effects, which

Fig. 4—G35 with screw dislocation (a) and corresponding deviatoric strain (b), obtained from MD simulation as a function of the radial dis-
tance from the dislocation axis. Strain values, integrated over concentric rings inside the cylindrical volume sketched around G35, are shown for
a cross section through the center (red) and near the top/bottom (blue) of G35. It is also shown the trend of the deviatoric strain for an ideal
straight dislocation (dash dot) (Color figure online).
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in this specific case are as follows: shape and finite size of
the (G35) crystalline domain, the strain field of (screw or
edge) dislocations, and an additional grain boundary
strain component, which also accounts for the interac-
tion among the 50 grains in the cluster; a low density of
planar defects (stacking and twin faults) can also be
considered. Details on the algorithm are schematically
discussed in the Appendix and in the cited literature.

For the size effect, we used a recently developed
algorithm to calculate the common volume function
(CVF) of polyhedral solids.[36] This allows a nearly
perfect modeling of the size broadening effect, which is
nicely demonstrated in Figure 7(a) for the powder
pattern obtained from the starting (crystallographic)
atomic positions of G35. The non-linear least squares
(NLLS) minimization (fit) was made using just three
refinable parameters, namely the unit cell parameter (a),
a domain size scale factor (dssf), and an intensity scale
factor (isf), being the total number of atoms fixed to the
known value of 393,088 which gives a fixed total peak
intensity.

The refined unit cell parameter (a = 0.3890701 nm)
nearly perfectly matches the theoretical value
(a0 = 0.38907 nm), whereas dssf (0.99256) and isf
(0.99912) are very close but not perfectly matching the
nominal values (1 in both cases). This slight mismatch is
expected because of the inherently different hypotheses
underlying DSE and WPPM, where the former is based
on the specific atomistic model of Figure 1, whereas the
latter is equivalent to an average of several possible
models for the same average polyhedral shape of G35
(see papers by Ino and Minami and related References
37, 38).
This detailed analysis of an apparently obvious

result—modeling the pattern of an ideal grain with
known size and shape—is to underline the fact that the
domain size/shape effect can be accounted for in a
nearly perfect way by WPPM when the CVF is
available.[36] In the following modeling, this component
of the line profile is fixed, apart from dssf and isf, which

Fig. 5—Comparison of XRD patterns: (a) crystallographic G35
grain (black); G35 in the polycrystalline cluster without (red), and
with screw dislocation (blue), both cases after MD. Details of low-
and high-angle regions are shown, respectively, in (b) and (c) (Color
figure online).

Fig. 6—Average powder pattern after MD of G35 in the polycrys-
talline cluster, with screw dislocations along the six slip systems
(black); the difference between the average pattern and each case is
shown as normalized residual (in pct) (a). Powder pattern of G35 in
the polycrystalline cluster, with screw (black) and edge (red) disloca-
tion along a randomly chosen slip direction; the difference between
the two patterns is shown as normalized residual (in pct) (b) (Color
figure online).
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are allowed to vary slightly, to account for small
changes caused by MD.[20]

As already pointed out, the powder pattern of G35
after energy minimization (Figure 5) includes effects of
an inhomogeneous strain due to grain boundaries and
grain-to-grain interactions.[20] Similar effects are also
present in the case of an isolated G35 grain, where
surface atomic positions are modified by surface tension
forces (lower coordination number of surface atoms,
causing the so-called surface relaxation effect[39,40]). We
can account for these complex effects, causing a
relatively small but measurable strain broadening (or
microstrain) component, in a simplified but sufficiently
flexible way. According to a modified version of the
model proposed by Adler and Houska,[41–43], the strain
distribution can be parameterized according to a
Voigtian line profile (see the Appendix) so that the
microstrain broadening is modeled just by three fitting
parameters, accounting for the intensity and anisotropy
of the strain field; the result can be visualized as
Warren’s plot,[44] a graphic of the root-mean-square

(rms) displacement hDL2i1/2 (or strain, hDe2i1/2 =
hDL2i1/2/L) as a function of the correlation or Fourier
distance (L), inside the crystalline domain for any
desired [hkl] crystallographic direction.[42,43]

As shown in Figure 7(b), this approach (CVF for the
size effect and Voigtian line profile for the microstrain
effect) gives reasonably good results in terms of fit
quality. The analysis shown in Figure 7(b) refers to G35
in the polycrystalline system, after MD equilibration has
introduced the grain boundary effects.[20] Modeling
results are equally good for the isolated G35 (not shown
here for briefness), where the microstrain is caused by
the free surface.[40,43] Corresponding rms displacement
trends are shown in Figure 8(a) (red for G35 in the
polycrystalline system, green for isolated G35) for the
two extreme behaviors of elastically soft [h00] (line) and
elastically stiff [hhh] (dash) directions in the fcc structure
of Palladium. As expected, the microstrain is larger for
the softer direction; values for the isolated G35 model
are lower, but comparable to the case of G35 inside the
microstructure.
As shown in Figure 2, crystallographically equivalent

screw dislocations can be introduced along six possible
directions in G35, corresponding to the hhh0i slip
systems. It is then possible to model independently the
powder pattern of each case, or to analyze the average
pattern. In any case, the powder patterns of G35 with
dislocation were modeled together with the correspond-
ing pattern of G35 without dislocation; the latter was
used to refine the microstrain caused by the grain
boundary (or by the free surface for the isolated G35
models), which was then added to (actually, convolved
with) the microstrain caused by dislocations in the
modeling of the powder pattern of G35 with line defects.
This way—including CVF for the size effect and
contribution of microstrain from the surface/grain
boundary effects—the effect of dislocation line broad-
ening can be singled out.
For the dislocation line broadening component,

which is the main object of our study, we used the
Krivoglaz–Wilkens theory of dislocation effects on
diffraction line profiles. As detailed in the Appendix
and cited references, the theory is based on several
parameters related to the dislocation strain field: an
average dislocation density (q), an effective outer cut-off
radius (Re), the Burgers vector modulus (b), and an
average contrast factor ( �Chkl).
The Burgers vector is usually known; being related to

the unit cell parameter (b = a/�2 for the primary slip
system of fcc Pd), which is refined in any case from the
peak positions, b is not an additional free parameter. As
shown in the Appendix, the contrast factor of fcc Pd can
be written as �Chkl ¼ Aþ B � H2, where H is a combi-
nation of Miller indices, whereas A and B can be
calculated for ideal screw and ideal edge dislocations
given the slip system and the elastic constants of
Pd[35,42]; unless the anisotropy of the strain field
(expressed by B) needs to be refined, also the contrast
factor involves no additional free parameters, so that the
number of fit parameters is restricted to just two, q and
Re. However, it turns out that when q and Re are both
freely allowed to vary in the NLLS minimization of

Fig. 7—WPPM result (line) for the powder pattern obtained from
the starting (crystallographic) atomic positions of G35 (dot) (a), and
the same G35 grain in the polycrystalline system after MD equilibra-
tion (b). The difference (residual) is shown below. Insets show corre-
sponding data and fits in log scale.
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patterns of G35 with screw dislocation, the modeling is
unstable, with Re diverging to values >105 nm. The
WPPM quality improves if a small fraction of faults is
allowed to be refined, in consideration of the faulted
region introduced by the split in partials, but Re still
diverges. Such instability, observed either for individual
slip systems or for the average pattern, seems to be an
intrinsic problem of Wilkens’ model applied to the
present case of a screw dislocation in a nanocrystalline
domain; it is probably caused by the strong correlation
between q and Re, as well as by the difference between
the model hypotheses (all based on a concept of ideal,
straight, unsplit dislocation) and the real features of the
studied system.

Before presenting further results, it is worth discussing
the meaning of q and Re in the present context. A
nominal value of q is provided by the ratio between
dislocation line length and volume of G35. This can be
taken, from the point of view of the resulting strain field,
as an upper limit to the dislocation density (qmax), as it
does not consider that the grain around the dislocation
line is not cylindrical, as the regions invoked by Wilken’s
theory should be.[17,18] To illustrate this point, besides
the pictures in Figures 2 through 4, it is useful to refer to
Figure 9(a), showing the trend of G35 diameter (i.e., the
diameter of circles with same area as the cross section)
along the screw dislocation axis. The mean diameter in
the central region (�18 nm) quickly decays to zero
toward the surface (or grain boundary) of G35, with
slightly different trends for the different directions
corresponding to the six slip systems.

The mean dislocation length is 21.39 nm, with a
standard deviation of 1.0 nm; given the volume of G35
(5972.10 nm3), one easily obtains qmax = 3.58 9
1015 m�2. Based on the values of Figure 9(a), it is also
possible to calculate cross-sectional areas along each
dislocation line, and then an average value of
298.88 nm2, from which an average dislocation density
of qav = 3.33 9 1015 m�2.

Fig. 8—Warren’s diagrams (rms displacement vs L, [111]—dash;
[200]—line) for the studied G35 cases, all after MD: without disloca-
tion (a) in the polycrystalline cluster (red) and isolated (green) G35;
with screw dislocation (black), G35 inside the polycrystalline cluster
(b) and isolated (c); G35 with edge dislocation (d): grain boundary
(blue) and dislocation (black) contributions (Color figure online).

Fig. 9—Cross-sectional diameter of equivalent circle (same area as
the cross section) along the axis of the screw dislocation in G35.
Trends are shown for the six hhh0i slip system directions (cf. Fig. 2),
corresponding to dislocation lines of length: 21.51; 22.70; 20.92;
19.72; 21.73; 21.74 (all in nm) (a). Corresponding weighted averages
(red line) and cylinder diameter assumed in the Wilkens model
(black line) are shown. Twist angle along the screw dislocation axis
for G35 as isolated nanoparticle (b) and in the polycrystalline cluster
(c); the insets show the rate (in deg/nm) for the six models corre-
sponding to the different hhh0i slip systems. See text for details (Col-
or figure online).
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Similar problems arise for the definition ofRe. Accord-
ing to Wilkens’ model, Re is related to the size of
cylindrical regions containing randomly distributed
coaxial dislocations.[18] If a relatively weak [hkl] depen-
dence[45] is neglected,Re can be set as approximately equal
to twice the radius (Rp) of the regions of restrictedly
randomdistributionof (straight andparallel) dislocations
in the material. As a realistic equivalent to the regions of
Wilkens, also considering the nearly equiaxial mor-
phology of G35, we can use a cylinder with diameter
equal to the height (D = H) and same volume as G35,
that is D = H = 19.4 nm, which gives a dislocation
density qcyl = 3.4 9 1015 m�2 (a value in between qav
and qmax). We can refer to this equivalent cylindrical
domain in the WPPM analysis of powder patterns from
G35 with screw dislocation, by setting Re = 2Rp = D.
With this realistic assumption, the instability problem in
the NLLS minimization is avoided, and the other
microstructural parameters can be refined.

As an example, Figure 10 shows the WPPM result for
the average powder pattern of Figure 6, and corre-

sponding G35 with no dislocation, both after MD
(refined together as explained before). Comparable
graphical results are obtained for each case represented
in Figures 2 and 6, for G35 both in the polycrystalline
cluster and as an isolated (free-standing) grain. Fitting
quality is of course lower than in the two cases
illustrated by Figure 7 (no dislocations); some structures
are present in the residual of Figure 10(b), but the match
between DSE data and WPPM can be considered as
acceptably good.
The most relevant results are summarized in

Figure 11. The refined dislocation density is always smaller
than the reference values, qmax and qcyl. Results for the
different slip systems scatter about the mean, with values
forG35 in the polycrystalline cluster always larger than the
corresponding ones in isolated G35 domains. The mean of
the results for the six slip systems is nearly identical with
the result obtained for the average pattern (in the
polycrystalline cluster and as isolated G35 domain), which
confirms the validity of the present analysis, and that the
average pattern correctly represents the assumption that
all slip systems are equally populated. Better results are
obtained if a small percentage of faults are added to the
WPPM analysis; interestingly, the NLLS keeps to zero the
fraction of twin faults, whereas it gives a small but
measurable value of stacking faults (see Figure 11), which
is compatible with the presence of a small region of
stacking fault caused by the split into partial dislocations
(cf. Figure 2).
It is also possible to verify the type and extent of

anisotropy in the line profile broadening by refining B,
the hkl-dependent coefficient in the contrast factor (see
also the Appendix for details). Refinement results lay

Fig. 10—WPPM result (line) for the average powder pattern (dot)
from G35: (a) without screw dislocation, and (b) with screw disloca-
tion along the six slip systems of Fig. 1(a), all after MD. The differ-
ences (residuals) are shown below. Insets show same data and fit in
log scale.

Fig. 11—WPPM results keeping Re = D = 19.4 nm. Dislocation
density (circle), deformation fault fraction (square), and B (diamond)
in the expression of the contrast factor. Full symbols for the cases of
G35 inside the polycrystalline cluster (dash-dot line for mean values
of results for the six slip systems); open symbols for the same do-
main as an isolated object (dot line for mean values of results for the
six slip systems). Bscrew = �0.643351 (blue line), expected value for
an ideal screw dislocation in Pd; qmax = 3.58 9 1015 m�2 (orange
line) and qcyl = 3.4 9 1015 m�2 (green line). Results are also shown
for the modeling of the mean pattern (gray right side). See text for
details (Color figure online).
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around the expected value of -0.643351 for a screw
dislocation in Pd,[42] while they tend to be slightly
smaller in the case of isolated G35 domains.

Microstrain now includes both grain boundary and
dislocation contributions, as shown by the Warren’s plot
in Figures 8(b) and (c), for the average patterns of G35,
respectively, in the polycrystalline cluster and isolated.
Results for the grain boundary and grain surface
contribution are similar to those of Figure 8(a), for
G35 without dislocations, whereas dislocations clearly
produce a much larger microstrain component. Aniso-
tropy is similar, with elastically soft [h00] (line) and
elastically stiff [hhh] (dash) directions, both for the grain
boundary/surface and for the dislocation microstrain.

It is worth considering possible reasons for the lower
than expected value of dislocation density. Grain shape
might have some effect, as the dislocation density and
Wilkens’ model ideally refer to cylindrical regions, quite
different from G35. Further effects might be related to a
peculiarity of screw dislocations, originally shown by
Eshelby[46]: a screw dislocation laying along the axis of a
cylindrical domain causes a lattice distortion known as
Eshelby twist, given by a ¼ �b

�
pR2 (deg/nm), where R

is the radius of the cylinder. The strain field tends to
relax as an effect of the twist, being thus different from
that in an infinite medium. As shown recently, the twist
is responsible for a decrease in the microstrain compo-
nent of diffraction line broadening, which can be seen as
an effective decrease in the dislocation density.[47] In the
present case, even if G35 is not cylindrical, and is not
free to move or deform in the polycrystalline cluster, the
twist is actually present. As shown in Figure 9(b), the
twist rate is lower than for a free cylinder of radius
R = D/2 = 19.4/2 nm (D = H cylinder with same
volume as G35), which is a = �0.053 deg/nm, and
varies for dislocations along the different equivalent
hhh0i slip systems. Twist values are variable also in
isolated G35 domains with screw dislocation
(Figure 9(c)), with an average twist matching the value
for the equivalent D = H cylinder. The larger twist
observed in the isolated G35 domains is therefore
compatible with the lower value of dislocation density
refined by the WPPM analysis.

The same analysis made for G35 with screw disloca-
tions can be repeated for edge dislocations. As discussed
with reference to Figures 2 and 3, we can only treat the
case of G35 in a polycrystalline cluster, as the edge
dislocation is not stable in a free-standing, isolated
grain, where the atomistic modeling (energy minimiza-
tion) would lead the line defect out of the crystal. Once
we demonstrated that differences among the different
hhh0i{111} slip systems are relatively small, for brief-
ness, we focused on just one case for the edge dislocation
(Figure 2). Here there is no twist, and the deviatoric
strain adds to the main volumetric component, with
compression/tension regions (Figure 3). Different from
the screw case, dislocation partials are visibly separated
by a nearly uniform and flat ribbon of stacking fault.

The WPPM analysis simultaneously made on G35
with and without edge dislocation as in previous
analyses also gives systematic deviations in the residual
and a fit quality comparable to the screw cases. If the

same condition is used on Re (Re = 2Rp = D =
19.4 nm), the refined dislocation density is 3.4 9
1015 m�2, closely matching the expected qcyl value. This
result is obtained when faulting is also allowed, and the
NLLS procedure gives a 0.004 stacking fault fraction, a
value nearly double than that refined in the screw case
(cf. Figure 11).
It is worth noting that in the edge case, the dislocation

line broadening model is more stable than for the screw
case. If q and Re are allowed to vary in the NLLS
procedure, both give finite values: q = 2 9 1015 m�2,
Re = 102 nm, with a stacking fault fraction of 0.0044,
whereas the anisotropy factor B = �0.70 (with respect
to the expected value for edge dislocations in Pd of
�0.474788[42]). So the dislocation density tends to be
underestimated, probably as an effect of a too large Re

and B, but refined values make sense. The faulting
fraction is equivalent to one fault in ~250 layers; G35
has about 90 layers in the [111] stacking direction, so
that the faulting value refined by the WPPM analysis
corresponds to about 1/3 of layer. Although this is of
course just an approximation, as Warren’s theory used
in the WPPM analysis[12,32,33] provides for faulted layers
crossing the entire crystalline domain, the result seems
reasonable in the present context.

V. CONCLUSIONS

The analysis of diffraction data from atomistic
simulations proves to be a useful tool to investigate
microstructures, and in particular the effect of lattice
defects on the diffraction line profiles. As shown in this
work, the main contributions to the line profiles can be
suitably modeled, including size and shape of the
crystalline domain, atomic displacement caused by line
defects, grain boundary or surface, and grain–grain
interactions, and regions of faulted layer stacking.
The main interest was in the atomic displacement:

microstrain effects caused by grain boundary or free
surface were accounted for by an effective but flexible
Voigtian strain profile model, which also includes
anisotropy; dislocation strain was described by the
Krivoglaz–Wilkens model, which seems unstable when
applied to screw dislocations. Instability is observed
when all parameters describing the dislocation effect are
simultaneously allowed to vary in data modeling pro-
cedures. Reasonable results can be obtained by fixing at
least one of the parameters appearing in Wilkens’
expression for the Fourier transform (FT) of the
dislocation line profile. This possibility was explored
considering reasonable values for the effective outer cut-
off radius, set equal to the diameter of a cylinder with
same volume as the studied nanocrystalline domain
(Re = D). While this approach is appropriate to the
present context, difficulties might clearly arise in the
application to experimental studies, and when more
dislocations are present in the same domain.
Even under the most stable conditions (i.e., setting

Re = D), and allowing for a small fraction of deforma-
tion faults on account of the effect of splitting into
partial dislocations, the density of screw dislocations
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refined from the powder diffraction data is systematical-
ly lower than expected. A large part of this discrepancy
was attributed to the Eshelby twist caused by the screw
dislocation. Such effect, highest in free-standing (isolat-
ed) domains containing screw dislocations, partly relax-
es the strain field and is responsible for the apparently
lower dislocation density. Interestingly, this effect is
present also in the domain inside the polycrystalline
aggregate, even if in a minor form, as an effect of the
microstructure constraining atomic displacements.

The case of a grain containing an edge dislocation
gives better results. If all parameters in Wilken’s
expression are allowed to be refined in the data
modeling, results are incorrect (e.g., dislocation density
is underestimated by 50 pct) but make sense (i.e., Re

does not diverges). If the effective outer cut-off radius is
constrained as for the screw cases (Re = D), then a
good match is found between refined and expected
dislocation density. It is also worth noting that, com-
pared to the screw case, the edge dislocation gives no
twist but introduces a more extended region of layer
faulting, which is also refined to a reasonable value in
the data modeling procedure.

APPENDIX

Grain boundary, grain-to-grain interactions, and free
surfaces all give quite complex microstrain ef-
fects[20,29,30,42,46] which can be accounted for in a
simplified but flexible way using a modified version of
a model originally proposed by Adler and Houska,[41]

where the strain distribution is described by a convolu-
tion of two Gaussians with different variance (resulting
in Voigtian line profiles). The FT of the microstrain
peak profile component can then be written as[42,43,48]

AD
hklf g Lð Þ ¼ exp �Q2L2he2hkl Lð Þi

�
2

� �

ffi exp �Q2Chkl aLþ bL2
� ��

2
� �

; ½A1�

where Q (=4p sinh/k) is the wavevector transfer
modulus, L is the Fourier length (distance between
scattering centers) and e2hkl Lð Þ

� �
is the variance of the

strain distribution for a correlation (or Fourier) length L
along the given [hkl] direction. Anisotropy of the
strain field is represented by the corresponding
fourth-order invariant form of Miller indices,[48] which
for cubic materials is Chkl ¼ 1þ c � h2k2 þ k2l2 þ l2h2

� �
=

h2 þ k2 þ l2
� �2

h2 þ k2 þ l2
� �2 ¼ 1þ c � H2. Free (refin-

able) parameters in Eq. [A1] are then a, b, and c. More
details on this approach are provided in References 42, 43.

The expression of the FT for dislocation line broad-
ening is given by Wilkens[17,18] as

ADis
hklf g Lð Þ ¼ exp � b2

8p
qChkl Q

2L2f�
L

Re

	 
� �
; ½A2�

where q is the average dislocation density, b the Burgers
vector modulus, and Re the effective outer cut-off radius,
which is related to the extension of the effects of the

dislocation strain field and, more generally, to disloca-
tion interaction. According to Wilkens, Re is related to
the extension of the regions of restrictedly random
distribution of straight and parallel dislocations, and is a
weakly depending function of the crystallographic
direction and Q[45]; f* is a smooth function of L/Re

obtained by Wilkens in a heuristic way, to grant
integrability of Eq. [A2].[18] The average contrast factor,
�Chkl, accounts for the anisotropy of the elastic medium
and specific dislocation type and slip system. It depends
on crystal symmetry, and more specifically on the Laue
group, and can be calculated if elastic tensor compo-
nents are known, in addition to the dislocation type and
slip system. (e.g., see References 34, 35).
The size broadening effect can be treated in a rather

general form based on the concept of CVF (aka ‘‘ghost’’
in original papers and books by AJC Wilson[49]). As
shown recently,[36] the CVF can be obtained for any
crystal shape that can be described as a polyhedron,
which is also the case of G35 treated in this work. As
known from the theory,[36,49] the CVF, in normalized
form, Ahkl

S (L), is the FT of the line profile component
generated by domains with the specific size and shape.
Once the CVF is known, as for G35, it is possible to
produce the powder pattern and also refine the size of
the nanocrystal, including a distribution of sizes, which
is a possibility not used in the present work. The FT of
the total line profile can then be written as follows:

A Lð Þ ¼ AS
hkl Lð ÞAD

hklf g Lð ÞADis
hklf g Lð Þ; ½A3�

which is the basic expression of the WPPM analysis used
in this work.

REFERENCES
1. R.L. Snyder, J. Fiala, and H.J. Bunge: Defect and Microstructure

Analysis by Diffraction, Oxford University Press, Oxford, 1999.
2. E.J. Mittemeijer and P. Scardi, eds.: Diffraction Analysis of

Materials Microstructure, Volume 68 of Springer Series in
Materials Science, Springer, Berlin, 2004.

3. P. Scherrer: Nachr. Ges. Wiss. Gott. Math. Phys. Kl., 1918, vol. 26,
p. 98.

4. H.P. Klug and L.E. Alexander: X-ray Diffraction Procedures for
Polycrystalline and Amorphous Materials, Wiley, New York, NY,
1974.

5. A.R. Stokes and A.J.C. Wilson: Proc. Phys. Soc. Lond., 1944,
vol. 56, pp. 174–81.

6. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1,
pp. 22–31.

7. B.E. Warren: Prog. Met. Phys., 1959, vol. 8, pp. 147–202.
8. I. Gutierrez-Urrutia and D. Raabe: Scripta Mater., 2012, vol. 66,

pp. 343–46.
9. K.W. Jacobsen and J. SchiØtz: Nat. Mater., 2002, vol. 1, pp. 15–

16.
10. A. Stukowski, K. Albe, and D. Farkas: Phys. Rev. B, 2010, vol. 82,

pp. 224103-1–3-9.
11. P. Debye: Ann. Phys., 1915, vol. 351, pp. 809–23.
12. B.E. Warren: X-ray Diffraction, Addison-Wesley, Reading, MA,

1969.
13. P.M. Derlet, S. Van Petegem, and H. Van Swygenhoven: Phys.

Rev. B, 2005, vol. 71, p. 024114.
14. S. Brandstetter, P.M. Derlet, S. Van Pentegem, and H. Van

Swygenhoven: Acta Mater., 2008, vol. 58, pp. 165–76.
15. M.A. Krivoglaz and K.P. Ryaboshapka: Fiz. Metall., 1963,

vol. 15, pp. 18–28.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 47A, DECEMBER 2016—5731



16. M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering
by Real Crystals, Plenum Press, New York, 1969.

17. M. Wilkens: Phys. Status Solid. A, 1970, vol. 2, pp. 359–70.
18. M. Wilkens: Fundamental Aspects of Dislocation Theory, J.A.

Simmons, R. de Wit, and R. Bullough, eds., National Bureau of
Standards (US) Special Publication No. 317, NBS, Washington,
DC, vol. II, pp. 1195–1221.

19. L. Gelisio, C.L. Azanza Ricardo, M. Leoni, and P. Scardi: J. Appl.
Crystallogr., 2010, vol. 43, pp. 647–53.

20. A. Leonardi, M. Leoni, and P. Scardi: J. Appl. Crystallogr., 2013,
vol. 46, pp. 63–75.

21. A. Leonardi, M. Leoni, and P. Scardi: J. Comput. Mater. Sci.,
2013, vol. 67, pp. 238–42.

22. A. Leonardi, M. Leoni, and P. Scardi: Philos. Mag., 2012, vol. 92,
pp. 986–1005.

23. J.K. Mackenzie: Biometrika, 1958, vol. 45, pp. 229–40.
24. A. Morawic: J. Appl. Crystallogr., 1995, vol. 28, pp. 289–93.
25. S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1–19.
26. M.S. Daw and M.I. Baskes: Phys. Rev. B, 1984, vol. 29, pp. 6443–

53.
27. S.M. Foiles, M.I. Baskes, and M.S. Daw: Phys. Rev. B, 1986,

vol. 33, pp. 7983–91.
28. H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, and M.W. Chen:

Phys. Rev. B, 2011, vol. 83, p. 134118.
29. A. Leonardi, K.R. Beyerlein, T. Xu, M. Li, M. Leoni, and P.

Scardi: Z. Kristallogr. Proc., 2011, vol. 1, pp. 37–42.
30. A. Leonardi, M. Leoni, and P. Scardi: J. Nanosci. Nanotechnol.,

2012, vol. 12, pp. 8546–53.
31. D. Hull and D.J. Bacon: Introduction to Dislocations, Butterworth-

Heinemann, Oxford, 1965.
32. P. Scardi and M. Leoni: Acta Crystallogr. A, 2002, vol. 58,

pp. 190–200.

33. P. Scardi: Powder Diffraction: Theory and Practice, Chap. XIII,
The Royal Society of Chemistry, Cambridge, U.K., 2008, pp. 376–
413.

34. M. Leoni, J. Martinez-Garcia, and P. Scardi: J. Appl. Crystallogr.,
2007, vol. 40, pp. 719–24.

35. J. Martinez-Garcia, M. Leoni, and P. Scardi: Acta Crystallogr. A,
2009, vol. 65, pp. 109–19.

36. A. Leonardi, M. Leoni, S. Siboni, and P. Scardi: J. Appl. Crys-
tallogr., 2012, vol. 45, pp. 1162–72.

37. T. Ino and N. Minami: Acta Crystallogr. A, 1984, vol. 40, pp. 538–
44.

38. K.R. Beyerlein, R.L. Snyder, and P. Scardi: J. Appl. Crystallogr.,
2011, vol. 44, pp. 945–53.

39. M. Leoni and P. Scardi: Diffraction Analysis of the Microstructure
of Materials, Chapter XVI, Springer, Berlin, 2004, pp. 413–52.

40. L. Gelisio and P. Scardi: Metall. Mater. Trans. A, 2014, vol. 45A,
pp. 4786–95.

41. T. Adler and C.R. Houska: J. Appl. Phys., 1979, vol. 50, pp. 3282–
87.

42. A. Leonardi and P. Scardi: Front. Mater., 2015, vol. 1, p. 37.
43. P. Scardi, A. Leonardi, L. Gelisio, M.R. Suchomel, B.T. Sneed,

M.K. Sheehan, and C.-K. Tsung: Phys. Rev. B, 2015, in press.
44. B.E. Warren and B.L. Averbach: J. Appl. Phys., 1950, vol. 21,

pp. 595–99.
45. N. Armstrong, M. Leoni, and P. Scardi: Z. Kristallogr. Suppl.,

2006, vol. 23, pp. 81–86.
46. J.D. Eshelby: J. Appl. Phys., 1953, vol. 24, pp. 176–79.
47. A. Leonardi, S. Ryu, N, Pugno, and P. Scardi: J. Appl. Phys.,

2015, submitted.
48. N.C. Popa: J. Appl. Crystallogr., 1998, vol. 31, pp. 176–80.
49. A.J.C. Wilson: X-ray Optics: the Diffraction of X-rays by Finite and

Imperfect Crystals, Methuen, London, 1962.

5732—VOLUME 47A, DECEMBER 2016 METALLURGICAL AND MATERIALS TRANSACTIONS A


	Dislocation Effects on the Diffraction Line Profiles from Nanocrystalline Domains
	Abstract
	Introduction
	Simulated Microstructures and Strain Fields
	Powder Diffraction Patterns from MD Simulations
	Powder Pattern Modeling
	Conclusions
	Appendix
	References




