Skip to main content
Log in

Development of Dendritic Structure in the Liquid-Metal-Cooled, Directional-Solidification Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A single-crystal nickel-base superalloy was directionally solidified over a range of withdrawal rates to assess the benefits of using liquid-metal cooling (LMC) for small-scale castings. Cylindrical bars of 1.6-cm diameter were solidified at a rate of 3.4 mm/min using conventional (Bridgman) radiation cooling and at rates of 8.5, 12.7, and 21.2 mm/min using LMC. PROCAST modeling was used to predict dendrite arm spacings based on local thermal conditions. The LMC process exhibited higher thermal gradients and finer primary and secondary spacings of up to 50 and 70 pct, respectively, in comparison to the Bridgman process. The maximum refinement in dendritic spacings using the LMC process occurred at a withdrawal rate of 12.7 mm/min. Variability in axial and lateral dendrite spacings decreased with increasing withdrawal rate, up to the point of maximum refinement. Withdrawal rates exceeding 12.7 mm/min increased the variability in spacings and produced lateral overgrowth of the primary dendrites by secondaries and promoted formation of high-angle grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. PROCAST is a trademark of ESI Group, Inc., Paris, France.

References

  1. F. Hugo, U. Betz, and J. Ren: Int. Symp. on Liquid Metal Processing and Casting, A. Mitchell, L. Ridgway, and M. Baldwin, eds., AVS, New York, NY, 1999, pp. 16–30.

  2. J. Grossman, J. Preuhs, W. Esser, and R.F. Singer: Int. Symp. on Liquid Metal Processing and Casting, A. Mitchell, L. Ridgway, and M. Baldwin, eds., AVS, New York, NY, 1999, pp. 31–40.

  3. A.J. Elliott, S. Tin, W.T. King, S.-C. Huang, M.F.X. Gigliotti, and T.M. Pollock: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3221–31.

    Article  CAS  Google Scholar 

  4. J.D. Miller and T.M. Pollock: Int. Symp. on Liquid Metal Processing and Casting, P.D. Lee, A. Mitchell, and R. Williamson, eds., TMS, Warrendale, PA, 2009, pp. 119–26.

  5. A.J. Elliott and T.M. Pollock: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 871–82.

    Article  CAS  Google Scholar 

  6. F. Hugo, U. Betz, and H. Mayer: U.S. Patent No. 6,308,767, 2001.

  7. G. K Bouse and J. R. Mihalisin: in Superalloys, Supercomposites and Superceramics, J.K. Tien and T. Caulfield, eds., Academic Press, New York, NY, 1989, pp. 99–148.

  8. J.D. Hunt: in Solidification and Casting of Metals, J.D. Hunt, ed., The Metals Society, London, 1979, pp. 3–9.

  9. W. Kurz and D.J. Fisher: Acta Metall., 1981 vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  10. C.L. Brundidge, D. Van Drasek, B. Wang, and T.M. Pollock: Int. Symp. on Liquid Metal Processing and Casting, P.D. Lee, A. Mitchell, and R. Williamson, eds., TMS, Warrendale, PA, 2009, pp. 107–17.

  11. N. D’Souza, M.C. Ardakani, M. McLean, and B.A. Shollock: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2877–86.

    Article  Google Scholar 

  12. R.M. Ward, S.M. Johnson, and M.H. Jacobs: Int. Symp. on Liquid Metal Processing and Casting, A. Mitchell and P. Auburtin, eds., AVS, New York, NY, 1997, pp. 978–1109.

  13. L. Li and R.A. Overfelt: J. Mater. Sci., 2002, vol. 37, pp. 3521–32.

    Article  CAS  Google Scholar 

  14. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward III: Trans. TMS-AIME, 1966, vol. 236, pp. 149–58.

    CAS  Google Scholar 

  15. T.S. Piwonka: Metals Handbook, vol. 15, Casting, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 319–23

  16. D.G. McCartney and J.D. Hunt: Acta Metall., 1981, vol. 29, pp. 1851–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of C.J. Torbet. The funding provided by General Electric Aviation (GE-USA Program) and the Air Force Research Laboratory is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Brundidge.

Additional information

Manuscript submitted November 30, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brundidge, C.L., Miller, J.D. & Pollock, T.M. Development of Dendritic Structure in the Liquid-Metal-Cooled, Directional-Solidification Process. Metall Mater Trans A 42, 2723–2732 (2011). https://doi.org/10.1007/s11661-011-0664-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0664-5

Keywords

Navigation