Skip to main content
Log in

Direct Simulation of a Solidification Benchmark Experiment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A solidification benchmark experiment is simulated using a three-dimensional cellular automaton—finite element solidification model. The experiment consists of a rectangular cavity containing a Sn-3 wt pct Pb alloy. The alloy is first melted and then solidified in the cavity. A dense array of thermocouples permits monitoring of temperatures in the cavity and in the heat exchangers surrounding the cavity. After solidification, the grain structure is revealed by metallography. X-ray radiography and inductively coupled plasma spectrometry are also conducted to access a distribution map of Pb, or macrosegregation map. The solidification model consists of solutions for heat, solute mass, and momentum conservations using the finite element method. It is coupled with a description of the development of grain structure using the cellular automaton method. A careful and direct comparison with experimental results is possible thanks to boundary conditions deduced from the temperature measurements, as well as a careful choice of the values of the material properties for simulation. Results show that the temperature maps and the macrosegregation map can only be approached with a three-dimensional simulation that includes the description of the grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Beckermann C (2002) International Materials Reviews 47: 243-261.

    Article  CAS  Google Scholar 

  2. Flemings M C, Nereo G E 1967 Transactions of the Metallurgical Society of AIME 239 1449-1461.

    CAS  Google Scholar 

  3. Flemings M C, Mehrabian R, Nereo G E 1968 Transactions of the Metallurgical Society of AIME 242 41-49.

    CAS  Google Scholar 

  4. Flemings M C, Nereo G E 1968 Transactions of the Metallurgical Society of AIME 242 50-55.

    CAS  Google Scholar 

  5. Mehrabian R, Flemings M C 1969 Transactions of the Metallurgical Society of AIME 245 2347-2348.

    CAS  Google Scholar 

  6. Mehrabian R, Keane M, Flemings M C 1970 Metallurgical Transactions 1 1209-1220.

    CAS  Google Scholar 

  7. Flemings M C, Mehrabian R, Keane M 1970 Metallurgical Transactions 1 3238-3241.

    Google Scholar 

  8. Hebditch D J, Hunt J D 1974 Metallurgical Transactions 5 1557-1564.

    Article  CAS  Google Scholar 

  9. Lesoult G, Gandin Ch.-A., Niane N T 2003 Acta Materialia 51 5263–5283.

    Article  CAS  Google Scholar 

  10. D.J. Hebditch: Ph.D. Thesis, University of Oxford, Oxford, 1973.

  11. Wang X D, Fautrelle Y 2009 International Journal of Heat and Mass Transfer 52: 5624-5633.

    Article  CAS  Google Scholar 

  12. Hachani L, Saadi B, Wang X D, Nouri A, Zaidat K, Belgacem Bouzida A, Ayouni-Derouiche L, Raimondi G, Fautrelle Y 2012 International Journal of Heat and Mass Transfer 55 1986-1996.

    Article  CAS  Google Scholar 

  13. Gandin Ch.-A., Blaizot J, Mosbah S, Bellet M, Zimmermann G, Sturz L, Browne D J, McFadden S, Jung H, Billia B, Mangelinck N, Nguyen Thi H, Fautrelle Y, Wang X 2010 Materials Science Forum 649 189-198.

    Article  CAS  Google Scholar 

  14. Gandin Ch.-A., Rappaz M 1997 Acta materialia 45 2187-2195

    Article  CAS  Google Scholar 

  15. Gandin Ch.-A., Desbiolles J L, Rappaz M, Thevoz Ph 1999 Metallurgical and Materials Transactions A 30 3153-3165.

    Article  CAS  Google Scholar 

  16. Takatani H, Gandin Ch.-A., Rappaz M 2000 Acta materialia 48 675-688

    Article  CAS  Google Scholar 

  17. Carter P, Cox D C, Gandin Ch.-A., Reed R C 2000 Materials science and engineering A280 233-246.

    CAS  Google Scholar 

  18. Guillemot G, Gandin Ch.-A., Combeau H, Heringer R 2004 Modelling and simulation in materials science and engineering 12 545-556.

    Article  Google Scholar 

  19. Guillemot G, Gandin Ch.-A., Combeau H 2006 ISIJ International 46 880-895.

    Article  CAS  Google Scholar 

  20. Guillemot G, Gandin Ch.-A., Bellet M 2007 Journal of crystal growth 303 58-68

    Article  CAS  Google Scholar 

  21. Mosbah S, Bellet M, and Ch.-A. Gandin: 2010 Metallurgical and Materials Transactions A 41 651-69.

    Article  CAS  Google Scholar 

  22. Gandin Ch.-A. 2010 Comptes rendus physique 11 216-225.

    Article  CAS  Google Scholar 

  23. Carozzani T, Digonnet H, Gandin Ch.-A. 2012 Modelling and Simulation in Materials Science and Engineering 20 015010.

    Article  Google Scholar 

  24. Ni J, Beckermann C 1991 Metallurgical Transactions B 22 349-361.

    CAS  Google Scholar 

  25. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, CH, 2009.

  26. Felicelli S D, Heinrich J C, Poirier D R, 1991 Metallurgical Transactions B 22: 847-859.

    CAS  Google Scholar 

  27. Felicelli S D, Heinrich J C, Poirier D R 1998 Journal of Crystal Growth 191 879-888.

    Article  CAS  Google Scholar 

  28. Ramirez J C, Beckermann C 2003 Metallurgical and Materials Transactions A 34 1525-1536.

    Article  CAS  Google Scholar 

  29. B. Rivaux: Ph.D. Thesis, MINES ParisTech, Paris, FR, 2011.

  30. Sabat Da Cruz K, Mangelinck-Noël N, Gandin Ch.-A., Billia B 2011 IOP Conf. Series: Materials Science and Engineering 27 012017.

    Article  Google Scholar 

  31. Gandin Ch.-A., Guillemot G, Appolaire B, Niane N T 2003 Materials Science and Engineering A 342 44-50.

    Article  Google Scholar 

  32. Trivedi R, Kurz W 1994 International Materials Reviews 39 49-74.

    Article  CAS  Google Scholar 

  33. Ben Amar M, Brener E 1993 Phys. Rev. Lett. 71 589-592.

    Article  CAS  Google Scholar 

  34. Tourret D, Gandin Ch.-A. 2009 Acta materialia 57 2066-2079.

    Article  CAS  Google Scholar 

  35. Tourret D, Gandin Ch.-A., Volkmann T, Herlach D M 2011 Acta Materialia 59 4665-4677.

    Article  CAS  Google Scholar 

  36. Tourret D, Reinhart G, Gandin Ch.-A., Iles G N, Dahlborg U, Calvo-Dahlborg M, Bao C M 2011 Acta materialia 59 6658-6669

    Article  CAS  Google Scholar 

  37. Yin H, Koster J N 2003 J. Alloys Compounds 352 197-209.

    Article  CAS  Google Scholar 

  38. Shevchenko N, Boden, Eckert S, Gerbeth G 2012 IOP Conference Series-Materials Science and Engineering 27 012085.

    Article  Google Scholar 

  39. Bogno A, Nguyen-Thi H, Buffet A, Reinhart G, Billia B, Mangelinck-Noël N, Bergeon N, Baruchel J, Schenk T 2011 Acta Materialia 59 4356-4365.

    Article  CAS  Google Scholar 

  40. Mathiesen R H, Arnberg L 2005 Acta Materialia 53 947-956.

    Article  CAS  Google Scholar 

  41. Heringer R, Gandin Ch.-A., Lesoult G, Henein H 2006 Acta Materialia 54 4427-4440.

    Article  CAS  Google Scholar 

  42. Gandin Ch.-A. 2000 ISIJ international 40 971-979.

    Article  CAS  Google Scholar 

  43. Gandin Ch.-A. 2000 Acta Materialia 48 2483-2501.

    Article  CAS  Google Scholar 

  44. Martorano M A, Beckermann C, Gandin Ch.-A. 2003 Metallurgical and Materials Transactions A 34 1657-1674.

    Article  Google Scholar 

  45. Jackson K A, Hunt J D, Uhlmann D R, Seward T P 1966 Transaction AIME 236 149-158.

    CAS  Google Scholar 

  46. Thermo-Calc: Version S, Thermo-Calc Software AB, Stockholm, SE, 2010

  47. PBIN: Public Binary Alloys Thermodynamic Database, version 1.2. Thermo-Calc Software AB, Stockholm, SE, 2008.

Download references

Acknowledgments

This study was funded by the French National Research Agency under projects SMACS (ANR-07-BLAN-0190) and Si-X (ANR-08-HABISOL-012-04), as well as by the European Space Agency under project CETSOL (ESA-4200014313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-André Gandin.

Additional information

Manuscript submitted May 20, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carozzani, T., Gandin, CA., Digonnet, H. et al. Direct Simulation of a Solidification Benchmark Experiment. Metall Mater Trans A 44, 873–887 (2013). https://doi.org/10.1007/s11661-012-1465-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1465-1

Keywords

Navigation