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A new internal variable constitutive model for the use in finite element (FE) simulation of local
hot forming of 6xxx aluminum alloys is presented. The model relates the flow stress to the
temperature, total strain rate, and internal variables, which represent the dislocation density and
the contributions to the hardening stress from elements in solid solution and precipitates. The
time evolutions of the internal variables are modeled by an equation representing the accu-
mulation/annihilation of dislocations and by a precipitate model developed elsewhere, taking
into account a size distribution of precipitates. The parameters of the constitutive model have
been fitted to tensile tests at different temperatures, strain rates, and precipitate states.
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I. INTRODUCTION

DURING recent years the automotive industry, as
well as the component and product suppliers, have
greatly increased their use of aluminum. New designs
and applications require new forming operations.
Among these we find the local hot forming process in
which the material is subjected to local heating while
being simultaneously deformed, either thermally in-
duced or by an additional mechanical load. By hot
forming, the softening behavior that some alloys exhibit
at elevated temperatures is exploited in order to effec-
tively carry out certain critical forming operations (e.g.,
deep drawing[1] or hydroforming[2]) or controlling the
local microstructure,[3] and thus the local properties of
the final component. Moreover, the use of local hot
forming also allows drawing without die or backing
tool, which is a great advantage when extruded sections
are deformed.[4]

The advanced use of mathematical models and asso-
ciated finite element (FE) codes can be a great help when
the benefits of local hot forming are to be exploited.
Critical parts of such models, though, are the constitu-
tive equations by which the flow stress associated with
the viscoplastic deformation is related to the viscoplastic
strain rate, temperature, and microstructure.

The challenge associated with establishing accurate
and reliable constitutive equations for modeling hot
forming of age-hardened aluminum alloys is that the
flow stress changes not only due to the creation and

annihilation of dislocations (i.e., strain hardening and
recovery[5,6]), but also due to changes in the volume
fraction and size distribution of the hardening precip-
itates.[7] Both factors have a significant influence on the
value of the local flow stress due to complex interactions
between the precipitates and the dislocations.[8]

The purpose of this article is to present a new
constitutive model for the application in simulations of
hot forming of aluminum 6xxx alloys. By means of
internal variables, this model accounts at the continuum
level for the previously mentioned effects that the
evolving microstructure may have upon the viscoplastic
flow stress. The new model is based upon existing
models accounting for strain hardening and recovery[6,8]

and the precipitation of particles from solute
elements[7,9–11] and their contribution to the yield
stress.[12,13] Furthermore, the present model intends to
calculate the instantaneous flow stress for typical values
of the temperatures and strain rates and their variation
with time in a similar manner as in local hot forming
operations. This is different from most existing models,
which are mainly defined by constitutive equations that
can adequately fit the stress-strain curves obtained in
mechanical tests carried out at various, but constant,
temperatures and strain rates.
To the knowledge of the authors, no existing consti-

tutive model can be directly implemented in a FE code
in order to satisfactorily take into account the previ-
ously mentioned microstructural aspects and their
influence on the flow stress in simulations of hot
forming operations. The most recent simulation work
directed toward deep drawing, for example, is limited in
temperature and do not simulate precipitate evolu-
tion.[14] In a previous article on modeling the micro-
structure and strength evolution in age-hardened
aluminum alloys,[11] the development of precipitates
was taken into account in FE simulations of multistage
thermal processing (artificial age-hardening, welding,
and postwelding heat treatment), however, only a
relatively simple empirical model was used to account
for the dislocation hardening.
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The new constitutive model is presented in Section II,
and Section III is devoted to fitting the model to an
existing set of experimental data.[15] Although the
applied data set is limited to relatively small strain rates
(from 10-4 s-1 to 10-2 s-1) and temperatures below
340 �C, we believe that the model could give valuable
results also at higher temperatures and strain rates. This
is because the model becomes equivalent to the well-
established Zener–Hollomon relation[16] in the limit of
stationary creep taking place at high temperatures. This
relation is valid for a wide range of temperatures and
strain rates. The new constitutive model and its main
hypotheses are discussed in Section IV. A modeling
example is then carried out in Section V in which the
developments of microstructure and flow stress are
calculated by the new model, using as an input history of
temperature and strain rate that is relevant for local hot
forming processes. A conclusion along with some
suggestions for further research is presented at the end.

II. THE NEW CONSTITUTIVE MODEL*

A. Kinetic Equation

The viscoplastic equivalent strain rate _ep and equiv-
alent flow stress r are related to each other by a kinetic
equation in which both forest dislocations and precip-
itates contribute to the hardening. As a starting point,
we have adopted the kinetic equation originally pro-
posed by Estrin:[6]

r ¼ r̂
_ep

_e0

� �1=m

½1�

where r̂ is the hardening stress representing the material
state, and _e0 and m are material parameters. The
parameter m is strongly dependent on temperature,
while _e0 is assumed constant. Internal variables charac-
terize the material state; they represent the forest
dislocation density q, and the contribution to r̂ from
the elements in solid solution rs, and the precipitates
rp.

[5,6] The precipitate model is described in more detail
in Section II–C.

The different hardening contributions are added (the
intrinsic strength of the lattice is neglected) to yield

r̂ ¼ r? þ rs þ rp ¼MaGb
ffiffiffi
q
p þ rs þ rp ½2�

where the first term represents the interaction between
dislocations. Furthermore, b, M, G, and a are burger�s
vector, the average Taylor factor, the shear modulus,
and a numerical constant, respectively. All of these
material parameters are assumed constant.

Please note that some authors[8,17] put r (instead of r̂)
on the left-hand side of Eq. [2] without introducing the
kinetic equation (Eq. [1]) at all. This is an acceptable

approximation only at low temperatures for which the
strain rate dependency of the flow stress is small, i.e.,

_ep
_e0

� �1=m
� 1; 8_ep; as illustrated in Figure 1.

While Eqs. [1] and [2] can easily give a reasonably
good fit to experimental data at lower temperatures,[6,8]

they tend to overestimate the dislocation density and
thereby r^ and r̂ at higher temperatures. To illustrate

this problem, we start by noting that the factor _ep
_e0

� �1=m
in Eq. [1] mainly represents the strain rate sensitivity. The
parameter m can thus be estimated from tensile testing
with a jump in strain rate at different temperatures,
assuming that the hardening stress, i.e., the other factor
in Eq. [1] r̂ð Þ remains approximately constant during the
transient time associated with the increase in strain rate
from the first constant value to the other. The factor r̂
can then be calculated by Eq. [1] as illustrated in
Figure 2. In the lower temperature case in this figure,
obtained by using a test specimen in the T6 temper
(experiment B-ini, Table II in Section III–A), the high r̂
value is easily explained by the strong precipitate
hardening and by a relatively high dislocation density.
At the higher temperature, on the other hand (experi-
ment D-SSS, Table II in Section III–A), the hardening
precipitates have been dissolved, leading to rp � 0, while
the estimated r̂ still has a relatively high value. Equation
[2] then predicts a dislocation density during deforma-
tion at the higher temperature that is even higher than at
the lower temperature. This is in contradiction to the
expected low value and increase in dislocation density
associated with straining at the higher temperature.
To solve this problem, we have multiplied the right-

hand side of Eq. [1] with a temperature dependent factor
v. The new kinetic equation then becomes

r ¼ v Tð Þr̂ _ep

_e0

� �1=m

½3�

where r̂ becomes the hardening stress at room temper-
ature. The slight temperature dependency of the shear
modulus is also included in v. At low temperature, this
new formulation must become equivalent to the classical
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Fig. 1—Evolution of the strain rate sensitivity term at different
temperatures.

*Please note that all mathematical symbols are defined both in the
text and in Table I. This table summarizes all variables and parame-
ters, including references to where the parameter values have been
taken from.
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formulation, and thus v tends toward 1 when the
temperature decreases. Further details on v(T) will be
discussed in Section III.

B. Dislocation Hardening and Recovery

The dislocation hardening and the recovery are
modeled by a change in the dislocation density exactly
as proposed by Estrin.[6] The evolution equation of the
dislocation density is�

@q
@t
¼ k1

ffiffiffi
q
p � k2q

� �
_ep ½4�

where the two terms represent a competition between
storage of mobile dislocations and dynamic annihilation
of dislocations. The first term is proportional to the
mean free path of mobile dislocations, which in turn is
proportional to the square root of the dislocation
density, and the second term is proportional to the
dislocation density. While the coefficient k1 is taken to
be constant, k2 depends on both temperature and
viscoplastic strain rate.[6]

In this model, only the ‘‘dynamic part’’ of the
recovery is taken into account. Here we define dynamic
recovery as a microstructural change that occurs only if
the viscoplastic strain rate _ep is nonzero. It dependents
on viscoplastic strain rate and temperature. In the
literature,[6] however, an additional term is often intro-
duced to model the so-called ‘‘static recovery,’’ which is
a thermally-activated recovery process. This term, which
is nonzero even when _ep ¼ 0, represents the only active
mechanism that leads to a decrease in the dislocation
density during heat treatment of a stress-free material.
Static recovery is neglected here, which means that the
model may overpredict the dislocation hardening in,
e.g., the case of straining at low temperature followed by
heating.
A straightforward way to determine k1 and k2 for a

given alloy would be to model given experimental tests
(e.g., tensile tests at different constant values of temper-
ature and strain rate being within the interval of interest
for the use of the model), and then tune the coefficients
of the constitutive model for optimal correspondence
between modeling and experimental results. However,
because k2 depends on both temperature and viscoplas-
tic strain rate, such a procedure would be relatively
complicated, and various relations between k2 and these
two quantities would be possible. To simplify and guide
the fitting procedure, we have therefore imposed the
well-known Zener–Hollomon[16] or Garofalo�s equa-
tion[18] to apply in the saturation stress limit, i.e., when
@q
@t ! 0 where the dislocations are recovered at the same

Fig. 2—Estimate of the strain rate sensitivity and hardening stress at different temperatures. Experimental data are taken from Ref. 15.

�Please note that Estrin[6] writes the evolution equation on a form
obtained by subdividing Eq. [4] by _ep, while the present authors prefer
a ‘‘rate form’’ more in line with most other internal variable formu-
lations.
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rate as they are created. Equation [4] with a zero left side
leads to

k2 ¼
k1ffiffiffiffiffi
q�
p ½5�

where the saturation value
ffiffiffiffiffi
q�
p

is given by the
combination of Eqs. [2] and [3]:

ffiffiffiffiffi
q�
p

¼
r�v T½ ��1 _ep

_e0

� ��1=m
� rss

s

MaGb
½6�

with

r� ¼ a�asinh ZHð Þ1=n
h i

½7�

While Zener–Hollomon is further defined and discussed
subsequently, the factor rss

s refers to the value of rs

where all the precipitates are dissolved (rp = 0). This
material state corresponds to high temperatures at
which experiments for determining the parameters in
the Zener–Hollomon relation are normally carried out.
Moreover, the Zener–Hollomon relation per se repre-
sents useful input to the saturation stress at high
temperatures and strain rates, which complete the
limited experimental data available in most parameter
fitting processes, including the one presented in Section
III of the present article.

The dislocation density at saturation r� is assumed
independent of the precipitate state as its value is based
on the solid solute state. Nevertheless, the correspond-
ing saturation stress r� is dependent on the precipitate
state because the hardening stress in Eq. [2] is the
summation of the dislocation stress r^, the current solid
solution stress rs, and precipitate stress rp, which
is nonzero as soon as precipitation occurs.

According to Miller,[19] the temperature dependence
of steady-state deformation does not exactly follow an
exponential law at the lower temperatures. A similar
observation was made in the present study, and Zener–
Hollomon in Eq. [7] is thus approximated by an
equation similar to, but slightly different from, that in
Reference 19, and that is more easily fitted to our
experimental data

ZH ¼ _ep

A
min exp

Q

RT

� �
; exp

Q

RTc

Tc þ 770 K½ �
Tþ 770 K½ �

� �� 	

½8�

where Tc is a critical temperature fixed at 150 �C (423 K
in Eq. [8]).

C. Precipitation Model

The precipitation model describes the nucleation,
growth, and coarsening of precipitates. The model is
taken from References 10 and 11 and only briefly
summarized here. The process is controlled by the solute
concentration and consequently by the temperature. The
particles are assumed spherical and with uniform
thermodynamic properties. New stable particles with
radius r* nucleate at a rate j given by

j ¼ j0 exp � A0

RT

� �3
1

In C=Ce


 �
 !2

2
4

3
5 exp � Qd

RT

� �
½9�

where Qd is the activation energy for diffusion, and A0

and j0 are numerical parameters. The quantities C and
Ce are the mean concentration and the equilibrium
concentration at the interface, respectively, and C is
calculated by

C ¼ C0 � Cp � C

 �Z 1

0

4

3
pr3udr ½10�

where Ci and Cp are the concentration at the interface
and inside the particle, respectively, and u is the size
distribution function.
Both j and r� are temperature and concentration

dependent. At each temperature, r� is deduced from a
particle growth model stating that the particles will
dissolve or grow depending on the matrix and interface
concentrations according to

dr

dt
¼ C� Ci

Cp � Ci

D

r
½11�

where D is the diffusion coefficient. The parameter r�

corresponds to dr
dt ¼ 0 and thus C ¼ Ci, where Ci is

related to Ce through the Gibbs–Thomson equation

Ci ¼ Ce exp
2cVm
rRT

� �
½12�

where c is the particle-matrix interface energy, and Vm is
the molar volume of the particle. Combining C ¼ Ci and
Eq. [12] leads to

r� ¼ 2cVm
RT

In
C

Ce

� �� 	�1
½13�

Finally for each radius, the evolution of the particle
density Nv is given by

@Nt r; tð Þ
@t

¼ � @

@r
Nv r; tð Þ dr

dt

� 	
þ j ½14�

From the evolution of the distribution of particles size
and density, the strengthening effects are deduced.[13]

The solid solution hardening stress is the addition of the
contributions of each element in solid solution:

rs ¼
X
j

kjC
2=3
j ½15�

where Cj is the concentration of the specific alloying
element in solid solution and kj is the corresponding
scaling factor.
The precipitate hardening stress is calculated from the

particle density Nv, the mean radius �r, and the mean
strength of the particles F:

rp ¼
M

b2
ffiffiffiffi
G
p

ffiffiffiffiffiffiffiffi
Nv�r

b

s
F
3=2 ½16�
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where the particle strength F is related to the particle size
through

F rð Þ ¼
2bGb2

r

rc

� �
when r � rc

2bGb2 when r>rc

8><
>: ½17�

where rc is the critical radius, and b is a numerical
constant.

It should be noted that rs and rp calculated by Eqs.
[15] and [16], respectively, are to be interpreted as room
temperature values in the sense that the precipitate model
(and its parameters) are fitted to room-temperature
experiments only. In the present overall model, these
room-temperature values are then ‘‘rescaled’’ to higher
temperatures by the same factor v(T) in Eq. [3] that also
compensates for the too high dislocation density. The
only input to the precipitate model is the alloy compo-
sition and the temperature history. In the present
study, rs and rp are calculated by means of the Weldsim
software[15] using prescribed temperature histories as
input (Sections III–B and V).

D. Implementation in FE Models

In most FE models, the primary variable is the
velocity (or displacement) from which the total strain
rate tensor _eð Þ is defined. This quantity is subdivided
into an elastic part _eeð Þ, a thermal part _eT


 �
, and a

viscoplastic part _ePð Þ:

_e ¼ _ee þ _eT þ _eP ½18�

where the effective viscoplastic strain rate in Eqs. 3 and
4, _e

p
 �
, equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2_eP : _eP

p
under the assumption that

there are no volume changes associated with the
viscoplastic deformation. The elastic and thermal parts
are related to the stress tensor and temperature by
Hooke�s law and the law of thermal expansion, respec-
tively.

Along with the usual relations between tensors and
effective scalar measures for stress and viscoplastic
strains in isotropic materials, the set of equations in
the present section enables the calculation of the
viscoplastic strain rate considering the total strain rate
and temperature as known input. This general formu-
lation allows the integration of the constitutive equa-
tions for any input evolution in temperatures and total
strain rate tensor, which is the usual situation in most
FE codes as well as in experimental tensile tests.

III. PARAMETER DETERMINATION

The parameters of governing Eqs. [2] through [8] have
to be tuned to the relevant alloy. The same applies to the
‘‘precipitate strength’’ parameters b and rc in Eq. [17],
while the calculation of the nucleation, growth, and
dissolution of the precipitates relies in the present study
entirely on the model (and model parameters) presented
in Reference 11; the modeling Eqs. [9] through [17]
being solved by Weldsim.[15] In the present study, the

parameters are determined by fitting calculated tensile
stress-strain curves at constant temperatures and vary-
ing strain rates to similar experimental curves for an
AA6060 aluminum alloy, reported in Reference 15.

A. The Gleeble Tests of Reference 15

The Gleeble tests in Reference 15 were carried out on
specimens taken from an AA6060 aluminum alloy with
Mg 0.43 wt pct and Si 0.44 wt pct as the main alloying
elements. The tensile testing was carried out at temper-
atures and strain rates in the range 20 �C to 340 �C and
10-4 to 10-2 s-1, respectively. Extruded profiles with a
thickness of 1.8 mm were cut into bone-shaped test
specimens with a straight 30-mm- and 8-mm-wide
central section. The samples were solution heat treated,
water quenched, and artificially aged for 9 hours at
170 �C to reach the peak-aged (T6) condition. The
elongation of a 10-mm section was measured by an
extensometer. The samples were first strained to 6 pct at
a constant temperature. A rapid heating cycle was then
imposed with a peak temperature of 540 �C, and a rapid
cooling to the previous deformation temperature fol-
lowed by additional 8 to 10 pct straining at the same
constant temperature as the previous straining. In both
straining periods, the strain rate was increased by a
factor of 10 from a value of about 10-3 s-1, after a first 2
to 4 pct straining.
Figure 3 shows measured evolutions of temperature

in the specimen center, stress, and accumulated strain in
experiment D at temperature of 340 �C in Reference 15.
The temperature peak at 540 �C implies complete
precipitate dissolution, and thus a completely changed
material state. The analysis of these tensile tests has
therefore been subdivided into two parts: before and
after the temperature peak. In both parts, the initial
value of the dislocation density has been set equal to a
low value, 1012 m-2. This value is assumed to reflect the
dislocation density after the T6 heat treatment prior to
any deformation of the specimen as well as the dislo-
cation density after heating to 540 �C prior to the
second part of the tensile test; the latter heating process
leading to static recovery of the dislocations accumu-
lated during the first straining. Table II summarizes the
experiments and their denomination in subsequent
sections.
In correspondence with the experimental situation,

the total strain rate (not the viscoplastic part of the
strain rate), and a constant temperature are used as
input when the Gleeble tests have been simulated. Also,
a thermal part is added to the strain rate in order to
account for the thermal expansion (during heating) and
contraction (during cooling) of the Gleeble specimen.
Please note that the total strain rate histories have been
smoothed to suppress the experimental oscillations.

B. Parameter Fit to the Gleeble Tests

The parameters and their variation with temperature
have been determined by a stepwise procedure, and
the tuning is based on a simple visual comparison
between the experimental and modeled curves. Treating

526—VOLUME 39A, MARCH 2008 METALLURGICAL AND MATERIALS TRANSACTIONS A



separately and successively the parameters obtained
quite good fit.

The Zener–Hollomon parameters a, n, Q, and A in
Eqs. [7] and [8], were determined first. These relations
are assumed to apply at high temperatures and for a
material in the solid solution state. Experiment D-SSS,
for which the resulting curve is displayed in Figure 4,
fulfills these conditions. The parameters of the Zener–
Hollomon relation were first set equal to values fitted
previously for an AA6060 alloy.� Then a comparison

with experiment D-SSS was made to tune more precisely
their values. It turned out that keeping a, n, and A as
previously along with a slight change in the value of Q
(from 156 to 161 KJ/mol in the present study) leads to a
quite accurate match to the two saturation stresses
observed before and after the strain rate jump in
Figure 4. Please note that there is no physical basis for
this change in Q; it was simply made for obtaining a
better fit to the experimental data. The final values of the
Zener–Hollomon parameters are given in Table I.

As the experiments listed in Table II are limited to
340 �C, a comparison with an additional experiment has

been made to validate the values of the Zener–Hollo-
mon parameters. In this case, the specimen was heated
to 500 �C and then put in tension at different constant
values of the stress; the evolution of the stress and the
strain are plotted in Figure 5. The corresponding strain
rates of the three higher plateaus are also indicated. The
stress levels predicted by Eq. [7] for these strain rates are
compared to the experimental stress levels in Table III.
These modeling results are in acceptable agreement with
the experimental results.
In Reference 11, the precipitation model was tuned

for another alloy, AA6005, and the material strength
was determined by hardness measurements. Due to the
difference in composition between the two alloys as well
as the inaccuracy in relating hardness to yield stress, the
hardening contributions from elements in solid solution
and precipitates have been rescaled in order to obtain a
better fit to the present experiments using an AA6060
alloy

rs þ rp ¼
0:33 rW

s þ rW
p

� �
� 3

0:26
½19�

where W indicates the output from Weldsim. A further
adjustment of the precipitate strengthparameters b and
rc was then carried out. Three different tensile test results
were used for this purpose: A-ini, B-ini and C-ini. In the
first two cases, rs + rp was calculated from the mea-
sured yield stress. At this transition point between elastic
and plastic behavior, we assume that the dislocation
density is still at its initial level q0 and the viscoplastic
strain rate is nearly equal to the total strain rate. Then

rs + rp is equal to r _e
_e0

� ��1=m
� r0

? where r0
? is related

to q0 by Eq. [2]. In experiment C-ini, two saturation
stresses were reached for two different strain rates. After
an initial estimate of the strain rate sensitivity m along
similar lines as those discussed in connection with
Figure 2, the difference between the saturation stress
with the current precipitate state and the saturation
stress for a precipitate-free material given by Eqs. [5]
through [8] was determined. The value of the precipitate
stress was then determined by setting v equal to 1 and

Time (s)

T
em

p
er

at
ur

e
(°

C
)

0 50 100 150 200
0

100

200

300

400

500

600

Experiment D (340°C)

Time (s)

S
tr

es
s

(M
P

a)

S
tr

ai
n

0 50 100 150 200
0

10

20

30

40

50

60

70

80

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Stress
Strain

Experiment D (340°C)

(a)

(b)

Fig. 3—Histories of (a) temperature and (b) stress and strain from
the Gleeble experiments.

Strain

S
tr

es
s

(M
P

a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

* from Eq. 7-8 with Q=161kJ/mol

* from Eq. 7-8 with Q=156kJ/mol

Experiment D-SSS (340°C)

σ
σ

Fig. 4—Fitting of the saturation stress predicted with the Zener–
Hollomon relation to experiment D-SSS.

�Unpublished research.
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the values of the precipitate strength parameters are
given in Table I.

The determination of k1 is almost entirely based upon
experiment A-ini. The reason for this choice is twofold;
first, there is no strain rate sensitivity at room tem-
perature; and second, rp does not change during
room-temperature testing after a T6-heat treatment.
Furthermore, we have observed that this constant room-
temperature value of k1 (Table I) gives a satisfactory
fit to the experimental curves also at the higher

temperatures, which is demonstrated in the final sim-
ulations of the tensile tests displayed in Figure 8.
A similar conclusion was given by Estrin,[6] where the
coefficient k1 is related to the mean free path of the
dislocations. Please note that once k1 has been deter-
mined, k2 (being temperature dependent) is given by
Eqs. [5] through [8].
Experimental results from A-ini, B-ini, C-ini, and

D-SSS were used for determining the parameters m and
v. First, at each temperature separate fittings provided

Table I. Nomenclature

Symbols Variables Unit

r stress MPa
r^ dislocation stress MPa
rs solute contribution to the precipitate stress MPa
rp precipitate contribution to the precipitate stress MPa
r̂ hardening stress MPa
r* saturation stress MPa
_e total strain rate s-1

_ep viscoplastic strain rate s-1

_ee elastic strain rate s-1

_eT thermal strain rate s-1

q dislocation density m-2

q* saturation dislocation density m-2

Nv precipitate density #/m3

F mean obstacle strength MPa/m
T temperature K
C mean solute concentration wt pct
Ce equilibrium solute concentration wt pct
Cp particle solute concentration wt pct
Ci interface solute concentration wt pct
aT thermal dilatation coefficient K-1

r particle radius M
ZH Zener–Hollomon variable —

Parameters Value

M average Taylor factor 3.06
E Young�s modulus 70,000 MPa (room temperature)
G shear modulus 27,000 MPa (room temperature)
b burger�s vector 2.84Æ10-10 m
a numerical constant 0.3
_e0 reference strain rate 60,000 s-1

m strain rate sensitivity temperature dependency relation (Table IV)
v hardening factor temperature dependency relation (Table IV)
q0 initial dislocation density 1012 m-2

k1 dislocation storage coefficient 2.7Æ108 m-1

k2 dynamic recovery coefficient from Zener–Hollomon relation (Eq. [5])
D solute diffusivity 2.2Æ10-4 m2/s
j0 reference nucleation rate 3.07Æ1036 #/m3/s
A0 energy barrier for nucleation 18 kJ/mol
Qd diffusion activation energy 130 kJ/mol
b numerical constant 0.53
rc critical radius 5.7Æ10-9 m
c particle-matrix interface energy 0.26 J/m2

Vm molar volume of the particle 7.62Æ10-5 m3/mol
Tc critical temperature 423 K
a reference stress in ZH relation 30 MPa
Q activation energy in ZH relation 161 kJ/mol
A reference strain rate in ZH relation 2.35Æ1010 s-1

n exponent in ZH relation 4.1

# represents number of particle per unit volume.
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values for m and v, and the temperature dependency
relation for m was determined. Applying this relation, a
second set of values for v was obtained by a new fitting
to the selected experiments, and a temperature depen-
dency relation for v was deduced. These two steps were
iterated until a satisfactory fit to the selected experi-
ments was achieved using simple relations for m and v
temperature dependencies. Moreover, the evolution of
the saturation dislocation density at higher temperatures
must be realistic. Therefore, the extrapolation of the
evolution of v at higher temperatures was made by
assuming a smooth evolution of the dislocation density
at saturation as shown in Figure 6. With this additional
assumption, the final relations were obtained. They are
given in Table IV and plotted in Figure 7. Please note
that the extrapolation of these relations to very small
strain rates at high temperatures leads to small negative
dislocation densities. A minimum dislocation density
has therefore been defined, with the consequence that
the saturation stress is overestimated in this critical case.

As far as the strain rate sensitivity m is concerned, this
parameter has already been initially estimated by
examining the stress jump caused by a jump in total
strain rate. It turns out that the second fitting presented
in the previous paragraph only changes the m values at
the different temperatures slightly compared to those
values obtained by the initial estimate.
As the parameter determination is completed, the

simulation results are compared with the experimental
stress-strain curves in Figure 8. It is seen that the
parameter values and temperature dependency relations
obtained by the fitting procedure leads to a satisfactory
fit to the experimental results.

IV. DISCUSSION

A. A Simplified Modeling Approach

Age-hardened aluminum alloys have a microstructure
that changes during heat treatment. In solid solution,
the alloying elements are completely dissolved and the
material behaves like a single-phase material in which
the major microstructure feature is the grain boundaries.
During aging, the alloying elements cluster and start
forming small hardening precipitates, which are initially
weak and coherent and thus shearable by dislocations.
Further aging leads to coarsening of the microstructure.
Larger incoherent particles are formed near the peak
hardness that are not shearable by dislocations.
A change in the dislocation strengthening mechanism
from particle shearing to bypassing via Orowan looping

Table II. Summary of the Gleeble Experiments[15]

Name Temperature Initial Material State

A-ini 20 �C T6 heat treatment
A-SSS 20 �C solute solution
B-ini 150 �C T6 heat treatment
B-SSS 150 �C solute solution
C-ini 250 �C T6 heat treatment
C-SSS 250 �C solute solution
D-ini 340 �C T6 heat treatment
D-SSS 340 �C solute solution
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Fig. 6—Evolution of the dislocation stress at saturation at different
strain rates as a function of temperature.

Table III. Comparison of Zener–Hollomon Predictions with
the Experiment Conducted at 500 �C

Strain Rate Measured Stress Predicted Stress

6.25Æ10-4 s-1 6.3 MPa 6.5 MPa
1.7Æ10-3 s-1 7.5 MPa 8.3 MPa
4.26Æ10-3 s-1 9.0 MPa 10.3 MPa

Table IV. Temperature Dependency Relations for m and v

m ¼ 320 exp �0:0121 � T� 298ð Þ½ � þ 4

v ¼ 4:6 � tanh T�614
51


 �
þ 1

� �
þ 1 if T £ 623 K

v = 0.0313 T–13.1 if T > 623 K
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takes place as the coarsening process proceeds. In
addition, precipitate-free zones will form adjacent to
the grain boundaries because of nucleation and growth
of coarse precipitates at the grain boundaries. The
microstructure thus becomes inhomogeneous and quite
complex when the material is age hardened.

When an age-hardened aluminum alloy is subjected to
plastic deformation at elevated temperatures, coarsening
or dissolution of the hardening precipitates will occur. At
the same time, the dislocation density increases rapidly
through multiplication (e.g., by activation of Frank–
Read sources), which contributes to the work hardening
due to dislocation-dislocation and particle-dislocation
interactions. The material will respond to this deforma-
tion by forming a cell structure in which the dislocations
accumulate partly in the cell walls and partly within the
cell interiors. A full subgrain microstructure develops at
large deformations, consisting of low-angle grains with a
well-defined misorientation. In addition, localization of
deformation to the precipitate-free zones occurs that in
turn leads to extensive strain accumulation in the soft
regions adjacent to the grain boundaries.

It would obviously be a considerable task to model
the evolution of the deformation microstructure during

plastic deformation at elevated temperatures in its
entirety and then, on the basis of dislocation mechanics,
develop constitutive equations for the resulting stress-
strain behavior. The model presented in this study is
therefore based on a quite pragmatic and idealized
work-hardening model for age-hardened aluminum
alloys by which the flow stress can be calculated as a
function of temperature and viscoplastic strain rate that
changes with time during the thermomechanical oper-
ation. As indicated in Figure 9, the two main mecha-
nisms being accounted for in the work-hardening model
are the dislocation-dislocation interactions and the
particle-dislocation interactions; the latter contribution
includes both shearing and bypassing of the particles by
the dislocations. These two hardening contributions are
modeled by means of internal variables representing the
total dislocation density, q, and the intrinsic resistance
F of the hardening precipitates to dislocation motion,
respectively. Updated values for q and F are then
obtained by solving a set of nonlinear ordinary differ-
ential equations for the evolution of the relevant
microstructural parameters with time, considering the
time evolutions of temperature and strain rate as input.

B. Some Specific Limitations in the Present Model

Four of the Gleeble tests presented in Reference 15
(D-ini, A-SSS, B-SSS, and C-SSS in Table II) were not
applied for the parameter fit, and comparing results
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Fig. 9—Schematic representation of the proposed work-hardening
model for age-hardened aluminum alloys: (a) dislocation-dislocation
interactions and (b) particle-dislocation interactions.
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predicted by the present model and these four tests
reveals some limitations in the model. These are
associated with the following phenomena to be dis-
cussed in the subsequent paragraphs: overestimation
of the precipitate stress and precipitate-dislocation
interaction.

The D-ini experimental curve is shown in Figure 10
along with the results from a modeling of this test. The
modeling of experiment D-ini resulted in too high stress
values. It is, however, reasonable to believe that the
particular experimental situation for experiment D-ini is
critical for the precipitate model due to the specific
thermomechanical history. This history implies that the
large precipitates grow at the expense of the small
precipitates during heating that significantly changes the
material from an initial T6 temper to a soft material,
followed by deformation during which the dislocation
hardening develops significantly. These are conditions
for which the applied precipitate model has not been
tuned.[10,11] Nevertheless, an acceptable fit to the exper-
imental stress-strain curve can be obtained simply by
subtracting 23 MPa from the value of rp, in order to
account for the loss of precipitation hardening induced
by the heating (Figure 10).

Another limitation of the precipitate model is that
the incubation time for precipitate nucleation[10,11] is
neglected. Therefore, it is reasonable to believe that the
precipitate stress is overestimated during the cooling
stage after the temperature peak, as indicated in
Figure 11(a). For example, a relatively high degree of
nucleation during cooling in experiment A-SSS is pre-
dicted by the model, while none is expected to occur for
the specific AA6060 alloy.[20] As shown in Figure 11(b),
the predicted yield stress is thus higher than the measured
value. Similar results are obtained when experiment
B-SSS is simulated, while no significant strengthening is
expected during this test (around 1 minute at 150 �C),
even with some strain-induced precipitation. Finally, for
experiment C-SSS, the assumption of zero incubation
time leads to an overestimation of the precipitate
hardening during all the deformation.

The modeled curve for experiment A-SSS shown in
Figure 11(b) also reveals a discrepancy in the work-
hardening rate, which is not related to the precipitate
model simply because there is no significant change in
the precipitate state at room temperature. In other
words, the parameter value for k1 (which controls the
stress curve slope, Eq. [4]) determined on the basis of
experiment A-ini only, does not give a very accurate fit
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when experiment A-SSS is modeled. This difference in
slope can be explained by the fact that the interactions
between the dislocations and the precipitates depend on
the precipitate size. Cheng et al.[8] have adopted the
superposition law suggested by Kocks in which the solid
solution hardening is included and the precipitate and
dislocation hardening contributions are added accord-
ing to the relation

r̂ ¼ rs þ rm
? þ rm

p

� �1=m
½20�

where, rs, rp, and r^ denote the solid solution, the
precipitate, and the dislocation hardening contributions,
respectively, exactly as seen previously in the present
article. The exponent m can vary between 1 and 2; m = 1
applies in the case of high density of weak barriers and
low density of strong barriers as in underaged temper.
When the barriers are identical, m = 2 as in the
overaged temper. Replacing Eq. [2] with Eq. [20], a
simultaneous fit of kl and v using both experiments A-ini
and A-SSS has thus been carried out, assuming a
constant ‘‘precipitate-free’’ state (rp = 0) for experi-
ment A-SSS. The resulting parameter values are
m = 1.15 and 1 for A-ini and A-SSS, respectively, and
k1 = 5.8 Æ 108 m-1; the stress-strain curves are shown in
Figure 11(c). It is seen that the elaborated approach
quite accurately fits the experiments. While the harden-
ing Eq. [2] suggested by Estrin[6] has been applied in the
present work for the sake of simplicity, the results based
on using Eq. [20] indicate the need for a more elaborate
model. The approach in Reference 8 does, however,
require additional information about the precipitates
(shearable/nonshearable), and in addition, Cheng
et al.[8] indicate that the dislocation density evolution
equation (Eq. [4]) must also take into account the two
kinds of particles.

V. APPLICATION

This last section is devoted to elucidating the appli-
cability of the constitutive model in FE simulations of
hot forming. The modeling equations are solved using
an evolution of temperature and total strain rate that
reflects some aspects of hot forming as input. The
resulting evolution in flow stress during the viscoplastic
deformation has then been discussed in the light of the
corresponding evolutions in dislocation hardening
stress, r^ and the sum of solid solution and precipitate
hardening stresses, rs + rp. Also, the effects on the flow
stress of temperature level and strain rate at different
temperatures have been discussed, and the study dem-
onstrates the ability of the model to handle quite
complex evolutions in temperature and strain rate.

The applied temperature and total strain rate evolu-
tions input are shown in Figure 12(a). A temperature
cycle from room temperature to room temperature is
imposed with a quite fast initial heating, which reflects
some main aspects of hot forming operation. The cycle
includes a period at 400 �C, during which the smallest
precipitates dissolve and the largest grow, followed by a

period at 250 �C, during which all particles grow
further. Finally, there is a period of cooling down to
room temperature during which the amount of precip-
itates remains constant. All these aspects are reflected in
the calculated evolution of rs + rp in Figure 12(b),
which results by solving Eqs. [9] through [17] using the
temperature evolution in Figure 12(a) as input. Fur-
thermore, it is seen in Figure 12(a) that different strain
and strain rate jumps are imposed during various parts
of the temperature history. The calculated evolution
in effective viscoplastic strain rate is also shown in
Figure 12(a), which as expected is very close to that for
the total effective strain rate when the material is outside
the typical elastic response regimes. In addition to the
evolution of rs + rp the evolutions of the flow stress
r and dislocation stress r^ are also displayed in
Figure 12(b); the latter quantity being proportional to
the square root of the dislocation density by Eq. [2].
Although reflecting some main aspects of hot form-

ing, the input has been chosen such that the modeling
results should not be affected too much by the limita-
tions in the present version of the model discussed in the
previous section. More specifically, the input represents
a situation in which there is not any strong precipitate
dissolution during deformation, there is no cooling to
room temperature after a temperature peak, there is no
deformation at low temperatures in the precipitate-free
state, the initial dislocation density is not too high, and
the strain rate at high temperatures is not too low.
Furthermore, the total strain rate was chosen such that
the material remains in tensile condition even with
thermal expansion.
It is seen in Figure 12(b) that there is an increase in

the dislocation stress (and thus the dislocation density)
during the first deformation followed by an approxi-
mately constant value when the strain rate drops. There
is then a drop in dislocation stress due to dynamic
recovery associated with the straining during the tem-
perature increase between 5 and 7 seconds. Due to the
low strain rate sensitivity at 200 �C, the jumps in strain
rate during this period of constant temperature and
precipitate stress only lead to changes in the work-
hardening rate. On the other hand, the strain rate jump
is much more significant at 400 �C, at which the stress is
close to the saturation value given by Eqs. [5] through
[8]. Around 10 seconds, there is again a decrease in
dislocation stress caused by dynamic recovery. During
the heating from 200 �C to 400 �C, there are two sudden
decreases in flow stress, first due to the decrease in strain
rate after 4.5 seconds, and then due to the decrease in
precipitation stress from 6 seconds. When the constant
temperature of 250 �C has been reached (around 15 sec-
onds), the flow stress increases due to the increase in
precipitation stress, even though the effective viscoplas-
tic strain rate, and thus the increase in dislocation stress,
is very small. There are significant jumps in flow stress at
19 and 29 seconds due to the strain rate increase and
decrease at these two points in time, and between 19 and
29 seconds there is a significant flow stress increases
because of the combined effects of dislocation and
precipitation hardening. The final increase in flow stress
is due to the decreasing temperature from 30 seconds.
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The dislocation stress is nearly constant in this last
period due to the low strain rate; also the precipitation
stress is constant.

Finally, it is mentioned that the present constitutive
model was recently applied in a case study[21] directed
toward local hot forming. Modeling results were com-
pared to those obtained when the internal variable
model was interchanged by the simpler ‘‘classical’’
approach based on a set of hardening curves to fit
tensile data. The case study clearly revealed that the
evolution of the dislocation density and the precipitates
can have a significant effect upon the flow stress during
local hot forming operations.

VI. CONCLUSIONS

A new internal variable constitutive model for the use
in FE simulation of local hot forming of 6xxx aluminum
alloys has been presented. The model relates the flow
stress to the temperature, total strain rate, and internal
variables, which represent the dislocation density and
the contributions to the hardening stress from elements

in solid solution and precipitates. The model is able to
reproduce some main features appearing in local hot
forming. Complementary experiments are, however,
required for assessing the accuracy of the constitutive
model for complex temperature and strain rate histories.
It is believed that further development of the model
should include a more accurate description of the
interactions between the dislocations and the precipi-
tates, e.g., by differentiating shearable and nonshearable
particles, and modifying the calculation of the disloca-
tion accumulation and the summation of the different
contributions to the hardening stress accordingly. Also
the effect of static recovery should be quantified and
incorporated in the constitutive model.
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