Cooling Rate Dependence of Boron Distribution
in Low Carbon Steel

DONG JUN MUN, EUN JOO SHIN, KYUNG CHUL CHO, JAE SANG LEE,
and YANG MO KOO

The behavior of boron (B) segregation to austenite grain boundaries in low carbon steel was
studied using particle tracking autoradiography (PTA) and secondary ion mass spectroscopy
(SIMS). An effective time method was used to compare the cooling rate (CR) dependence of this
segregation during continuous cooling and its time dependence during isothermal holding.
Comparison of these segregation behaviors has confirmed that the CR dependence of B seg-
regation agrees well with its time dependence and is mainly a result of the phenomenon of
nonequilibrium segregation. Based on the CR dependence of B segregation, the continuous
cooling transformation behavior of B-bearing steel as compared with B-free steel was also
investigated using dilatometry and microstructural observations. The addition of a small
amount of B to low carbon steel retarded significantly the austenite-to-ferrite transformation
and finally expanded the range of cooling programs that result in the formation of bainitic
microstructures. Analysis of the B distribution has confirmed that this retardation effect of B on
ferrite transformation is attributed to the CR dependence of B segregation to austenite grain
boundaries during cooling after austenitization.
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I. INTRODUCTION

THE addition of a small amount of boron (B)
remarkably increases the hardenability of low carbon,
low alloy steels.!" ! This beneficial effect on hardenability
occurs because segregation of B atoms to austenite grain
boundaries reduces the grain boundary energy and thus
retards transformation of austenite to ferrite. B atoms are
casily segregated to the austenite grain boundaries during
general heat treatment and have a strong tendency to
interact with lattice imperfections.!® In general, the grain
boundary segregation of B in steel occurs by two
mechanisms: equilibrium and nonequilibrium segrega-
tion.”? Equilibrium grain boundary segregation (EGS)
occurs by the movement of solute atoms from inside the
grain matrix to loosely packed regions such as grain
boundaries, thus reducing the grain boundary free
energy. Nonequilibrium grain boundary segregation
(NGS) occurs during cooling from high temperatures
by the diffusion of vacancy-solute complexes toward
grain boundaries. The NGS of B is generally accepted to
be the usual dominating process in steel.® "
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According to the mechanism of the NGS, solute B
atoms are transported to the grain boundaries after
forming complexes with vacancies. A large number of
supersaturated vacancies can be produced in a material
during quenching, irradiation, or deformation, and thus,
NGS of B can be observed through these kinds of
processes. In quenching-induced segregation,'! ¥
supersaturated vacancies formed during quenching from
a higher temperature to a lower temperature are
annihilated at grain boundaries during isothermal hold-
ing; then vacancy-boron complexes diffuse from the
grain interior to the grain boundaries along the vacancy
gradients with an increasing holding time (HT) at a
holding temperature 7, and the maximum grain
boundary segregation of B occurs at a certain time that
is generally known as the critical time.'” NGS caused
by diffusion of vacancy-boron complexes gradually
disappears if sufficient time is allowed for the system
to reach full equilibrium. This is a very important
concept in understanding NGS of B in steel.

The purpose of this study is to investigate the CR
dependence of B segregation to grain boundaries in low
carbon steel. Although the grain boundary segregation
of B during the continuous cooling!® and isothermal
holding!"®! process has been studied by some researchers,
systematic comparison of this segregation during the
two processes has not been made, which is very
necessary to confirm the segregation mechanism of B.
Based on the effective time method,!"* the CR depen-
dence of grain boundary segregation of B was system-
atically examined through its HT dependence. A
comparison between the CR dependence and the HT
dependence of B segregation to grain boundaries will
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lead to a better understanding of the grain boundary
segregation mechanism of B in steel.

II. EXPERIMENTAL PROCEDURE

Three types of low carbon steel were used in this study
(Table I):

B-free steel is the base steel without B and molybdenum
(Mo); B-bearing steel contains 20 ppm B; Mo-B steel
contains both B and Mo. Many researchers!® '%13-1517]
have used Mo-B steel to study the B segregation
phenomenon because the addition of Mo in B-bearing
steel suppresses carbon diffusion and thus prevents
solute B from forming Fe,;(C,B)¢!">'% Ti was added to
the steels to sequester the nitrogen as TiN. To examine
the effect of B addition on phase transformation, B-free
steel was compared to B-bearing steel. The steel ingots
were prepared using laboratory vacuum induction
melting, then hot-rolled into 30-mm-thick plates, and
finally cooled in ambient air to room temperature (RT).
Cylindrical samples (diameter 4 mm, length 12 mm)
were machined from the plates with the longitudinal axis
parallel to the rolling direction.

Heat treatment was performed using a hot deforma-
tion simulator with a dilatometer in an inert atmosphere
of argon gas. Two heat treatment patterns were
employed to examine the distribution behavior of B
(Figure 1). Treatment (a) was continuous cooling; Mo-B
steel was heated from RT to 1473 K (1200 °C) at
10 K/second, austenitized for 300 seconds, and then

cooled to RT at a cooling rate CR from 1 to 100 K/
second. Treatment (b) was isothermal holding; Mo-B
steel was heated from RT to 1473 K (1200 °C) at
CR = 10 K/second, austenitized for 300 seconds, then
quenched to 1173 K (900 °C) at CR = 50 K/second.
After holding for times between 0 and 1000 seconds at
1173 K (900 °C), the specimen was quenched to RT by
water spraying. The microstructures of the specimens
were examined using an optical microscope after being
etched with 4 pct picral etchant.

To examine the continuous cooling transformation
behavior, both B-free and B-bearing steels were austen-
itized for 300 seconds at 1173 K (900 °C), and then
continuously cooled to RT at 1 £ CR < 60 K/second. It
is generally known that the effect of B on the hardena-
bility of the steel decreases with increasing austenitizing
temperature[3’15’18’19], and thus, the low austenitizing
temperature of 1173 K (900 °C) was chosen to examine
the effect of B on the austenite-to-ferrite transformation
in low carbon steel.

The distribution of B in the specimens was deter-
mined using particle tracking autoradiography (PTA)
and secondary ion mass spectroscopy (SIMS). PTA is
based on detection of the alpha-particles emitted from
the thermal neutron 'B(n,x)’Li reaction in a solid-
state track detector. PTA has a B-detection sensitivity
of 1 ppm and a spatial resolution of 2 um.?” Cellulose
nitrate films were used as detecting foils. Specimens
were irradiated at a thermal neutron flux of
1.0 x 10" n/(m? s) for 6 hours. After irradiation, films
were etched in an aqueous solution of 2.2 N NaOH at

Table I. Chemical Composition of the Steels (weight percent)
Steel C Si Mn Cr Ni Mo Ti Al B N Fe
B-free 0.072 0.516 2.000 0.304 0.204 — 0.018 0.029 — 0.0044 Bal.
B-bearing 0.067 0.510 2.000 0.304 0.204 — 0.020 0.025 0.0021 0.0041 Bal.
Mo-B 0.070 0.514 2.000 0.296 0.201 0.206 0.021 0.024 0.0022 0.0044 Bal.
) £
- 1473 K, 300s - 1473 K, 300s
5 s
B =
g g 50 K/s
§ Cooling rate : E Isothermal holding
= 1~ 100K/s = 1173K
10 K/s 10 K/s
R.T R.T
Water Quenching
Time (sec) Time (sec)
Treatment Treatment
(@) (b)

Fig. 1—Schematic diagram of the procedure of heat treatment: (¢) continuous cooling treatment and (b) isothermal holding treatment.
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328 K (55 °C) for 9 minutes. The etched films were
examined using the optical microscope. SIMS is also a
very powerful technique for the study of B distribution
in steel. A Cameca IMSOF instrument (CAMECA
Instrument Inc., Gennevilliers, France) using 12.5 keV
0O, " as primary ions was employed to examine the B
distribution. The negative secondary ions emitted from
the surface were used to obtain mass-resolved ion
micrographs. SIMS has a spatial resolution of approx-
imately 1 ﬂ.tm and a B-detection sensitivity of less than
10 ppm.P!

III. RESULTS

A. Cooling Rate Dependence of Boron Distribution
in Low Carbon Steel

The effect of the CR on the B distribution in the Mo-B
steel is illustrated in Figure 2. After cooling from 1473 K
(1200 °C) at CR = 100 K/second, B was not clearly
detected at grain boundaries (Figure 2(a)), but the
amount of grain boundary segregation of B increased
with decreasing CR to amaximum at ~ 10 £ CR £20 K/
second and then decreased as CR decreased further. The B

Fig. 2—Boron distribution in the Mo-B steel cooled from 1473 K (1200 °C) to RT at different rates from 1473 K (1200 °C): (a) 100 K/second,

(b) 40 K/second, (¢) 20 K/second, (d) 10 K/second, and (e) 1 K/second.
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distribution changed at CR = 1 K/second; grain bound-
ary precipitates were detected at this slow CR
(Figure 2(e)). These results indicate that the maximum
B segregation in the specimen occurs at approximately
10 £ CR £ 20 K/second in this study.

B. Time Dependence of Boron Distribution in Low
Carbon Steel

Figure 3 shows the distribution behavior of B with
increasing HT at Ty = 1173 K (900 °C) after cooling
from 1473 K (1200 °C) at CR = 50 K/second in the
Mo-B steel. After cooling from 1473 K to 1173 K

(1200 °C to 900 °C), the B distribution was nearly
homogeneous, and thus, this CR can be considered to be
equivalent to quenching. The degree of segregation
increased as HT increased to 60 seconds and then
decreased at HT > 60 seconds. The maximum grain
boundary segregation was obtained at 30 < HT <
60 seconds at 7y = 1173 K (900 °C). The B distribu-
tion changed after 1000 seconds at 1173 K (900 °C);
grain boundary precipitates were detected at this iso-
thermal Ty (Figure 3(f)). These results indicate that the
critical time to reach the maximum grain boundary
segregation of B in the specimen is approximately
30 £ HT < 60 seconds.

Fig. 3—Boron distribution in the Mo-B steel during isothermal holding at 1173 K (900 °C) after cooling from 1473 K (1200 °C) at a 50 K/second:
(a) 0 seconds, (b) 20 seconds, (c) 30 seconds, (d) 60 seconds, (¢) 120 seconds, and (f) 1000 seconds.
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C. Continuous Cooling Transformation

Comparison of the continuous cooling transforma-
tion between the B-free and B-bearing steels after
cooling from 1173 K (900 °C) is presented in Figure 4.
Dotted parallel lines in this figure indicate Bs and Ms
temperatures calculated by empirical equations.?>?*!
The continuous cooling transformation behavior of
B-free steel indicates that the austenite-to-ferrite trans-
formation occurs at 1 < CR < 20 K/second, and thus,
the temperature at which transformation starts is
depressed to a roughly constant value within this CR
range. The transformation behavior of B-bearing steel
was almost the same as that of B-free steel at CR =
1 K/second, but the phase transformation of B-bearing
steel was retarded to a lower temperature than B-free
steel at CR > 5 K/second; this retardation effect of B on
phase transformation increased with increasing CR
from 5 to 20 K/second. The maximum retardation effect
of B occurred at 10 £ CR < 20 K/second.

D. Analysis of Boron Distribution by SIMS

In the secondary "B ion micrographs of the
B-bearing steel obtained by SIMS (Figure 5), the B
distribution changed according to CR. After cooling
from 1173 K (900 °C), little segregation of B at grain
boundaries was observed at CR = 1 K/second, but it
was clearly observed at CR = 5 K/second and the
amount of grain boundary segregation of B increased
with increasing CR from 5 to 20 K/second. The max-
imum grain boundary segregation of B occurred at
10 < CR £ 20 K/second.

E. Microstructure

In light micrographs of B-free and B-bearing steel
cooled at 1 £ CR <20 K/second from 1173 K (900 °C)
(Figures 6 and 7), the microstructures of both specimens
were mainly polygonal ferrite at CR = 1 K/second. At
CR = 5 K/second, the final microstructure of B-free

900 —— B-free : Ts
B —O— Bifree: Tf
---4--- B-bearing: Ts
750 —eef--- Bbearing: TE
S T B
O 600 , . s
E \
S 450
@ o M
o 4
2 300
150 9 Coolingrate (C /s) 60 40 20 10 & 1
0 T T
10° 10" 10 10°

Time (s)

Fig. 4—Comparison of the continuous cooling transformation
between B-free and B-bearing steels after cooling from 1173 K
(900 °C). (Ts: Transformation start temperature, Tf: Transformation
finish temperature).
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steel was dominated by polygonal ferrite, but the
granular bainitic structure was developed in B-bearing
steel. In the B-free steel, the ferrite microstructure
became finer and the volume of acicular ferrite increased
with increasing CR from 5 to 20 K/second. In contrast,
in the B-bearing steel, the volume of bainitic ferrite
increased with increasing CR from 5 to 20 K/second.

IV. DISCUSSION

A. Comparison of Grain Boundary Segregation of Boron
Using Effective Time Method

Based on an isothermal kinetic model for NGS, the
concept of effective time that predlcts the level of NGS
during cooling has been suggested.["* The effective time
method holds that a certain effective HT at a certain Ty
can be calculated for any continuous cooling curve. If
the effective holding time ¢, during cooling calculated by
the effective time method is equal to the critical HT at
Ty, the cooling rate at that time is called the critical
cooling rate.l'?! This is a basic concept of the effective
time method for nonequilibrium segregation.

According to this method, the continuous cooling
curve of a specimen can be assumed to be practically
equal to the corresponding stepped curve if horizontal
and vertical segments of the steps are sufficiently small.
If the continuous cooling curve of a specimen is a
stepped curve consisting of n steps (Figure 8),
corresponding to a certain temperature 7 for each step
in the curve can be calculated and 7, for the whole curve
corresponding to temperature 7 can be given by!'¥

= S| -BAT)

where k is Boltzmann’s constant and E, is the average
activation energy of vacancy and solute atom diffusion
in the matrix. ¢; and 7; are the isothermal holding time
and temperature at the ith step of the stepped curve,
respectively. The main concept of the effective time
method is that the average diffusion distance of the
diffusant during the cooling of the specimen along the
continuous cooling curve is the same as that of a
specimen during 7, at Ty = T. Therefore, the amount of
B segregated at the grain boundary during continuous
cooling can be predicted easily from the segregation
behavior of B during isothermal holding using the
effective time method.
The value of 7, during coolmg was calculated using
q. [1], and E;, = 1.46 x 107" J® was used to calcu-
late the f,. In the specimen studied, ¢, during cooling
from 1473 K to 1173 K (1200 °C to 900 °C) at CR = 1,
10, 20, and 40 K/second was 914, 91, 45, and 22 seconds,
respectively, at isothermal 7y = 1173 K (900 °C).
However, this calculation was performed for the ideal
case considering perfect quenching. For the real case, ¢,
during cooling from 1473 K to 1173 K (1200 °C to
900 °C) at CR = 50 K/second is 18 seconds during
isothermal holding of 1173 K (900 °C), and thus,
18 seconds must be subtracted from the calculated
values because CR = 50 K/second can be considered

[1]
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Fig. 5—Secondary ''"B* ion images in the B-bearing steel cooled at different cooling rates from 1173 K (900 °C): (a) 1 K/second, (b) 5 K/second,

(¢) 10 K/second, (d) 20 K/second.

equivalent to quenching (Section III-B). The real ¢,
values during cooling from 1473 K to 1173 K (1200 °C
to 900 °C) at CR = 1, 10, 20, and 40 K/second were
thus 896, 73, 27, and 4 seconds at isothermal
Ty = 1173 K (900 °C). Based on this calculation, if
the B distribution during isothermal holding is consid-
ered according to the ¢, corresponding to the cooling
rates at isothermal 7, the CR dependence of B
distribution (Figure 2) can be directly compared with
its HT dependence at isothermal 7, (Figure 3).
Although this calculation is based on cooling from
1473 K to 1173 K (1200 °C to 900 °C), it can be applied
to continuous cooling from 1473 K (1200 °C) to RT
because the cooling time below 1173 K (900 °C) would
have little influence on B diffusion. Figure 8 shows the B
distribution of Mo-B steel quenched by He gas at
1073 K (800 °C) after continuous cooling with 20 and
1 K/second from 1473 K to 1073 K (1200 °C to
800 °C). This B distribution is almost the same with
the case of continuous cooling from 1473 K (1200 °C) to
RT (Figure 2(c, e)) and the effective time 7, during

1644—VOLUME 43A, MAY 2012

cooling from 1173 K to 1073 K (900 °C to 800 °C) at
CR = 1,10, 20, and 40 K/second is 69, 7, 4, and 2 seconds,
respectively, at isothermal T = 1173 K (900 °C). This
effective time seems to have no significant effect on B
diffusion except the slow cooling rate of 1 K/second.
Although the effective time of 1 K/second, itself 69 seconds,
can significantly affect the B diffusion, the B distribution
will not be changed by this effective time because the state
of B distribution corresponding to CR = 1 K/second
at isothermal 7 = 1173 K (900 °C) is already stable
(Figure 3(f)). Therefore, it is reasonable to compare the
CR dependence of B distribution during continuous
cooling (Figure 2) and the HT dependence at isothermal
Ty = 1173 K (900 °C) (Figure 3).

During continuous cooling, the B distribution is nearly
homogeneous after cooling from 1473 K (1200 °C) at
100 K/second (Figure 2(a)), and thus, this B distribution
can be considered the same as 0 seconds (Figure 3(a)) at
1173 K (900 °C) during isothermal holding. Slight segre-
gation of B at grain boundaries was observed after cooling
at 40 K/second (Figure 2(b)), and this B distribution falls

METALLURGICAL AND MATERIALS TRANSACTIONS A



Fig. 6—Optical micrographs of the B-free steel cooled at different cooling rates from 1173 K (900 °C): (a) 1 K/second, (b) 5 K/second,

(¢) 10 K/second, (d) 20 K/second.

on the time between 0 seconds (Figure 3(a)) and 20
seconds (Figure 3(b)) at isothermal 7T = 1173 K
(900 °C). Segregation of B along grain boundaries was
clearly detected after cooling at 20 K/second
(Figure 2(c)) and 10 K/second (Figure 2(d)); this B dis-
tribution can be connected with 30 seconds (Figure 3(c))
and 60 seconds (Figure 3(d)) at 1173 K (900 °C). It has
been experimentally observed that the maximum grain
boundary segregation of B in the specimen occurred at
10 £ CR £20 K/second during continuous cooling and
at 30 < HT < 60 seconds during isothermal holding at
1173 K (900 °C) in this study (Sections III-A and I11-B).
The effective time is 27 < ¢, < 73 seconds at 1173 K
(900 °C) for the specimen cooled at 10 < CR <20 K/
second, and this effective time agrees reasonably with
30 < HT < 60 seconds, which is experimentally deter-
mined as the critical time at isothermal 7 = 1173 K
(900 °C). Therefore, 10 < CR <20 K/second can be
considered as the critical cooling rate of the specimen in
this study. When the specimen was cooled from 1473 K
to 1173 K (1200 °C to 900 °C) at CR = 1 K/second
(Figure 2(e)), z, at 1173 K (900 °C) was 896 seconds, and
thus, this B distribution can be matched with that in
Figure 3(f). Karsson and Norden™ also showed that the

METALLURGICAL AND MATERIALS TRANSACTIONS A

large grain boundary precipitates in B-bearing steel were
observed at the lowest CR after austenitization.

In this work, the behavior of B segregation to grain
boundaries during continuous cooling and the isother-
mal holding process was observed using PTA, and the
experimental observations of the CR dependence and
HT dependence of B segregation showed that the
maximum grain boundary segregation occurs at a certain
CR and at a certain HT. Comparison of the segregation
behavior of B during these two processes using the
effective time method indicates that the CR dependence
of the grain boundary segregation of B is in good
accordance with its HT dependence at isothermal T,
i.e., that the CR dependence of B segregation can be
explained by its time dependence. This means that the
same segregation mechanism operates during both
continuous cooling and isothermal holding; thus, the
dependence of B segregation on CR and HT can be
explained by the nonequilibrium segregation mechanism.

In conclusion, comparison of the CR dependence and
HT dependence of B segregation confirms that the CR
dependence of B segregation in low carbon steel
observed in this study is mainly a result of the
phenomenon of nonequilibrium segregation.
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Fig. 7—Optical micrographs of the B-bearing steel cooled at different cooling rates from 1173 K (900 °C): (a) 1 K/second, (b) 5 K/second, (c)

10 K/second, (d) 20 K/second.

Fig. 8—Boron distribution in the Mo-B steel quenched by He gas after cooling from 1473 K to 1073 K (1200 °C to 800 °C): (a) 20 K/second,

() 1 K/second.

B. Phase Transformation Behavior
of Boron-Bearing Steel

It is generally known that the retardation effect of B on
the austenite-to-ferrite transformation occurs by segre-
gation of B atoms at austenite grain boundaries,”*** and

1646—VOLUME 43A, MAY 2012

thus, this retardation effect may be sensitively affected by
the segregation behavior of B during heat treatment.
This study has demonstrated that B segregation to
grain boundaries strongly depends on CR and that this
phenomenon is the direct evidence of the nonequilibrium

METALLURGICAL AND MATERIALS TRANSACTIONS A



segregation. The continuous cooling transformation
behavior of B-bearing steel is much different from that
of B-free steel (Figure 4). The transformation start
temperature of B-bearing steel was almost the same as
that of B-free steel at the slowest CR of 1 K/second, but
it was significantly lower than that of B-free steel at
10 £ CR £ 20 K/second, which is experimentally deter-
mined to be the critical CR in this study. The segregation
behavior of B agrees well with the transformation
behavior of B-bearing steel as compared with B-free
steel (Figure 5). The B distribution clearly shows that the
retardation effect of B on the austenite-to-ferrite trans-
formation occurs by segregation of B at grain bound-
aries. The segregation of B at grain boundaries was not
observed at 1 K/second (Figure 5(a)), but it was clearly
observed at 10 £ CR £ 20 K/second (Figure 5(c and d)).
This distribution behavior of B is reasonably consistent
with the results of CR dependence of B distribution in
low carbon steel observed by PTA (Figure 2). Therefore,
the effect of B on phase transformation is directly related
to the segregation behavior of B during cooling. The CR
dependence of B segregation always occurs in low carbon
steel during cooling after austenitization, as a result of
the nonequilibrium segregation of B; thus, the effect of B
on the retardation of ferrite transformation can be varied
depending on CR. The difference of microstructure
between B-free (Figure 6) and B-bearing (Figure 7) steel
began to occur at a CR = 5 K/second, and the most
dramatic effect of B on the microstructure was observed
at 10 £ CR £ 20 K/second. Although the ferrite micro-
structure was predominant in B-free steel, the bainite
microstructure developed in B-bearing steel at
5 < CR £20 K/second. This means that the addition
of a small amount of B to the base steel efficiently
suppressed the formation of polygonal ferrite at
5 < CR £20 K/second and promoted the formation of
bainitic microstructures.

From the above experimental results, it can be con-
cluded that the segregation of solute B atoms at austenite
grain boundaries causes the transformation temperature
of B-bearing steel to differ from that of B-free steel, and
this difference finally leads to differences in the micro-
structure between the two steels. The addition of B to the
base steel remarkably decreased the ferrite transforma-
tion start temperature and broadened the bainitic trans-
formation field to slower cooling rates. This seems to be
attributed to the CR dependence of B segregation during
cooling from the austenitizing temperature.

V. CONCLUSIONS

A study on the CR dependence of boron distribution
in low carbon steel led to the following conclusions.

1. Comparison of the CR dependence and HT depen-
dence of B segregation using the effective time meth-
od in this study indicates that the CR dependence of
B segregation to grain boundaries during continuous
cooling is in good agreement with its HT depen-
dence that originates from the isothermal kinetics
of B segregation in low carbon steel and that this

METALLURGICAL AND MATERIALS TRANSACTIONS A

segregation behavior of B is mainly a result of the
phenomenon of nonequilibrium segregation.

2. The addition of a small amount of B to low carbon
steel retarded significantly the austenite-to-ferrite
transformation and finally expanded the bainitic
transformation field to slower cooling rate regions.
This retardation effect of B on ferrite transformation
is attributed to the CR dependence of B segregation to
grain boundaries during cooling after austenitization.
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