Skip to main content
Log in

Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microscopic damage mechanisms operating in a hot-rolled magnesium alloy AZ31B are investigated under both uniaxial and controlled triaxial loadings. Their connection to macroscopic fracture strains and fracture mode (normal vs shear) is elucidated using postmortem fractography, interrupted tests, and microscopic analysis. The fracture locus (strain-to-failure vs stress triaxiality) exhibits a maximum at moderate triaxiality, and the strain-to-failure is found to be greater in notched specimens than in initially smooth ones. A transition from twinning-induced fracture under uniaxial loading to microvoid coalescence fracture under triaxial loading is evidenced. It is argued that this transition accounts in part for the observed greater ductility in notched bars. The evolution of plastic anisotropy with stress triaxiality is also investigated. It is inferred that anisotropic plasticity at a macroscopic scale suffices to account for the observed transition in the fracture mode from flat (triaxial loading) to shear-like (uniaxial loading). Damage is found to initiate at second-phase particles and deformation twins. Fracture surfaces of broken specimens exhibit granular morphology, coarse splits, twin-sized crack traces, as well as shallow and deep dimples, in proportions that depend on the overall stress triaxiality and fracture mode. An important finding is that AZ31B has a greater tolerance to ductile damage accumulation than has been believed thus far, based on the fracture behavior in uniaxial specimens. Another finding, common to both tension and compression, is the increase in volumetric strain, the microscopic origins of which remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Spatial nonuniformity, notably of triaxiality, is greater after crack initiation.

References

  1. Stalmann A, Sebastian W, Friedrich H, Schumann S, Droder K (2001) Adv. Eng. Mater. 3:969–74

    Google Scholar 

  2. Agnew SR, Tome CN, Brown DW, Holden TM, Vogel SC (2003) Scripta Mater. 48:1003–08

    Google Scholar 

  3. Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K (2003) Acta Mater. 51:2055–65

    Google Scholar 

  4. Koike J (2005) Metall. Mater. Trans. A 36A:1689–96

    Google Scholar 

  5. Yi SB, Davies CHJ, Brokmeier HG, Bolmaro RE, Kainer KU, Homeyer J (2006) Acta Mater. 54:549–62

    Google Scholar 

  6. Gao X, Nie JF (2007) Scripta Mater. 56:645–48

    Google Scholar 

  7. Capolungo L, Beyerlein IJ, Tome CN (2009) Scripta Mater. 60:32–35

    Google Scholar 

  8. Al-Maharbi M, Karaman I, Beyerlein IJ, Foley D, Hartwig KT, Kecskes LJ, Mathaudhu SN (2011) Mater. Sci. Eng. A 528:7616–27

    Google Scholar 

  9. Pineau A (2006) Int. J. Fract. 138:139–66

    Google Scholar 

  10. Benzerga AA, Leblond J-B (2010) Adv. Appl. Mech. 44:169–305

    Google Scholar 

  11. Barnett MR (2007) Mater. Sci. Eng. A 464:8–16

    Google Scholar 

  12. Al-Samman T, Gottstein G (2008) Mater. Sci. Eng. A 488:406–14

    Google Scholar 

  13. H. Watanabe: J. Mater. Eng. Perform., 2013.

  14. Marya M, Hector LG, Verma R, Tong W (2006) Mater. Sci. Eng. A 418:341–56

    Google Scholar 

  15. Somekawa H, Singh A, Mukai T (2009) Philos. Mag. Lett. 89:2–10

    Google Scholar 

  16. Lugo M, Tschopp MA, Jordon JB, Horstemeyer MF (2011) Scripta Mater. 64:912–15

    Google Scholar 

  17. Steglich D, Morgeneyer T (2013) Int. J. Fract. 183:105–12

    Google Scholar 

  18. Yoo MH (1981) Metall. Trans. 12:409–18

    Google Scholar 

  19. Ando D, Koike J, Sutou Y (2010) Acta Mater. 58:4316–24

    Google Scholar 

  20. Somekawa H, Mukai T (2005) Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta Mater. 53:541–45

    Google Scholar 

  21. J. Rice: in 14th International Congress on Theoretical and Applied Mechanics, W. Koiter, ed., North-Holland, Amsterdam, 1976, pp. 207–20.

  22. B. Kondori and A.A. Benzerga: Exp. Mech., 2014, DOI:10.1007/s11340-013-9812-8.

  23. R.T. DeHoff: in Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., McGraw-Hill, New York, 1968, pp. 128–48.

  24. Benzerga AA, Besson J, Pineau A (2004) Acta Mater. 52:4623–38

    Google Scholar 

  25. Benzerga AA, Besson J, Pineau A (2004) Acta Mater. 52:4639–50

    Google Scholar 

  26. Hosokawa A, Wilkinson DS, Kang J, Maire E (2013) Acta Mater. 61:1021–36

    Google Scholar 

  27. Laser T, Nurnberg M, Janz A, Hartig C, Letzig D, Schmid-Fetzer R, Bormann R (2006) Acta Mater. 54:3033–41

    Google Scholar 

  28. Hort N, Huang YD, Kainer KU (2006) Adv. Eng. Mater. 8:235–40

    Google Scholar 

  29. S. Basu and A.A. Benzerga: Unpublished research.

  30. Chun YB, Davies CHJ (2011) Mater. Sci. Eng. A 528:4941–46

    Google Scholar 

  31. Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater. 45:89–94

    Google Scholar 

  32. Bron F, Besson J, Pineau A (2004) Mater. Sci. Eng. A 380:356–64

    Google Scholar 

  33. Benzerga AA, Besson J, Batisse R, Pineau A (2002) Model. Simul. Mater. Sci. Eng. A 10:73–102

    Google Scholar 

  34. P. Achon: Ph.D. Thesis, Ecole des Mines de Paris, 1994.

  35. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Acta Mater. 52:5093–5103

    Google Scholar 

  36. Lou XY, Li M, Boger RK, Agnew SR, Wagoner RH (2007) Int. J. Plast. 23:44–86

    Google Scholar 

  37. Barnett MR (2007) Mater. Sci. Eng. A 464:1–7

    Google Scholar 

  38. El Kadiri H, Oppedal AL (2010) J. Mech. Phys. Solids 58:613–24

    Google Scholar 

  39. Keshavarz Z, Barnett MR (2006) Scripta Mater. 55:915–18

    Google Scholar 

Download references

Acknowledgments

This research was supported by the NPRP Grant No 4-1411-2-555 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amine Benzerga.

Additional information

Manuscript submitted January 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondori, B., Benzerga, A.A. Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31. Metall Mater Trans A 45, 3292–3307 (2014). https://doi.org/10.1007/s11661-014-2211-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2211-7

Keywords

Navigation