Skip to main content
Log in

Comparison of Different Synthesis Methods to Produce Lithium Triborate and Their Effects on Its Thermoluminescent Property

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Lithium triborate (LiB3O5) was produced by different synthesis methods, which included high-temperature solid-state reaction, microwave-assisted high-temperature solid-state reaction, and precipitation-assisted high-temperature solid-state reaction. After the synthesis, metal oxides (CuO and Al2O3) were doped into LiB3O5 to enhance its thermoluminescent (TL) properties, and the TL intensities were compared with each other. The identification and characteristics of undoped and doped LiB3O5 were determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) analyses, differential thermal analyses (DTA), scanning electron microscopy (SEM), and particle size analyzer. The glow curves were obtained by using a TL reader. The results showed that synthesis routes affected the physical and structural properties of lithium triborate, which have an important effect on its TL intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Özdemir, G. Özbayoğlu, and A. Yılmaz: J. Mater. Sci., 2007, vol. 42, pp. 8501-08.

    Article  ADS  Google Scholar 

  2. T. Depci, G. Özbayoğlu, A. Yılmaz, and A.N. Yazici: Nucl. Instrum. Meth. B, 2008, vol. 266, no. 5, pp. 755-62.

    Article  CAS  ADS  Google Scholar 

  3. V.E. Kafadar, A.N. Yazici, and R.G. Yildirim: J. Lumin., 2009, vol. 129, pp. 710-14.

    Article  CAS  Google Scholar 

  4. H. König and R. Hoppe: Z. Anorg. Allg. Chem., 1978, vol. 439, pp. 71-79.

    Article  Google Scholar 

  5. E. Bétourné and M. Touboul: J. Alloys Compd., 1997, vol. 255, pp. 91-97.

    Article  Google Scholar 

  6. S.C. Sabharwal and B. Tiwari, Sangeeta: J. Cryst. Growth, 2003, vol. 249, pp. 502–06.

  7. N.V. Surovtsev, V.K. Malinousky, V.P. Solntsev, A.V. Davydov, and E.G. Tsvetkov: J. Cryst. Growth, 2008, vol. 310, pp. 3540-44.

    Article  CAS  ADS  Google Scholar 

  8. T. Depci, G. Özbayoğlu, and A. Yilmaz: Physicochem. Probl. Miner. Process., 2007, vol. 41, pp. 101-05.

    CAS  Google Scholar 

  9. A. Loupy, Ed.: Microwaves in Organic Synthesis, Wiley-VCH Verlag GmbH and Co., Weinheim, Germany, 2002, pp. 1–73.

  10. I. Ganesh, B. Srinivas, R. Johnson, B.P. Saha, and Y.R. Mahanjan: J. Am. Ceram. Soc., 2004, vol. 24, pp. 201-27.

    Article  CAS  Google Scholar 

  11. R.N. Das: Mater. Lett., 2001, vol. 47, pp. 344-50.

    Article  CAS  Google Scholar 

  12. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer: Thermochim. Acta, 2004, vol. 424, pp. 131-42.

    Article  CAS  Google Scholar 

  13. A.M. Garcia, M. Ortiz, R. Martines, P. Ortiz, and E. Reguera: Ind. Crop. Prod., 2004, vol. 19, pp. 99-106.

    Article  Google Scholar 

  14. S. Vanetsev, V.K. Ivanov, and Y.D. Tret’yakov: Dokl. Chem., 2002, vol. 387, pp. 332-34.

    Article  CAS  Google Scholar 

  15. U. Moryc and W.S. Ptak: J. Mol. Struct., 1999, vol. 511, pp. 241-49.

    Article  ADS  Google Scholar 

  16. L. Xu, B. Wei, Z. Zhang, Z. Lu, H. Gao, and Y. Zhang: Nanatechnology, 2006, vol. 17, pp. 4327-31.

    Article  CAS  ADS  Google Scholar 

  17. A. Saberi, B. Alinejad, Z. Negahdari, F. Kazemi, and A. Almasi: Mater. Res. Bull., 2007, vol. 42, pp. 666-73.

    Article  CAS  Google Scholar 

  18. B. S. R. Sastry and F.A. Hummel: J. Am. Ceram. Soc., 1958, vol. 41, no. 1, pp. 7-17.

    Article  CAS  Google Scholar 

  19. M.D. Mathews, A.K. Tyagi, and P.N. Moorthy: Thermochim. Acta, 1998, vol. 320, pp. 89-95.

    Article  CAS  Google Scholar 

  20. U.D. Altermatt and I.D. Brown: Acta Cryst., 1987, vol. A34, pp. 125-30.

    Google Scholar 

  21. D. Thomazini, F. Lanciotti, and A.S.B. Sombra: Ceramica, 2001, vol. 47, pp. 88-93.

    CAS  Google Scholar 

  22. V. Singh and T.K.G. Rao: J. Solid State Chem., 2008, vol. 181, pp. 1387-92.

    Article  CAS  ADS  Google Scholar 

  23. S.W.S. McKeever, M. Moskovitch, and P.D. Townsend: Thermoluminescence Dosimetry Materials: Properties and Uses, Nuclear Technologies Publishing, Ashford, UK, 1995.

    Google Scholar 

  24. L. Wei, D. Guiqing, H. Qingzhen, Z. An, and L. Jingkui: J. Phys. D: Appl. Phys., 1990, vol. 23, pp. 1073-75.

    Article  ADS  Google Scholar 

  25. Y. F. Shepelev, R.S. Bubnova, S.K. Filatov, N.A. Sennova, and N.A. Pilnev: J. Solid State Chem., 2005, vol. 178, pp. 2987-97.

    Article  CAS  ADS  Google Scholar 

  26. J. Manam and S.K. Sharma: Nuclear Instrum. Meth. B, 2004, vol. 217, pp. 314-20.

    Article  CAS  ADS  Google Scholar 

  27. J.K. Srivastava and S.J. Supe: J. Phys. D: Applied Physics, 1989, vol. 22, no. 6, pp. 1537-43.

    Article  CAS  ADS  Google Scholar 

  28. Y. Kutomi and A. Tomita: Proc. 10th Int. Conf. On Solid State Dosimetry, Washington, DC, 1992, p. 42.

  29. M. Santiago: J. Mater. Sci. Lett., 1998, vol. 17, pp. 1293-96.

    Article  CAS  Google Scholar 

  30. M. Ohta and M. Takami: J. Lumin., 2002, vol. 96, pp. 1-4.

    Article  CAS  Google Scholar 

  31. C.M.H. Driscoll: Phys. Med. Biol., 1977, vol. 23, pp. 777-81.

    Article  Google Scholar 

  32. C M H. Driscoll and A.F. McKinlay: Phys. Med. Biol., 1981, vol. 26, pp. 321-27.

    Article  CAS  PubMed  Google Scholar 

  33. S. Lorrain, J.P. David, R. Visocekas, and G. Marinello: Radiat. Prot. Dosim., 1986, vol. 17, pp. 385-92.

    CAS  Google Scholar 

  34. S.J. Dhoble, S.V. Moharil, S.M. Dhopte, P.L. Muthal, and V.K. Kondawar: Phys. Sol. Stat. A, 1993, vol. 135, pp. 289-98.

    Article  CAS  ADS  Google Scholar 

  35. K. Shinsho, K. Harada, Y. Yamamoto, and A., Urushiyama: Radiat. Meas., 2008, vol. 43, pp. 236-40.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from the OYP (Scientific HR Development Program) program (BAP-08-11-DPT2002120510) and BOREN (National Boron Research Institute) (2006-05-611-05) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Depci.

Additional information

Manuscript submitted June 27, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depci, T., Ozbayoglu, G. & Yilmaz, A. Comparison of Different Synthesis Methods to Produce Lithium Triborate and Their Effects on Its Thermoluminescent Property. Metall Mater Trans A 41, 2584–2594 (2010). https://doi.org/10.1007/s11661-010-0341-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0341-0

Keywords

Navigation