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As emphasized by Stokes (1997), the common assumption of a linear progression from basic
research (science), via applied research, to technological innovations (engineering) should be
questioned. In fact, society would gain much by supporting long-term research that stems from
practical problems and has usefulness as a key word. Such research may be fundamental, and
often, it cannot be distinguished from ‘‘basic’’ research if it were not for its different motivation.
The development of the Calphad method and the more recent development of accompanying
kinetic approaches for diffusion serve as excellent examples and are the themes of this sym-
posium. The drivers are, e.g., the development of new materials, processes, and lifetime pre-
dictions. Many challenges of the utmost practical importance require long-term fundamental
research. This presentation will address some of them, e.g., the effect of various ordering phe-
nomena on activation barriers, and the strength and practical importance of correlation effects.
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I. INTRODUCTION—APPLIED VS BASIC
RESEARCH

IN academia, there is an unfortunate dichotomy
between applied and basic research or in application-
or curiosity-driven research. One paradoxical conse-
quence is that it is difficult to finance basic research in a
field that is regarded as applied, e.g., the heat treatment
of alloys. The common opinion among politicians and
decision makers in organizations that fund research is
that innovations follow a linear progression from basic
research (science), via applied research, to technological
innovations (engineering). This linear chain was ques-
tioned by Stokes[1] in his book Pasteur’s Quad-
rant—Basic Science and Technological Innovation. He
argued that most achievements, even in basic science,
during the last two centuries were actually inspired and
driven by practical needs outside the scientific commu-
nity. Stokes replaces the one-dimensional chain with a
two-dimensional diagram (Figure 1).

It is, thus, perfectly possible that fundamental
research may be driven by practical applications, i.e.,
societal needs. The important message to our politicians
is that fundamental research may be performed in a field
that is traditionally considered as applied, and it is
unlikely that pure basic research will form a platform
for more applied research.

In the current article, we discuss the coupling between
thermodynamics and diffusion in alloys and demon-
strate how the scientific research has evolved as a
consequence of societal needs.

II. THERMODYNAMICS AND CALPHAD

The disastrous power of fire as well as its beneficial
use has been well known throughout history. In the 18th
century, craftsmen and inventors started to wonder
whether fire could also be tamed to do useful work. In
1712, blacksmith master Thomas Newcomen con-
structed the first steam engine that made use of
atmospheric pressure and heat from a fire to pump up
water in English coal mines. Newcomen’s steam engine
was improved by James Watt in the 1780s, and the
principles of ‘‘heat engines’’ were established during an
intensive period of development to follow. That work
involved, for example, the formulation of the second law
(Carnot, 1824) before the first law and the entropy
(Classius, 1865). The early evolution of thermodynamics
as a science was thus stimulated and driven by the needs
of a new and growing industry, as well as the search for
the solution to engineering problems. Interesting aspects
of the early theoretical development may be found in the
texts by Brush[2] and Prigogine and Stengers.[3] A
century later, the book by Kaufman and Bernstein[4] in
1970 inspired a new generation of researchers to apply
thermodynamics and the calculation of phase equilibria
to practical problems; the subsequent evolution of
Calphad became connected intimately with applications
in materials engineering. A thorough discussion of the
development of Calphad is given in the monograph by
Saunders and Miodownik.[5]

III. DIFFUSION AND COUPLING
TO THERMODYNAMICS

Diffusion is one of the most important phenomena in
nature. It has been important during the geological life
of our planet, and it is important in the life of all living
organisms. It plays a major role during the processing
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and degradation of materials. It serves as the most easy-
to-grasp example of an irreversible process and is thus
an excellent demonstration of the second law of ther-
modynamics. The history of diffusion is fascinating; see,
for example, the recent reviews by Barr,[6] Mehrer and
Stolwijk,[7] Narasimhan,[8] and Philibert.[9] It is amazing
to observe how the development of the field has been
related to applications and practical problems. The first
observations on diffusion are reported by Boyle in 1684
and were related to a color change of a metal as solid
copper was soaked ‘‘into the pores of the metal.’’[6]

Mehl[10] reported that Faraday and Stodart made alloys
by diffusion annealing of mixed powders as early as
1820. However, usually Fick’s work[11] is taken as the
starting point for the theory of diffusion. Fick was
inspired by the work of Graham,[12] who studied
diffusion through membranes and actually invented
the dialysis. Fick himself was active in medicine, and his
main interest at that time was hydro diffusion through
membranes, which he pointed out as one of the basic
factors of organic life and an interesting subject as such.
Unfortunately, Graham did not present any physical
law that could describe his important observations, and
Fick thus presented such a law in his famous paper.[11]

Before he presented the law, he had a long discussion
about the molecular nature of diffusion, which did not
lead to the theory but probably gave him moral support.
When he finally formulates his theory, it is within a few
sentences where he simply compares with Fourier’s and
Ohm’s laws and suggests a similar law for diffusion. In
the German original version of the paper, he does not
even care to state the first law explicitly but moves
directly to the second law. In the English abbreviated
version,[13] he states the first law in words clearly but
omits the lengthy discussion of the molecular aspects.

The work in metallurgy and materials was initiated by
the studies of diffusion in solid metals by Roberts-
Austen[14] who learned about diffusion when he was
employed as the personal assistant to Graham, the same
Graham who had inspired Fick. Roberts-Austen in-
spired a large number of metallurgists working on quite
practical problems to look into the diffusion of alloys
e.g., Mehl.[10]

Although Einstein is one of the greatest theoretical
physicists ever, it should also be emphasized that he was
an engineer by education and a practical person. His
seminal work on the Brownian motion[15] was actually
inspired by the behavior of suspensions rather than the
Brownianmotion itself, which Einstein admits that he did
not know much about. His analysis bridged the random
molecular motion and the macroscopic deterministic

behavior. Einstein’s statistical treatment of diffusion
evidently was an inspiration for Onsager[16] to pursue
his analysis of coupled irreversible processes, which led
eventually to the reciprocity relations and a Nobel Prize.
However, it is interesting that these famous relations,
which were derived from rather complicated statistical
considerations on themolecular behavior, in spirit similar
to Fick’s reasoning, could probably have been derived
directly from simple assumptions. This will be discussed
subsequently. Also, Onsager was interested in practical
issues. For example, he suggested an apparatus for
isotope separation by thermal diffusion.[17]

WhenDarken[18] presentedhis legendary paper in 1948,
which demonstrated experimentally that the gradient in
chemical potential is the driving force for diffusion rather
than Fick’s concentration gradient, he referred to the
work by Onsager and Fouss from 1932.[19] However, it
seems that he presented that idea already[20] in a 1942
paper where he actually initially refers to industrial
applications, ‘‘THEmanufacture and treatment ofmetals
comprises operationswhose effectiveness depends in large
measure upon diffusion phenomena.’’ From a simple
thermodynamic argument, he concluded that differences
in chemical potential must be the driving force for
diffusion, an idea that was strongly criticized by Mehl.
Anyhow, the introduction of the gradient in chemical

potential instead of composition led to the solution of
several practical problems involving joints between
dissimilar materials. It may first seem strange that Fick
did not draw the complete analogy between Fourier law,
Ohms law, and diffusion, and he replaced temperature
or electric potential with chemical potential. Instead, he
chose to replace it with composition, which is not a
thermodynamic potential. However, it should be real-
ized that thermodynamics was hardly developed, e.g.,
the chemical potential had not been invented, when Fick
published his paper. Thus, the understanding of multi-
component diffusion phenomena had to wait for almost
a century.

IV. THE CHEMICAL POTENTIAL GRADIENT
AS DRIVING FORCE FOR DIFFUSION –THER-

MODYNAMIC COUPLING

As mentioned, Darken[18] demonstrated experimen-
tally, beyond any reasonable doubt, that the gradient in
chemical potential is the driving force for diffusion.
Under some conditions, this could lead to ‘‘uphill’’
diffusion, i.e., an element may diffuse toward higher
concentrations. A year earlier, he suggested that the
velocity of an atom should be proportional to the force
acting on the atom, i.e., the negative gradient in
chemical potential.[21] He labeled the ratio between
velocity and force ‘‘mobility.’’ The flux of a component
k would thus be written as

Jk ¼ �ckMk
@ lk

@ x
½1�

where ck is the concentration of k, i.e., the number of
moles per volume and lk the chemical potential of k.

Fig. 1—Pasteur’s quadrant, after Stokes[1].
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We have used M to denote mobility rather than B
used by Darken. The implications of this simple rela-
tion are astonishing. Introducing the concentration
gradient we recover for a binary system.

Jk ¼ � ckMk
@ lk

@ ck

� �
@ ck
@ x

½2�

which is Fick’s first law and the quantity inside the
bracket is the diffusion coefficient. In an ideal system, we
find that it is RTMk, R and T being the gas constant and
the temperature, respectively. The same relation be-
tween diffusion coefficient and mobility had been
derived by Einstein previously,[22] but as he only
considered dilute solutions and probably did not know
about the chemical potential he overlook the wide
implications of the relation. So far, Eq. [2] did not tell us
more than Fick’s first law, except that if a solution is
thermodynamically unstable, i.e., when ¶ lk/¶ck is
negative, the diffusion coefficient is negative and con-
centration differences would grow rather than level out.
This is actually the starting point for the theory of
spinodal decomposition.[23,24] However, Onsager and
Fouss[19] considered electrolytes and used the mobility
combined with an additional electric force. It is inter-
esting, however, that Darken refers both to the work by
Einstein and by Onsager and Fouss.

If the solution contains several components, Eq. [2]
becomes

Jk ¼ �ckMk

X
j

@ lk

@ cj

@ cj
@ x
¼ �

X
j

Dkj
@ cj
@ x

½3�

i.e., we have to introduce several diffusion coefficients
to describe the diffusion of each component. Thus, a
coupling effect stems solely from the thermodynamic
interactions. As an example, consider the Fe-C-M sys-
tem. As a first approximation, we may assume that the
mobility of carbon is unaffected of the variation in M
content and may be evaluated from the properties of
the binary Fe-C system. Equation [3] may then be
rewritten as

JC ¼ �
DC

@ lC=@ ln cCð Þ
X
j

@ lC

@ cj

@ cj
@ x

½4�

where the quantity in front of the summation sign is
evaluated from the binary Fe-C system. Thus we can, as
a first approximation, analyze the Fe-C-M system using
the thermodynamic properties of the ternary system but
the diffusion data from the binary Fe-C.

This approach was taken by the current author in his
Ph.D. work a long time ago,[25] and the close agreement
between calculations and experiments convinced him
that this was a powerful approach of much practical
importance. This was the starting point of DICTRA
(Thermo-Calc Software, McMurray, PA) (Figure 2).

In general, n*(n – 1) diffusion coefficients, but only n
mobilities are needed to fully describe diffusion in a
system with n components. These diffusion coefficients
are called individual diffusion coefficients and describe
diffusion relative the crystalline lattice. If we introduce

the mole fraction xk and the molar volume Vm, we may
write ckMk = xkMk/Vm and regard this quantity in Eq.
[1] as the diagonal elements in an n*n matrix L, in which
all off-diagonal elements vanish. Equation [1] may then
be written in a condense matrix form

J ¼ �Lrl ½5�

where J is a columnar vector with elements Jk and �l is
a columnar vector with elements �lk, where � denotes
the gradient operator. The following discussion or
similar ones has been presented by many authors; see,
for example, the book by Kirkaldy and Young[27] but
was usually cumbersome as it made use of the notation
based on vectorial and matrix elements. In the following
we shall thus summarize it using the condense vector-
matrix notation. Software like Matlab (MathWorks,
Natick, MA)[28] and Maple (Maplesoft, Waterloo,
Ontario, Canada)[29] easily handle matrices and vectors.
We introduce the entropy produced locally (entropy

change per volume and time) and denote it with r. From
an entropy balance and the combined first and second
law of thermodynamics, it is straightforward to derive
an expression of r in terms of fluxes and forces. In the
absence of temperature gradients, it is given by

rT ¼ �JTrl ½6�

where JT denotes the transpose of J, i.e., J written as
a row vector. According to the Onsager reciprocity
relations,[16] the matrix L is symmetric, i.e.,

L ¼ LT ½7�

In the current case, this is trivial, however, because L
is a diagonal matrix.
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Fig. 2—DICTRA[26] simulation of Darken’s experiment, symbols
from Reference 18.
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V. FRAMES OF REFERENCE—KINETIC
COUPLING

In the previous section, we considered the n indepen-
dent fluxes relative the crystalline lattice, i.e., in the so-
called lattice-fixed frame of reference. Often, it is more
convenient to consider diffusion in other frames, e.g.,
interdiffusion. Transformation to any other frame of
reference is achieved by multiplying J with a transfor-
mation matrix A that will be characteristic for the new
frame of reference. The fluxes in the new frame of
reference, thus, are

J0 ¼ AJ ½8�

The entropy production should be independent of the
choice of frame of reference and as we want to write it

in the form of Eq. [6], i.e., rT ¼ J
0TF0, where F¢ de-

notes the columnar vector containing the driving
forces as elements. Clearly, they cannot generally be
the gradients in the chemical potentials in other frames
of reference if the entropy production shall be invari-
ant. Thus, the forces must also be transformed, and
the transformation law for the forces becomes

F0 ¼ ðATÞ�1F ½9�

where (AT)�1 means the inverse of AT. The new L¢ ma-
trix becomes

L0 ¼ ALAT ½10�

i.e., if L is symmetric, then L¢ must be symmetric. We
may, thus, conclude that the validity of the Onsager
relations is not affected by the change in frame of
reference. It should be noted, however, that even if L is
diagonal, L¢ is usually not.

For the sake of simplicity, we shall demonstrate the
procedure by applying it to a binary system. The
number-fixed frame of reference is defined by
J
0
1 þ J

0
2 ¼ 0. In this frame of reference, there is only

one independent elemental flux in a binary system. It is
usually denoted as the interdiffusive flux. It is convenient
to introduce the Kirkendall effect as a second ‘‘flux,’’
and the transformation matrix is then defined by

A ¼ �x2 1� x2ð Þ
�1 �1

� �
½11�

The matrix A thus transforms from two independent
fluxes in the lattice fixed frame to two independent fluxes
in the number fixed frame. The first one is the
interdiffusion flux J0 ¼ J

0
2 ¼ �J

0
1 and the second one is

the negative of the net-flow of atoms relative the lattice
which turns out to be v/Vm. The velocity of the lattice

planes as observed in the number fixed frame is v, i.e.,
the velocity of Kirkendall markers attached to the
lattice. Thus, we have

J0 ¼ J
0

2 ¼ �x2J1 þ 1� x2ð ÞJ2 ½12a�

v=Vm ¼ �J ¼ �J1 � J2 ½12b�

The new driving forces become

F1 ¼ �@ l2 � l1ð Þ=@ x ½13a�

F2 ¼ � 1� x2ð Þ@ l1=@ xþ x2@ l2=@ x½ � ½13b�

The new L¢ matrix becomes

and as can be observed, it is symmetric, i.e., the Onsager
reciprocity relations are obeyed. Thus, the two fluxes are

J0 ¼ � 1

Vm
x2 1� x2ð Þ x2M1 þ 1� x2ð ÞM2ð Þ @ðl2 � l1Þ

@ x

½15a�

v

Vm
¼ � 1

Vm
x2 1� x2ð Þ M1 �M2ð Þ @ l2 � l1ð Þ

@ x
½15b�

where the fact that F2 = 0 because of the Gibbs-Du-
hem relation has been used. With this transformation,
the Kirkendall effect is a cross effect. By expanding the
driving force F1 in the concentration gradient, i.e.,

@ l2 � l1ð Þ
@ x

¼ d l2 � l1ð Þ
d x2

@ x2
@ x

½16�

we recover fully Darken’s relations presented in his
paper from 1948.[21]

In general, we find that a transformation from the
lattice to a number-fixed frame of reference or to any
other frame of reference will introduce off-diagonal
elements in the L matrix, which however, will remain
symmetric. In contrast to the thermodynamic couplings,
these effects could be called kinetic coupling because they
occur in thematrix of the kinetic coefficients. However, in
a sense, they are only apparent and caused by the fact that
we study the processes in the ‘‘wrong’’ frame of reference
rather than the ‘‘true’’ frame, i.e., the lattice-fixed frame.

VI. THE ONSAGER RECIPROCITY RELATIONS

In the previous section, we observed that the Onsager
relations will be obeyed in all frames of reference if they
are obeyed in one provided that the transformation rules

L0 ¼ 1

Vm

x2 1� x2ð Þ x2M1 þ 1� x2ð ÞM2ð Þ x2 ð1� x2Þ M1 �M2ð Þ
x2 1� x2ð Þ M1 �M2ð Þ 1� x2ð ÞM1 þ x2M2

� �
½14�
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are obeyed. From a mathematical point of view, the
symmetric matrices containing only real numbers have
an interesting property; they may be diagonalized by
orthogonal matrices, which means that there is always a
frame of reference where they are diagonal. The physical
interpretation is that there is always a frame of reference
where the different diffusion processes are independent if
the L matrix is symmetric.

As mentioned, Onsager’s proof of the reciprocity
relations is complicated and difficult to follow. It is based
on so-called ‘‘microscopic reversibility,’’[16] which On-
sager introduced inspired by the concept of detailed
balance in chemistry. However, from the preceding
reasoning, it is clear that the relations would follow
directly if it is assumed that the processes are physically
independent, i.e., there is a frame of reference where theL
matrix is diagonal.

VII. CORRELATION EFFECTS
AND OFF-DIAGONAL COEFFICIENTS

Equation [1] may also be derived from simple absolute-
reaction rate arguments if it is assumed that each diffusive
jump is independent of the previous jumps as well as
jumps of neighboring atoms. Diffusion would thus be
completely random except for some bias in the direction
of lower chemical potential. However, as diffusion usually
occurs by a vacancy mechanism, the probability that the
atom jumps back to its previous position that is now
vacant is larger than the probability that the atom would
jump to another neighboring position. Such correlation
effects have been discussed by several authors, e.g.,
Manning,[30] and for multicomponent systems, they lead
to off-diagonal mobilities, even in the lattice-fixed frame.
However, it seems as they lead to a symmetric L matrix;
see for example Dayananda.[31] This means that there is
another frame of reference where there is a diagonal L
matrix. What is the physical significance of that ‘‘true’’
frame of reference? Anyhow, the magnitude of expected
correlation effects is usually small compared with the
scatter in experimental data, and from a practical point of
view, they may be neglected in most cases.

VIII. DIFFUSION IN DISPERSED SYSTEMS

The formulation based on Eq. [1] allows us to treat
redistribution of dissimilar materials. One example is a
joint between a tool steel and a low-alloy steel where
there is extensive redistribution of rapid interstitial
solutes but much less redistribution of the sluggish
substitutional solutes. The tool steel has much higher
carbon content than the low-alloy steel but contains
many carbide stabilizing elements that decrease the
carbon chemical potential. Consequently, the carbon-
rich tool steel will be carburized by the carbon poor low-
alloy steel, i.e., uphill diffusion. This is exactly what is
observed at high temperatures where both alloys are in
the one-phase austenitic state. At low temperatures,
there is a complication because carbides are formed, and
diffusion now occurs in a matrix with dispersed carbide

particles. This problem was considered by Roper and
Whittle,[32] who mentioned high-temperature oxidation
and corrosion of alloys as an important practical
application. They considered a hypothetical ternary
system and assumed that diffusion took place only in a
matrix phase and that the fraction and composition of
the two phases were given by the tie-lines in an
isothermal section, i.e., thermodynamic equilibrium
prevails locally. They then predicted that if a one-phase
material is joined to a two-phase material, the diffusion
path in the two-phase region will have a zigzag shape.
The zigzag shape occurs because there is 1 deg of
freedom less in the two-phase field according to Gibbs
phase rule. This approach was then used by several
authors. For example, Hopfe and Morral[33] derived
analytical approximations that allowed them to consider
many different cases and Engström et al.[34] derived a

Fig. 3—(a) Microstructure of joint between low alloy steel (left) and
stainless steel (right) heat treated for 100 h at 923 K (650 �C). The
dark-etched area on the stainless side stems from high fraction of
carbides. (b) Simulated fraction of carbides on the stainless steel side
at different temperatures for 10 h. From Reference 35.
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fully numerical procedure that was implemented in
DICTRA and allowed them to simulate internal carbide
formation during carburizing of Ni-Cr alloys. The latter
method was applied by Helander et al.[35,36] to joints
between an austenitic stainless steel and a low alloy steel,
a problem of direct industrial importance.

The predictive power of this approach could not be
overestimated. The only input in addition to the tem-
perature, alloy composition, and boundary conditions
are the thermodynamic description of the Calphad type
and the diffusional mobilities. No details about the
microstructure are needed. In contrast, no details except
the local fraction and composition of phases are
obtained as output. But from a practical point of view,
that output is often enough and precisely what is needed.

As an example, Figures 3(a) and (b) are reproduced
from Reference 35. For 100 hours, the simulated zone of
carbide precipitation in the stainless steel is approxi-
mately 80 lm, which agrees reasonably well with the
experimental one (Figure 3(a)). For details, the reader is
referred to Reference 35.

A drawback with this approach is the assumption that
diffusion takes place only in the matrix phase. That
excludes many practically important cases. For example,
it is not possible to treat a situation where there is a
change in matrix phase, e.g., if a ferritic steel is joined
with an austenitic steel. The problem was solved by
Larsson and Engström,[36] who used a so-called homog-
enization approach to account for diffusion in all
phases. Rather than considering the mobilities in a
single matrix phase, the mobilities in all phases were
weighed together to yield an effective mobility for an
element. Figures 4(a) through (d) are taken from their
work.
The experimental concentration profiles are described

well by the simulation (Figure 4(d)). The variation in
fraction of base-centered cubic (bcc) is predicted well
using Hashin-Shtrikman lower bounds, and in particu-
lar, the thin layer of face-centered cubic (fcc) single
phase is predicted with roughly the same thickness as in
the experiments. Again, we conclude that a rather simple
approach but based on fundamental thermodynamic

Fig. 4—(a) FCC/bcc diffusion couples in Fe-Cr-Ni at 1373 K (1100 �C). (b) Microstructure of couple K5-K7 heat treated at 1373 K (1100 �C)
for 100 h. (c) Simulated fraction of bcc (a) after 100 h at 1373 K (1100 �C). (d) Simulated variation in mass fraction Ni after 100 h at 1373 K
(1100 �C). From Reference 36.
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and kinetic equations predicts satisfactorily the behavior
of a real alloy systems of practical importance.

IX. DIFFUSION IN TEMPERATURE GRADIENTS

Many technical components are exposed to large
temperature differences, e.g., heat-exchanger tubes and
turbine blades. Such gradients may cause diffusion even
if initially there are no concentration differences. This
phenomenon is referred to as thermomigration. The
effects may be strong, particularly for fast-diffusing
interstitials. Formally, thermomigration is accounted
for by adding an extra term proportional to the
temperature gradient in Eq. [1]; see, for example, the
work by Oriano.[37]

Jk ¼ �ckMk
@ lk

@ x
� LkT

T2

@ T

@ x
½18�

Thus, there are off-diagonal elements in the L matrix
even in the lattice-fixed frame of reference. The corre-
sponding off diagonal mobility is usually given in terms
of a so-called heat of transport Q�k

MkT ¼ Q�kMk ½19�

where Mk is the diffusional mobility of k. Various
researchers evaluated experimentally the heat of trans-
port in different systems. For example, Okafor et al.[38]

evaluated the heat of transport of carbon in Fe-Ni alloys
for high-temperature applications. Recently, Höglund
and Ågren[39] implemented thermomigration in the
DICTRA code. They used the experimental information
from Okafor et al., evaluated the heat of transport Q�C;
and simulated the experiments by Okafor et al. (see
Figure 5).

Figure 5 calculated carbon profiles after 102 hours
and at steady state compared with experimental mea-
surements from Reference 38. The temperature was kept
at 1400 K (1127 �C) at the center and 1000 K (727 �C)
on both sides. Carbon segregated to the high-tempera-
ture parts.

X. DATABASES AND EVALUATION
OF MOBILITIES

It is clear that precise data on thermodynamics and
diffusion is urgently needed in many practical applica-
tions. It should also be clear from the previous sections
that the most efficient way to store data is in terms of
mobilities, provided that the thermodynamic properties
of the system under consideration are known. A
theoretical basis for such work was laid by Andersson
and Ågren.[40] It has been used by several researchers
since then. One may mention particularly the work on
Ni-base super alloys by Campbell and colleagues[41,42]

Their database published 2002 covered Ni and 9
additional alloy elements, and allowed the simulation
of diffusion couples of commercial alloys, e.g., Rene-N4
and Rene-N5[43] (Figure 6).

Their database was later extended to include also the
ordered phases in the Ni-Al alloys,[42] e.g., B2 and c¢. As
an example, a B2-Ni diffusion coupling was simulated
for 1000 hours at 1423 K (1150 �C) (Figure 7).
The mobilities are evaluated from various pieces of

experimental data in a similar way as the thermody-
namic functions in the Calphad method. Such informa-
tion consists of, e.g., tracer diffusion coefficients,
interdiffusion coefficients, or directly measured concen-
tration profiles. We will not discuss this in more detail,
although these matters deserve their own paper. When

Fig. 5—Calculated carbon profiles after 102 h and at steady state
compared with experimental measurements from Reference 38. The
temperature was kept at 1400 K (1127 �C) at center and 1000 K
(727 �C) on both sides. Carbon segregated to the high-temperature
parts.

Fig. 6—Experimental and simulated concentration profiles between
Rene-N4 and Rene-N5. From Reference 43.
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analyzing the experimental information, it is usually
found that the different quantities depend on the
composition. As it is tedious to cover those tendencies
experimentally, approaches based on ab initio quantum
mechanical calculations are now being tried. For exam-
ple, Andersson and Simak[44] considered the self-diffu-
sion coefficient in Cu. They calculated the formation
energy for vacancies and divacancies as well as the
activation barrier for diffusion and estimated the entro-
pic effects by density functional theory (DFT). The
authors calculated diffusivities in good agreement with
experiments.

In a later paper, Andersson et al.[45] used a similar
approach to study CeO2 for application as electrolyte in
solid oxide fuel cells. They managed to calculate how the
activation energy for oxygen diffusion by a vacancy
mechanism is affected by additions of dopants. Sand-
berg and Holmestad[46] and Mantina et al.[47] used DFT
to calculate the diffusion of transition metal impurities
in Al in reasonable agreement with experiments.

Recently, extensive research has been launched because
of the renewal of nuclear power. Ferritic Fe-Cr steels have
good resistance against neutron irradiation and are prime
candidate materials to be used in structural parts of
nuclear reactors that will be subject to extreme neutron
irradiation. Sandberg et al.[48] used ab initio methods to
calculate the activation energy for carbon diffusion in bcc
Fe and Cr. They concluded that their results were in good
agreement with experimental data.

It thus seems as information from the ab initio
calculations could be used as an important piece of
information when evaluating mobilities.

XI. CONCLUDING REMARKS

Already from its start, the theory of diffusion has been
connected closely to practical applications. Diffusion
data are needed urgently to understand and predict
several important phenomena. As much experimental

and theoretical work is now performed, it is important
that the results are presented in a form that makes them
generally useful for society.
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