Skip to main content
Log in

Strength and conductivity of Cu-9Fe-1.2X (X = Ag or Cr) filamentary microcomposite wires

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, strength and electrical conductivity of Cu-9Fe-1.2X (X = Ag or Cr) microcomposite wires obtained by cold drawing combined with intermediate heat treatments have been investigated. During cold working, the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments. The addition of Ag was found to reduce the filament spacings at the given draw ratio throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe-Ag microcomposites were higher than those of Cu-Fe-Cr microcomposites, suggesting the refinement of the filaments is more effective than the strengthening of the filaments in strengthening the microcomposites. The strength of Cu-Fe-Xi microcomposites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces. The good mechanical and electrical properties in Cu-Fe-Ag wires may be associated with the more uniform distribution of the filaments than in Cu-Fe-Cr wires. The increase of the conductivity in Cu-Fe-Ag and Cu-Fe-Cr after intermediate heat treatments is attributed to the precipitation of Fe, Cr, or Ag particles, which dissolved during heavy deformation processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Spitzig, A.R. Pelton, and F.C. Laabs: Acta Metall., 1987, vol. 35, pp. 2427–42.

    Article  CAS  Google Scholar 

  2. C. Biselli and D.G. Morris: Acta Mater., 1996, vol. 44, pp. 493–504.

    Article  Google Scholar 

  3. P.D. Funkenbusch and T.H. Courtney: Acta Metall., 1985, vol. 33, pp. 913–21.

    Article  CAS  Google Scholar 

  4. J.D. Verhoeven, L.S. Chumbley, F.C. Laabs, and W.A. Spitzig: Acta Metall., 1991, vol. 39, pp. 2825–34.

    Article  CAS  Google Scholar 

  5. C.L. Trybus and W.A. Spitzig: Acta Metall., 1989, vol. 37, pp. 1971–81.

    Article  CAS  Google Scholar 

  6. S.I. Hong and M.A. Hill: Acta Mater., 1998, vol. 46, pp. 4111–22.

    Article  CAS  Google Scholar 

  7. S.I. Hong: Scripta Mater., 1998, vol. 39, pp. 1685–91.

    Article  CAS  Google Scholar 

  8. J.D. Verhoeven, W.A. Spitzig, L.L. Jones, H.L. Downing, C.L. Trybus, E.D. Gibson, L.S. Chumbly, L.S. Fritzemeier, and G.D. Schnittgrund: J. Mater. Eng., 1990, vol. 12, pp. 127–39.

    CAS  Google Scholar 

  9. C. Biselli and D.G. Morris: Acta Mater., 1994, vol. 42, pp. 163–76.

    Article  CAS  Google Scholar 

  10. Y.S. Go and W.A. Spitzig: J. Mater. Sci., 1991, vol. 26, pp. 163–71.

    Article  CAS  Google Scholar 

  11. J.D. Verhoeven, S.C. Chueh, and E.D. Gibson: J. Mater. Sci., 1989, vol. 24, pp. 1748–52.

    Article  CAS  Google Scholar 

  12. W.A. Spitzig, L.S. Chumbley, J.D. Verhoeven, Y.S. Go, and H.L. Downing: J. Mater. Sci., 1992, vol. 27, pp. 2005–11.

    Article  CAS  Google Scholar 

  13. W. Hodge, R.A. Happe, and B.W. Gonser: Wire Wire Prod., 1951, vol. 26, pp. 1033–38.

    CAS  Google Scholar 

  14. L.J. Swartzendruber: in Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, R.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 1, p. 35.

    Google Scholar 

  15. M.S. Lim, J.S. Song, and S.I. Hong: J. Mater. Sci., 2000, vol. 35, pp. 4557–61.

    Article  CAS  Google Scholar 

  16. W.A. Spitzig: Acta Metall. Mater., 1991, vol. 39, pp. 1085–90.

    Article  CAS  Google Scholar 

  17. W.A. Spitzig: Scripta Metall., 1989, vol. 23, pp. 1177–83.

    Article  CAS  Google Scholar 

  18. P.D. Courtney and T.H. Courtney: Scripta Metall. Mater., 1990, vol. 24, pp. 1183–89.

    Article  Google Scholar 

  19. S.I. Hong and M.A. Hill: Scripta Mater., 2000, vol. 42, pp. 737–42.

    Article  CAS  Google Scholar 

  20. J.D. Verhoeven, H.L. Downing, L.S. Chumbly, and E.D. Gibson: J. Appl. Phys., 1989, vol. 65, pp. 1293–1301.

    Article  CAS  Google Scholar 

  21. G.A. Jerman, I.E. Anderson, and J.D. Verhoeven: Metall. Trans. A, 1993, vol. 24A, pp. 35–42.

    CAS  Google Scholar 

  22. A.R. Pelton, F.C. Laabs, W.A. Spitzig, and C.C. Cheng: Ultramicroscopy, 1987, vol. 22, pp. 251–66.

    Article  CAS  Google Scholar 

  23. S.I. Hong and M.A. Hill: Mater. Sci. Eng., 2000, vol. 256, pp. 321–29.

    Google Scholar 

  24. S. Horibe, J.K. Lee, and C. Laird: Mater. Sci. Eng., 1984, vol. 63, pp. 257–64.

    Article  CAS  Google Scholar 

  25. J. Bevk, J.P. Harbison, and J.L. Bell: J. Appl. Phys., 1978, vol. 49, pp. 6031–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.I., Song, J.S. Strength and conductivity of Cu-9Fe-1.2X (X = Ag or Cr) filamentary microcomposite wires. Metall Mater Trans A 32, 985–991 (2001). https://doi.org/10.1007/s11661-001-0356-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0356-7

Keywords

Navigation