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The powder diffraction patterns of spherical nanocrystals made of five different fcc metals were
generated using atomistic models within a Molecular Dynamics simulation. Static and dynamic
effects are interpreted and discussed within the framework of two different approaches,
respectively, based on (1) a Reciprocal Space and (2) a Direct Space representation of diffrac-
tion. Chosen elements display a wide range of properties, especially related to material stiffness
and elastic anisotropy, so to deeply challenge interpretation paradigms. The effect of the shape
on static and dynamic features is also addressed.
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I. INTRODUCTION

METAL nanocrystals are a subject of study in
several and quite different research fields, like clean
energy production and biomedical applications, both
requiring nanocrystalline metal surfaces to activate/
enhance oxidation.[1,2] In both cases, the key is control-
ling nanocrystal size and shape, to obtain a specific
catalytic behavior and improve the performance. While
nanotechnology actively pursues these important
achievements, characterization techniques need to
evolve to provide increasingly detailed information.
Powder diffraction has so far lagged behind, as in many
cases even in top level research studies just qualitative or
partial information has been exploited: X-Ray Diffrac-
tion (XRD) line profiles are often analyzed in terms of
peak width for a quick assessment of some characteristic
length of the studied system.[3,4] Well known alterna-
tives, much exploited in the cited studies, employ
Transmission Electron Microscopy (TEM): spectacular
pictures and detailed information can be obtained by
high resolution TEM, and more specifically by High-
Angle Annular Dark-Field imaging (HAADF),[5–7]

although the analysis can hardly concern more than
just a few nanoparticles. Sample preparation can result
in a biased sampling of the statistical population (e.g.,
by excluding larger or smaller particles, or by focusing
only on loose items and excluding agglomerates), and
beam energy can degrade the specimen or promote
phase transformations. XRD is a perfectly complemen-
tary technique, as it can support electron microscopy in
providing a sound statistical basis: a typical powder
diffraction analysis involves millions to billions of
crystalline domains. However, much is still to be
understood on the XRD from nanocrystalline materials.

As shown in this paper, the modern powder diffraction
theory provides much better and more refined methods
than the nearly centenary Scherrer equation and related
integral breadth methods.[8,9] Methodologies proposed
over the past decade evolved following two different
schools of thought. According to the traditional para-
digm (1), diffraction is studied in Reciprocal Space (RS);
(a) diffraction peaks are described by suitable profile
functions, just flexible ones (as in traditional profile
fitting), or (b) model-based profile functions, for a direct
evaluation of (nano)structural parameters.[10] As an
alternative, (2) the Debye Scattering Equation (DSE) is
based on the Direct Space (DS) representation of
nanocrystals. This provides a detailed picture of the
nanostructure, possibly down to the atomic level,
although to the cost of a higher complexity and
computational demand.[11–13]

Differences between the two approaches have not been
fully investigated so far, also because no simple and clear
experimental cases are available for such a comparison.
Atomisticmodels are convenient in this context:Molecular
Dynamics (MD) can be used to build model systems of
metal nanocrystals, then generate a corresponding powder
diffraction pattern to be used as a plausible benchmark to
compare RS and DS methods.[14]

Besides comparing the two methods, the present work
shows some peculiarities and information that can be
provided by powder diffraction on the surface relaxation
effect which dominates most properties of metal nano-
particles. Several metals and domain sizes are compared
to further highlight differences arising from different
basic properties of the metal nanocrystals.

II. EXPERIMENTAL AND METHODS

A. Generation of Metal Nanocrystals and Powder
Patterns

Atomistic models of spherical nanocrystals were built
for several fcc metallic elements (Table I) and the
DSE[15,16] used to generate the powder diffraction
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pattern.[13,17] Particles were carved out of an ideal fcc
lattice, removing atoms with less than six nearest
neighbors (as-built objects hereinafter). Equilibrium
atomic positions and thermal vibrations were obtained
by MD, using the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS[18]), with atomic
interaction based on the Embedded Atom Method
(EAM[19–21]). Integration timestep was set to one hun-
dredth of the reciprocal of the largest phonon frequency
at room temperature (RT = 298.150 K). The Temper-
ature (T) was initially set to 447.225 K and then lowered
to RT. At a later stage, the constraint on T was removed
and the total Energy (E) kept constant (NVE ensemble).
The Number of atoms (N) and the Volume (V) were also
kept constant during the simulation, which is summa-
rized in Figure 1. In the last NVE region (i.e., micro-
canonical ensemble: constant N, V and E) atomic
coordinates were dumped every 1000 steps along the
MD trajectory (250 frames). From these data, two
different samples were obtained: (1) the DSE was
applied to atomic coordinates at each snapshot, and
the time-averaged XRPD pattern computed (time-aver-
aged); (2) the DSE was applied to the time-averaged
atomic positions (space-averaged). The time-averaged
XRPD pattern should mimic a real experiment, being
both static (atomic arrangement) and dynamic (atomic
vibrations) features included, whereas the space-aver-
aged sample is meant to leave out the effect of
vibrations, being the DSE only applied to the average
atomic positions, so to single-out the effect of atomic
displacement due to finite size of the object.

Static features were assessed through the displacement
field,

Di ¼ �ðrsai � rabi Þ; ½1�

where ri
ab is the vector connecting atom i to the reference

frame in the as-built configuration and ri
sa = hri(t)it in

the space-averaged one (the symbol hit denotes the
average over time, i.e., the entire MD trajectory).

Moreover, a simple expression for the average atom-
istic strain can be built computing the difference of bond
length (|rij|, j being a nearest neighbor of i),

ei;Z ¼
1

Z

Xz

j¼1

rsaij

rabij
� 1

 !
½2�

and averaging the information over the Z nearest
neighbors. Atomic vibrations were represented by the
traditional temperature factor (B-factor, in the follow-
ing, Biso), which appears in the Debye–Waller factor

Biso ¼
8p2

3

1

N

XN
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¼ 8p2

3
MSDðtÞh it ½3�

i.e., the time-average of the Mean Squared Displace-
ment (MSD). In turn, this quantity expresses the
squared difference of the vector (ri

sa) connecting the
atom i in the reference configuration (which, in this case,
is space-averaged, as atoms oscillate around these
positions) and the same vector at a given time t.

B. Whole Powder Pattern Modeling (WPPM) and DSE

WPPM is a perturbation approach applied to a
perfect crystal model in RS (see Reference 10 and
references therein). Each peak profile in a powder
pattern is represented as a convolution of effects

Table I. Lattice Parameter (a), Young modulus projected along different directions (E), Zener Ratio [Zr = 2 C44/(C11 2 C12)],

Surface Energies (c) and Melting Temperature (Tm) for Investigated Elements

a (Å) E100 (GPa) E110 (GPa) E111 (GPa) E (GPa)

Rh 3.8034 300.6 405.5 458.9 369
Pd 3.8900 78.9 150.6 216.2 127
Ag 4.0900 48.5 92.3 132.2 78
Pt 3.9200 136.3 186.0 211.8 180
Pb 4.9508 11.8 25.3 41.0 25

Zr c100 (Jm
�2) c110 (GPa) c111 (GPa) Tm (K)

Rh 1.651 2.481 2.381 2.233 2065
Pd 2.982 1.645 1.747 1.529 1680
Ag 3.000 1.042 1.125 0.977 1255
Pt 1.604 1.778 1.934 1.694 1890
Pb 3.753 0.476 0.532 0.405 680

Properties are calculated using values taken from Ref. [21].

Fig. 1—Schematic representation of the MD simulation procedure
for the 6 unit cell radius Pb sphere, with indication of the different
stages until the atomic coordinates are extracted (NVE ensemble)
and used in the generation of nanocrystal powder diffraction pattern
(see text for details).
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originating from the microstructure, here defined as any
deviation from an otherwise perfect crystal lattice. Each
effect has a corresponding line profile, usually known in
a simple analytical form, function of a few physically
sound parameters. Among the most frequently imple-
mented models, finite size and shape of the crystalline
domain, dislocations of different type and stacking
faults.[10,22,23] The key to use a convolution of effects is
to exploit the convolution theorem for Fourier Trans-
forms, which turns a computationally complex problem
of folding into a simple multiplication of different terms.
As of the most recent developments,[24] WPPM can use
virtually any crystalline domain shape and strain models
for dislocations in any crystal system.[25] Nanocrystals
can then be studied down to small sizes, with the highest
precision for the spherical domain shape.[26] Less accu-
rate is the description of the complex effects caused by
the nanocrystal surface, which displaces atoms from the
expected perfect crystal positions: so far only simplified
models for this surface relaxation effect could be
implemented in a WPPM procedure.[27] Thermal effects
can also be handled by WPPM, according to a model
originally proposed by Warren[16,28] and recently
adapted to the finite size of nanocrystals.[29]

In the following, we use a spherical nanocrystal
model, including Debye–Waller factor and Thermal
Diffuse Scattering (TDS) for the spherical shape.[24] The
complex and anisotropic atomic displacement caused by
surface relaxation is treated in a simplified way, provid-
ing for a shift of the average unit cell parameter and a
flexible, although not entirely rigorous, r.m.s. atomic
displacement (microstrain). Its peak profile component
is represented by a pseudo-Voigt function,[30] whose
peak width is allowed to vary for different (hkl)s
according to the invariant form for cubic systems[31]

Aþ BH ¼ Aþ B
h2k2 þ k2l2 þ l2h2

ðh2 þ k2 þ l2Þ2
: ½4�

Peak positions are corrected in a similar way, by
allowing interplanar distances, dhkl, to vary according to
a similar invariant factor (dhkl is multiplied by
A¢+B¢H). As shown in more detail below, this
approach provides useful information, even though an
accurate description necessarily requires an atomistic
model and DS approach.[14,32]

In this framework, the DSE expresses (within the
kinematical approximation) the intensity scattered from
a powder of identical atomic aggregates composed of N
atoms connected by vectors rij and scattering with a
(spherically symmetric) form factor fi,

[15–17,33]

IðqÞ ¼
XN

i¼1

XN

j¼1
fi ðqÞ fj ðqÞ sincðqrijÞ ½5�

It is the contribution of each atomic pair which is
computed, so the XRPD pattern can be generated for
any atomic arrangement. As a case of study, the pattern
of selected space-averaged particles were modeled using
the reference as-built object as starting configuration,

and a model adapted from the one proposed in
Reference 14 to displace atoms and account for lattice
relaxation,

Diði; a; a; r; h; k; l;Zi; r
ab
i Þ

¼ ðri � rabi Þ ¼ jðh; k; lÞ 1� a

aab

� �
þ r ln

Zi

12

� �� �
rabi

jðh; k; lÞ ¼ iS11 � 2a S11 � S12 �
S44

2

� �
h2l2 þ l2k2 þ k2h2

ðh2 þ k2 þ l2Þ2

( )
:

½6�

A strain localized on the surface (Zi „ 12) is added to
a strain constant through the particle, v = (1 � a/aab).
These quantities are, in turn, mapped onto the material
through the elastic tensor, described by the constant
coefficients Snm. The displacement of a given atom from
its reference position is then projected on the radial versor
so to obtain a radial deformation (ei,r = Di/ri

ab), suitable
for the spherical symmetry of test cases.

III. RESULTS AND DISCUSSION

The statistical quality of each fit is assessed through a
Normalized Residual Sum of Squares (NRSS),

NRSS¼ 1

Q

XQ

q¼1

IsðqÞ� ImðqÞ
Nf2ðqÞ

� �2
¼ 1

Q

XQ

q¼1
=sðqÞ�=mðqÞ½ �2:

½7�

The calculated intensity (Eq. [5]) for both the simu-
lated object (Is) and the model (Im) is normalized over
(1) the number of atoms (N) and (2) the squared atomic
form factor. This way, (1) particles composed by a
different number of scatterers or (2) different chemical
elements can be compared: the residual sum of squares
of the two interference functions (= = I/Nf2) is com-
puted. Finally, the fact that patterns may have been
sampled with a different number of points (Q) is also
taken into account.
As-built nanocrystals give a nearly perfect match

between RS and DS approach (e.g., see Figure 2). Just
two parameters were refined by WPPM: unit cell
parameter, a, and domain diameter, D, while all other
parameters were fixed, including the scale factor calcu-
lated from the known number of atoms. Refined a
agrees with the model better than 4 9 10�6, and in some
cases (larger sizes) better than 1 9 10�6. Even little
differences can be explained, considering the powder
pattern was generated by the DSE for a single sphere
model whereas the RS approach, as implemented by
WPPM, implicitly assumes the conditions of Ino and
Minami[26,34]: an average is made of patterns of spher-
ical models centered in different positions, which corre-
sponds to ‘‘carve’’ slightly different spheres out of a
perfect (infinite) lattice. Differences usually concern just
a fraction of atoms on the surface, which become
significant at the nanoscale.[26]
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WPPM of the powder pattern for MD simulated
spheres (time-averaged XRPD pattern), although not as
satisfactory as for the corresponding as-built spheres,
provides interesting results. Just six parameters were
allowed to vary during the WPPM: besides a and D,
Debye–Waller Biso factor, effective microstrain with
anisotropy parameter B, and effective macrostrain
anisotropy parameter B¢ (see Section III).

One of the most evident effects is the shrinkage of the
metal nanoparticles caused by surface tension, which in
turn is a consequence of the lower coordination of
surface metal atoms. This effect is promptly seen in
terms of domain size, but is also evident from Figure 3,
showing the relative change of unit cell parameter (with
respect to the as-built, starting value) for the five studied
metals and four different spherical domain diameters.
The effect decreases progressively for increasing size,
toward the ‘‘bulk’’ value (zero), although each trend
depends on the specific metal: as a general tendency, the
effect is stronger for softer (lower Young modulus)
metals, so the smallest effect is for Rh, the largest for Pb.

Domain size also affects the Debye–Waller factor, as a
result of the decreased number of atoms in surface
regions.[35–38] The refined value of Biso, which is inversely
proportional to the Young modulus of the studied fcc
metals (Figure 4(a)), increases in smaller domains
(Figure 4(b)). As shown in Figure 4(a), values refined
by WPPM are in a reasonably good agreement with the
reference Biso given by MD, as obtained from the atomic
coordinates along the MD trajectory (Eq. [3]).

Lines in Figure 4(b) represent Biso calculated for a
40 9 40 9 40 unit cell cube, implementing Periodic
Boundary Conditions (PBCs) in the MD, so to mimic
an ‘‘infinite’’ crystal. Even if the periodicity condition
alters the vibrational properties (the longest phononic
wavelength is proportional to the size of the simulation
domain), values are in good agreement with the litera-
ture,[39] and correctly point out the asymptotic trend of
Biso with the increasing nanocrystal size.

The discrepancy between the WPPM result and Biso

given by MD, once again, can only partly be attributed

to limitations in the RS approach, as it mostly stems
from the different way to measure the underlying
property, which is the Mean Squared Displacement
(MSD). While the MSD (and in turn, Biso) from MD is
an arithmetic average over each atom (see Section III),
the Debye–Waller factor refined by WPPM mostly
depends on the depression of Bragg peak intensity with
increasing scattering vector, and to some extent on the
Temperature Diffuse Scattering. Moreover, as shown by
MD simulations (Figure 5), the amplitude of vibrations
of atoms sitting on the surface is much larger, being
their coordination lower than the bulk value, a feature
clearly responsible for the dependency of the mean Biso

value with the size (Figure 4(b)).
The role of the temperature diffuse scattering term is

addressed in Figure 6, where the powder pattern for
silver and lead, considering spherical domains with 6 or
12 unit cell radius is presented. Both the modeling
results with a realistic TDS model (right),[29] and by
using the so-called Debye TDS, i.e., the diffuse

Fig. 2—WPPM results (RS modeling) for the powder patterns of MD simulated spheres of 12 (28867 atoms) and 6 (3559 atoms) unit cells,
respectively, for Pb (left; NRSS = 1.9 9 10�15) and Rh (right; NRSS = 2.1 9 10�12). The inset shows a detail of the peak tail region and fine
discrepancies in the residual (difference between data and model, line below).

Fig. 3—WPPM results for the relative change of unit cell parameter
after MD simulation (time-averaged, ta) as a function of the spheri-
cal domain diameter for the five studied fcc metals. Parabolic trends
are drawn just to drive the eye.
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scattering effect for completely uncorrelated atomic
vibrations (left) are shown.[16] In both cases it is quite
evident that the TDS effect cannot be ignored. The effect
of disregarding it (or of using a poor model like that for
uncorrelated vibration), gets worst for (1) decreasing
size of the nanocrystal and (2) lower Young modulus,
which implies wider oscillations.

Even if most of the peak broadening is caused by the
small domain size, local variations in the distance
between scattering centers caused by atomic displace-
ment from the ideal (as-built) positions also contribute
to alter the line profiles. As explained in the previous
paragraph, this complex effect was treated in a simplified
way within the WPPM, which although not totally
rigorous is sufficiently informative.

Using the results from WPPM for the smallest
spheres, Figure 7(a) shows the so-called Warren’s

plot,[40] i.e., the Root Mean Squared Displacement
(RMSD, hDL2i½ = Lhe2i½) as a function of L, the
distance between couples of scatterers. According to
Warren’s theory unit cells can be taken as scatterers.
For larger spheres the effect follows similar trends,

but with much smaller absolute values. Results refer to
an isotropic model, where the invariant form of Miller
indices, A+BH is used with B = 0. The amount of
microstrain can be assessed in different ways: based on
Figures 7(a) and (b), microstrain and anisotropy range
from the lowest level, Rh, corresponding to the largest
Young modulus and small Zener ratio, to the highest
values, for Pb, which has the smallest Young modulus
and highest Zener ratio.
The same analysis can be repeated for each different

crystallographic direction taking into account anisot-
ropy (B „ 0). Two extreme cases for the fcc metals
considered, corresponding to the elastically soft and stiff
directions (h00 and hhh, respectively), with the isotropic
and all other values laying in between, are shown in
Figure 8. It is worth noting that, in terms of quality of
line profile modeling adding the anisotropy gives a
modest (although still significant) improvement. Con-
sistently with the amount of strain and related profile
broadening, Pb and Rh are again the two extremes (see
also Figure 7(b)), with the former the most affected by
(macro and micro) strain anisotropy: Goodness of Fit
(GoF) improves of 3.33 pct for Pb and just 0.04 pct for
Rh, the other metals laying in between.
As shown thus far, modeling the static disorder

resulting from lattice relaxation is not an easy task for
RS methods: the complexity of the effect calls for a DS
analysis. The left part of Figure 9(a) shows a modeling
of a space-averaged sample (Ag, 6 uc radius) using the
DSE and Eq. [6], fitting i, a, a and r to displace atoms
(see WPPM and DSE). Figure 9(b) shows the radial
deformation (Eq. [2]), measured for simulated (space-
averaged) particle and the object generated by the fitting
algorithm (model) as a function of the number of nearest
neighbors of a given atom; Figure 9(c) the same
quantity as a function of the radial position of a given

Fig. 4—Biso as a function of the Young modulus of different metals (left). Values from MD simulations (full symbol, Eq. [3]), and WPPM of
time-averaged XRPD data (open symbol). Biso is also shown as a function of sphere diameter (right). Horizontal lines represent Biso calculated
for a 40 9 40 9 40 unit cell cube, implementing PBCs in the MD simulation.

Fig. 5—Biso as a function of the radial coordinate in four spheres
with different radius, expressed in number of unit cells for Ag and
Pb. Vertical lines mark the threshold above which the number of
nearest neighbors decreases below 12 (bulk/surface interface). It is
interesting to notice that the behavior of Biso as a function of the ra-
dius predicted by MD is similar for Ag and Pd.
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atom in its reference (as-built) configuration. This dual-
view of the quantity underlines the complexity of the
displacement field. Particularly, Figure 9(b) illustrates
that, although the average value of the strain (circles) is
roughly reproduced by the model, the standard devia-
tion (bars) of the strain distribution for a given atomic

environment (Z) is underestimated by the model (see
Reference 14 for a discussion on the complexity of the
strain field). Worst case scenario is illustrated by the
smallest Pb sphere (6 uc radius): the quality of the fit is
definitely worse than for the Ag case, but still remark-
ably good with respect to the RS approach. It is quite

Fig. 6—Modeling results with TDS models based on correlated (right) and uncorrelated (left) atomic vibrations. Spherical domains with different
radius (in unit cells, uc), from the top: Ag 12 uc (uncorrelated NRSS = 7.9 9 10�12, correlated NRSS = 1.1 9 10�12), Ag 6 uc (uncorrelated
NRSS = 3.9 9 10�10, correlated NRSS = 6.4 9 10�11), and Pb 6 uc (uncorrelated NRSS = 4.1 9 10�10, correlated NRSS = 1.0 9 10�10).
The inset shows a logarithmic representation of the same pattern.
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evident from the data in Figure 9 that an analyti-
cal model, although based on several functional
dependences and adjustable parameters, can hardly
reproduce the intricate pattern of atomic displacements
caused by the surface relaxation of nanocrystals.

So far only spherical domains have been discussed.
Shape of course has also a relevant role, for the effect of
bounding the crystal among facets with different crys-
tallographic orientation. As an example, three more
geometries are shown, carved out of an infinite Pb lattice
with (1) (100) planes (cube), (2) (110) planes (rhombic
dodecahedron) and (3) (111) planes (octahedron). Size
was chosen so to include approximately the same
number of atoms (12187, 11393, and 11720, respec-
tively).

The displacement field (Figure 10), which results from
the interplay between symmetry of the elastic tensor and
of the given object, is quite complicated both in the
distribution of amplitude and direction of the effect. The
spherical case discussed so far seems to be the simplest
one, with the lowest effect of anisotropy, as a result of
the averaging effect caused by the higher (spherical)
shape symmetry.

Each shape has a different and rather peculiar displace-
ment map, and further differences are to be expected for
other elements. Figure 11(a) shows the average deforma-
tion for the above-introduced objects. The choice of the
abscissa is based on the assumption that deformation is
caused by the pressure arising from surface energy at the
particle/vacuum interface. This quantity can be expressed
by the Young–Laplace equation,

r ¼ 2
c
r
; ½8�

and within the limits of an elastic regime (so that
Young modulus E and Hooke’s law can be used),

e ¼ 2
c
Er
: ½9�

As a consequence, deformation in Figure 11(a) is
conveniently shown as a function of chkl/Ehkl, the ratio
for the crystallographic planes enclosing the nanocrys-
tal. It is worth noting that the spherical case, showing no
specific facet, has no abscissa and is conventionally left
near the ordinate axis.

Fig. 7—Warren’s plot (left): RMSD as a function of L; anisotropy of microstrain affecting line broadening (B, �) and of macrostrain influencing
peak position (B¢, s) as a function of the Zener ratio, which is 1 for the isotropic case (right: the line is drawn just to guide the eye). All values
are obtained from WPPM as those shown in Fig. 6 using the TDS model for correlated atomic vibrations.

Fig. 8—Warren’s plot for Ag (left) and Pb (right) spheres (6 uc radius), considering an anisotropic RMSD model (see text for details).
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Figure 11(b) shows Biso as a function of the Young
modulus projected along the direction perpendicular to
a given face. The linear relation is justified by the hkl

dependence, which is embodied in the expression of the
elastic modulus (within the limits of an elastic contin-
uum approximation),

(a)

(b)

(c)

Fig. 9—Modeling of the space-average XRPD patterns of Ag (left; NRSS = 1.3 9 10�11) and Pb (right; NRSS = 4.1 9 10�11); the inset shows
a magnified region of the pattern whereas the residual is shown above. Radial deformation as a function of the numbers of nearest neighbors is
also shown (b): points represent average values, bars standard deviation. (c) Deformation along radial direction. In each figure, curves on the left
represent deformation calculated for the space-averaged object, whereas on the right it is shown the result obtained by fitting Eq. [6] to the DSE
data. Vertical lines represent the bulk/surface interface.
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1

Ehkl
¼ S11 � 2 S11 � S12 �

S44

2

� �
h2l2 þ l2k2 þ k2h2

ðh2 þ k2 þ l2Þ2
½10�

This provides again for a dependency on the cubic
invariant form (cf. H in WPPM and DSE), so that the
softest [h00] direction allows the widest out-of-plane
atomic oscillations perpendicular to cube faces, whereas
the stiffest [hhh] gives the narrowest oscillations normal
to the octahedron faces, with the rhombic dodecahedron
(framed by {hh0}) laying in between. As in Figure 11(a),
the sphere has no given abscissa, and corresponding
values fall in between the limits of the [h00] and [hhh]
cases. It is also worth noting that the anisotropy effect is

much stronger for less bounded atoms, i.e., those with a
coordination lower than 12.

IV. CONCLUSIONS

Nanocrystals cannot be simply represented as de-
formed small crystals: analytical models suggested by
continuum mechanics, which are rigorous for materials
at the macro-scale, may be a reasonable first-order
approximation, but cannot explain the fine details and
complex effects influencing the atomic arrangement.
Atomistic models can address a proper description of
real nanocrystals, allowing to understand and interpret
the complexity of the static and dynamic properties.

Fig. 10—Displacement maps of four Pb samples. From left to right, sphere, cube, rhombic dodecahedron and octahedron. Maps refer to the
(100) cross section (above), with the magnitude of the displacement vector multiplied by 25 times.

Fig. 11—Average strain for systems exposing different hkl as a function of the ratio between surface energy of the facets and elastic modulus
normal to the facets (left); Biso is plotted against elastic modulus along the normal to the facets (right). Z is the atomic coordination, so Z< 12
(m) is for surface and Z = 12 (.) for bulk atoms, whereas full circle (�) refer to the average value. Lines are drawn to drive the eye.
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This approach naturally calls for a DS representation of
diffraction, which is as detailed as computationally
heavy: for this reason a traditional RS approach, much
faster to implement and use, can still provide useful
information, provided that thermal effects are properly
considered, together with a suitable representation of
the elastic anisotropy effects influencing both peak
position and broadening. It is worth considering that
the complexity of nanocrystals and many specific
properties of interest are strongly influenced by their
shape: nanocrystals framed by different crystallographic
planes deeply differ in properties, and the modeling of
the powder diffraction pattern might be definitely too
difficult to be viable for traditional RS methods.
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