Fracture and Delamination of Chromium Thin Films

on Polymer Substrates
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New emerging technologies in the field of flexible electronic devices require that metal films
adhere well and flex with polymer substrates. Common thin film materials used for these
applications include copper (Cu) with an adhesion interlayer of chromium (Cr). Copper can be
quite ductile and easily move with the polymer substrate. However, Cr is more brittle and
fractures at lower strains than Cu. This study aims to examine the fracture and subsequent
buckling and delamination of strained Cr films on polyimide (PI). In-situ scanning electron
microscope (SEM) straining is used to systematically study the influence of film thickness on
fracture and buckling strains. Film fracture and delamination depend on film thickness, and
increases in crack and buckle density with decreasing thickness are explored by a shear lag

model.
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I. INTRODUCTION

OVER the past few years, metal and ceramic films on
polymer substrates have led to the emergence of
deformable electronics, such as foldable displays, sensor
skins, and electronic textiles. The typical route to create
deformable devices on polymer substrates is to fabricate
stiff islands, commonly made with silicon-nitride, where
active cells (thin film transistors) are fabricated and
connected by metal lines.'# These interconnect lines
must deform with the substrate and survive strains
greater than 10 pct while maintaining electrical conduc-
tivity.l'>>) Several studies have examined the tensile
strength of blanket copper (Cu), aluminum, and %old
films on polymer substrates!® 'l as well as gold lines.™*!?
Further research on ceramic coatings on polymers for
barrier gas coatings has also been completed.[>"!”
Compared to bulk metals, these films on polymer
substrates can have small rupture strains (less than
2 pet) but high strengths;”'®! however, when the film is
well bonded to the substrate, it will have high rupture
strains due to the lack of localized deformation that is

M.J. CORDILL, Postdoctoral Researcher, A. TAYLOR, Ph.D.
Candidate, and G. DEHM, Professor and Head, are with the Erich
Schmid Institute of Materials Science of the Austrian Academy of
Sciences and the Department of Materials Physics at the University of
Leoben, Jahnstrasse 12, A-8700, Leoben, Austria. Contact e-mail:
megan.cordill@oeaw.ac.at J. SCHALKO is with the Research Unit
for Integrated Sensor Systems of the Austrian Academy of Sciences,
Viktor Kaplan Strasse 2, A-2700 Wiener Neustadt, Austria.

This article is based on a presentation given in the symposium
entitled ““Mechanical Behavior of Nanostructured Materials,” which
occurred during the TMS Spring Meeting in San Francisco, CA,
February 15-19, 2009, under the auspices of TMS, the TMS
Electronic, Magnetic, and Photonic Materials Division, the TMS
Materials Processing and Manufacturing Division, the TMS Structural
Materials Division, the TMS Nanomechanical Materials Behavior
Committee, the TMS Chemistry and Physics of Materials Committee,
and the TMS/ASM Mechanical Behavior of Materials Committee.

Article published online September 23, 2009

870—VOLUME 41A, APRIL 2010

suppressed by the strong adhesion.”) When the film is
brittle like silicon nitride, no plastic elongation takes
place and fracture is caused by the breaking of an array
of atomic bonds. Failure of the films by cleavage
fracture is similar to previous studies of ceramic films on
metal substrates pulled in tension.!!” "]

With the periodic cracking method that is based on a
shear lag analysis,!'”"'%2%-2!] the maximum shear traction
that is supported by the interface can be calculated. The
periodic cracking method was first developed to study
the shear properties of metal-ceramic interfaces,!!”! with
similar periodic cracking of other material systems
having also been studied.”” ?*! With the metal-ceramic
system, plastic deformation in the metal substrate is
accommodated by elastic deformation of the ceramic
film until the fracture stress is reached. With metal-
polymer interfaces, the plastic deformation of the metal
is accommodated by the elastic deformation of the
polymer substrates until the fracture stress of the metal
film is reached. At fracture, the in-plane traction in the
film is transferred as shear traction to the interface
adjacent to the free edge of the crack. The shortest
distance between cracks is the characteristic relaxation
distance of the shear traction. This leads to defining the
maximum shear traction supported by the interface,
Tmax, S @ function of the fracture stress of the film, o,
as

3 h

Tmax — Zniafrac [1]

where / is the film thickness and 4 is the mean spacing
between cracks. The fracture stress can be estimated
with Eq. [2], assuming that the film behaves elastically,

Ofrac =~ Efgfrac [2]

where E/is the elastic modulus of the film and &g, is the
fracture strain. It should be noted that Eq. [2] does not
take into account the residual in-plane stress of the film
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after deposition. It is easily included, as shown by
Andersons and Leterrier es al.'> '3 Similar shear lag
analyses have been performed with SiO,-PET film
systems as well as SiN,-Kapton film systems.!!*!”!
However, some differences are found between the
preceding approach and others,!'”'® but both are based
on the shear lag analysis of Kelly and Tyson.*®

In-situ tensile tests performed inside a scanning
electron microscope (SEM) allow one to determine the
system’s fracture strain, where cracks first initiate, as
well as any subsequent buckling and delamination that
may occur.l"” This type of experiment can provide a
wealth of information that can be used to improve
existing adhesion and deformation models currently
being implemented!'*”! to predict material failure and
lifetimes of the material systems. Current thin film
systems being examined for the connecting lines of
flexible devices include Cu or Au with an adhesion layer
of chromium (Cr). It has been well known that Cr can
increase the adhesion energy of metal films on polymer
substrates, for example, Cu on PI®” and Au on
PDMS.[ 1t has also been observed that Cr adhesion
layers (10 to 20 nm in thickness) will fracture before
cracks are viewed in the overlying Cu films, and the
failure occurs via channel cracking perpendicular to the
tensile loading direction.? This study aims to examine
the fracture behavior of bare Cr films on PI substrates to
better understand the mechanisms that lead to failure of
this adhesion layer. Of importance is whether fracture
strain is influenced by the film thickness.

II. EXPERIMENTAL PROCEDURE

Chromium films were deposited onto cleaned 50-um-
thick UPLIEX brand PI films (E = 8.5 GPa). The PI
film was cleaned by soaking it in a 10 pct aqueous
solution of RBS 50 (a laboratory cleaning concentrate
with high pH) for 24 hours at room temperature,
followed by a deionized water rinse and a 1 MHz
ultrasonic cleaning process. The Cr layers were depos-
ited by e-beam evaporation in a Balzers BAK 550
evagoration machine with the vacuum at 2.10 x
10~ " mbar and using a deposition rate of 0.5 nm/s.
Four film thicknesses were made and studied: 50, 100,
200, and 500 nm. It is known that adhesion layers are
commonly 50 nm or less; however, in order to fully
study the failure mechanism, an order of magnitude of
film thickness was used. The 100-, 200-, and 500-nm
films have residual tensile stresses on the order of 1 GPa
(1.2, 1, and 0.8 GPa, for the 100, 200, and 500 nm,
respectively), as determined by X-ray diffraction using
the sin®¥ method. The same method was also used on
the 50-nm film but was unsuccessful in measuring a
stress because the film was too thin to get a reliable peak
shift. In the analysis, a 1-GPa residual stress is assumed
for the 50-nm film. Tensile cracks formed before
straining experiments of the 200- and 500-nm films.

The structure of the films was determined with
electron microscopy techniques. By careful sample
preparation, cross-sectional transmission electron
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microscopy (TEM) images and diffraction patterns of
the 50- and 500-nm films were taken. Figure 1 shows a
columnar grain structure with peculiar peaks for both
film thicknesses. The peaks are also visible in scanning
electron microscopy images of the film surfaces (not
shown). Diffraction patterns indicate that the films are
polycrystalline. The average grain size of the films is on
the order of 50 nm for all film thicknesses.

The films were pulled in tension using a small scale
tensile device (Kammrath and Weiss, Dortmund,
Germany) that has a maximum displacement of 6 mm.
The sample geometry used was approximately 1-cm
wide with a 3-cm gage length. Each test was carried out
using a 10-um/s displacement rate. The tensile device
was used to perform both ex-situ and in-situ tests inside
the SEM. In-situ tests were initially stopped every 100
um of displacement until the first cracks perpendicular
to the tensile direction were observed (approximately
600-um total displacement) in order for SEM images to
be taken of the samples at various magnifications. After
the first 600 um of displacement, the experiment was
stopped every 200 um of displacement. The images were
then correlated to the strain. Comparisons of ex-situ
and in-situ tests indicate that the electron beam and the
vacuum do not alter the results notably.

Cr film

'Polyimide

Cr film

Fig. 1—Bright-field TEM images of the (@) 50- and (b) 500-nm-thick
films. The arrows in (a) indicate regions of possible columnar
porosity.
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III. RESULTS AND DISCUSSION

The load vs strain behavior of the Cr films on PI is
shown in Figure 2(a) for ex-situ experiments. Both
ex-situ and in-situ experiments illustrate that there is no
pronounced thickness dependence on the load and strain
response. This may be explained by the small grain size
of 50 nm, which is for all thicknesses the smallest
dimension and thus expected to control the mechanical
response of the films.* The ex-siru samples were all
strained to 11 pct, while in-situ tests were performed to
12 to 18 pct strain. With the in-situ experiments, cracks
perpendicular to the loading direction were observed to
initiate at less than 1 pct strain for all thicknesses
(Table I). Measured crack densities increase with
decreasing film thickness (Figure 2(b)). The crack den-
sity of the thickest film (500 nm) reaches a steady state
at about 4 pct strain, which is at a lower strain value
than the thinner films. The 100- and 200-nm films reach
a steady state at approximately 5 pct strain. Figure 3
illustrates the cracking found in all four thicknesses at
11 pct strain. Crack density as a function of strain of the
films 100 nm and greater reaches a clear plateau in the
data indicating the steady state. The thinnest film,
50 nm, does not reach such a plateau within the
prescribed straining limit of the apparatus. Rather, a
change in slope is reached at about 7 pct strain and then
continues to gradually increase, up to 18 pct global
strain. This indicates that cracks are still forming in the
very thin brittle films where cracks stop forming in the
thicker films. The continued crack growth could be of
significance and may aid in increasing the strain a
system can withstand. The average crack spacing at
saturation can also be found in Table I.

Due to the fact that the fracture strains of the films
can be observed with the in-situ experiments, it is easy to
calculate the maximum shear stress of the interface,
Tmax, assuming that the fracture stress can be estimated
based on Eq. [2] with an elastic modulus of 280 GPa.
Since the grain size is homogenous for the various film
thicknesses and too small to allow considerable plastic-
ity, this approximation is justified. There is a wide
distribution of observed fracture strains but a trend of
decreasing fracture strain with increasing film thickness
is found, as shown in Table I. The fracture strain is
defined when the first new cracks perpendicular to the
tensile direction are observed with the SEM during the
in-situ experiment. Using Eq. [1] and the fracture stress
values from Eq. [2], the maximum shear stress of the
interface also decreases with increasing film thickness, as
shown in Table I. The calculated values for the Cr-PI
system are lower (119 to 31 MPa) than that of a metal-
ceramic interface (1.7 GPa for Cu-SiO,!'* and 0.4 to
0.8 GPa for Cu-A1203[28]), but the values are reasonable.
It should be noted that the residual stresses in the
thicker films (>100 nm) have not been considered with
this model. Rather, the formation of new cracks due to
the tensile loading is considered to be the over-riding
mechanism. When the residual stress of about 1 GPa of
the films is included in the analysis, the fracture stresses
range between 3.1 and 1.2 GPa and the maximum
interface shear strength values increase to 175 to
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Fig. 2—(a) Load vs strain response of the four Cr film thicknesses
on PI. (b) Crack density as a function of strain for all four Cr thick-
nesses. Each thickness reaches the steady-state region at a different
strain ranging between 4 and 7 pct. The 50-nm-thick film, however,
does not quite reach a steady state. Rather, the slope of the data
changes (arrow) at about 7 pct.

93 MPa, respectively, for the 50- to 500-nm film. These
values are shown in brackets (i.e., [175]) in Table I. In
cither case, the data show a tendency for the thinner
films to have higher interfacial shear strengths, which is
most likely caused by the decrease in fracture stress due
to a scaling with the film thickness because the grain size
is constant for all thicknesses. A possible explanation
could be the presence of columnar porosity,””** com-
monly observed with columnar grained films. This type
of defect may be present in these films, as shown in
Figure 1(a) (arrows) at the column boundaries. Further
TEM examination is required in order to say with
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Table I. Measured and Calculated Values of Fracture Strain and Stress, Average Crack and Buckle Spacing,
and Maximum Interface Shear Strength for All Performed In-Situ Experiments; Values that Include
the Residual Tensile Stress of 1 GPa are Shown in Brackets

Pct Fracture Fracture Average Crack Maximum Interface Pct Buckle Average Buckle
Film Thickness Strain Stress (GPa) Spacing (um) Shear Strength (MPa) Strain Spacing (um)
50 nm 0.58 1.6 [2.6]* 1.9 £0.1 100 [163]* 8 44 £ 1.5
0.76 2.1 [3.1]* 2.14+02 119 [175]* 13
100 nm 0.32 0.9 [2.1] 4.1+£0.5 52 [120] 13 11£6
200 nm 0.23 0.64 [1.6] 48 +£04 64 [161] 17 12+ 59
500 nm 0.15 0.42[1.2] 155+£0.5 31 [93] 10 62 £ 35
0.19 0.54 [1.3] 16.7 £ 1 38 [94] 10

*The residual stress of the 50-nm film could not be measured and was assumed to be 1 GPa and was based on the stress results of the other films.

Fig. 3—The SEM micrographs at the same magnification of all four films strained to 12 pct. The effect that thickness has on crack spacing is
evident as well as the first stages of buckling in the 500-nm film. (¢) 50-nm, (b) 100-nm, (¢) 200-nm, and (d) 500-nm.

certainty how columnar porosity should be taken into
account. Larger defects in the thicker films, e.g., cracks
caused by residual stresses from deposition, will cause a
lower fracture stress and as a consequence the simple
model provides only an upper limit of the interfacial
shear strength. However, the large crack density and
lack of a steady-state regime may be a cause for
overlayers of Cu or gold to fail.

Increasing the strain of the film system leads to
delamination and buckling at the interface. Buckling is
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caused by the lateral compressive deformation of the
film on the substrate due to the different Poisson’s
ratios of Cr and PI (0.21 and 0.3, respectively). This
occurs above ~10 pct strain along the tensile direction,
with the exact amount of strain depending on the film
thickness. The nature of the buckling is also dependent
on film thickness. With the 500-nm film, buckles form
with a crack at the apex and at the edges of the buckle,
forming a triangle buckle, which can lead to immediate
spalling of the film. On the other hand, the 50-nm film
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Fig. 4—SEM images of buckles found on the (@) 50- and the (») 500-nm films.

buckles are much smaller and form straight buckles
between the initial cracks with a cracked apex as well.
Figure 4 shows examples of the buckling with the two
film thicknesses. Inspection of the buckling behavior
may be a way to determine the work of separation of
the film system. Further experiments combined with
modeling are currently under way to examine this
behavior.

IV. CONCLUSIONS

The failure of blanket chromium films commonly
used as adhesion layers to increase the interfacial
strength of metal-polymer film systems has been inves-
tigated. Under tension, Cr films fracture and delaminate
from the PI substrate with a brittle cleavage fracture
behavior. Initial crack formation perpendicular to the
loading direction occurs at strains less than 1 pct, much
lower than the fracture strain of the Cu films whose
adhesion is being improved in applications. The crack-
ing behavior can be compared to ceramic films on metal
substrates pulled in tension, and a periodic cracking
model for calculating the maximum interface shear
strength was used. The average interface shear strength
is 67 & 35 MPa. The spacing of the cracks reaches a
steady state at approximately 4 to 5 pct strain for thick
films (2100 nm). For 50-nm-thick films, the crack
density does not reach a steady-state region even after
18 pct global strain has been induced. Crack and buckle
spacings also increase with increasing film thickness,
with buckles occurring at 8 to 17 pct strain depending
on film thickness. These buckles can be used to measure
adhesion energies by taking the shape and possible
cracks of the buckles into account. This study has shown
that thin adhesion interlayers continue to form cracks
during tensile deformation up to high strains. The
continued fracture process and large crack density may
cause metal bilayer systems on polymers (e.g., Cu film
on Cr adhesion layer) to be less reliable than a thicker
adhesion layer with a lower crack density.
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