Skip to main content

Advertisement

Log in

Olfactory Three-Needle Electroacupuncture Improved Synaptic Plasticity and Gut Microbiota of SAMP8 Mice by Stimulating Olfactory Nerve

  • Acupuncture Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects and mechanisms of olfactory three-needle (OTN) electroacupuncture (EA) stimulation of the olfactory system on cognitive dysfunction, synaptic plasticity, and the gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice.

Methods

Thirty-six SAMP8 mice were randomly divided into the SAMP8 (P8), SAMP8+OTN (P8-OT), and SAMP8+nerve transection+OTN (P8-N-OT) groups according to a random number table (n=12 per group), and 12 accelerated senescence-resistant (SAMR1) mice were used as the control (R1) group. EA was performed at the Yintang (GV 29) and bilateral Yingxiang (LI 20) acupoints of SAMP8 mice for 4 weeks. The Morris water maze test, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, Nissl staining, Golgi staining, Western blot, and 16S rRNA sequencing were performed, respectively.

Results

Compared with the P8 group, OTN improved the cognitive behavior of SAMP8 mice, inhibited neuronal apoptosis, increased neuronal activity, and attenuated hippocampal synaptic dysfunction (P<0.05 or P<0.01). Moreover, the expression levels of synaptic plasticity-related proteins N-methyl-D-aspartate receptor 1 (NMDAR1), NMDAR2B, synaptophysin (SYN), and postsynaptic density protein-95 (PSD95) in hippocampus were increased by OTN treatment (P<0.05 or P<0.01). Furthermore, OTN greatly enhanced the brain-derived neurotrophic factor (BDNF)/cAMP-response element binding (CREB) signaling and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling compared with the P8 group (P<0.05 or P<0.01). However, the neuroprotective effect of OTN was attenuated by olfactory nerve truncation. Compared with the P8 group, OTN had a very limited effect on the fecal microbial structure and composition of SAMP8 mice, while specifically increased the genera Oscillospira and Sutterella (P<0.05). Interestingly, the P8-N-OT group showed an abnormal fecal microbiota with higher microbial α-diversity, Firmicutes/Bacteroidetes ratio and pathogenic bacteria (P<0.05 or P<0.01).

Conclusions

OTN improved cognitive deficits and hippocampal synaptic plasticity by stimulating the olfactory nerve and activating the BDNF/CREB and PI3K/AKT/mTOR signaling pathways. Although the gut microbiota was not the main therapeutic target of OTN for Alzheimer’s disease, the olfactory nerve was essential to maintain the homeostasis of gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quintas-Neves M, Teylan MA, Besser L, et al. Magnetic resonance imaging brain atrophy assessment in primary age-related tauopathy (PART). Acta Neuropathol Commun 2019;7:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Y, Raichle ME, Wen J, et al. In vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer disease with magnetic resonance imaging. Neuroimage 2017;148:296–304.

    Article  PubMed  Google Scholar 

  3. Jung HY, Kim W, Hahn KR, et al. Effects of pyridoxine deficiency on hippocampal function and its possible association with V-type proton ATPase subunit B2 and heat shock cognate protein 70. Cells 2020;9:1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu B, Sun A, He Y, et al. Loss of thin spines and small synapses contributes to defective hippocampal function in aged mice. Neurobiol Aging 2018;71:91–104.

    Article  CAS  PubMed  Google Scholar 

  5. Chen LL, Wu ML, Zhu F, et al. Neural progenitor cells Rptor ablation impairs development but benefits to seizure-induced behavioral abnormalities. CNS Neurosci Ther 2016;22:1000–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hernandez-Hernandez EM, Caporal Hernandez K, Vázquez-Roque RA, et al. The neuropeptide-12 (N-PEP-12) improves recognition memory and neuronal plasticity of the limbic system in old rats. Synapse 2018;72:e22036.

    Article  PubMed  Google Scholar 

  7. Sun YX, Jiang XJ, Lu B, et al. Roles of gut microbiota in pathogenesis of Alzheimer’s disease and therapeutic effects of chinese medicine. Chin J Integr Med 2022;28:1048–1056.

    Article  PubMed  Google Scholar 

  8. Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res 2016;41:2819–2835.

    Article  CAS  PubMed  Google Scholar 

  9. Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 2019;25:48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Son G, Jahanshahi A, Yoo SJ, et al. Olfactory neuropathology in Alzheimer’s disease: a sign of ongoing neurodegeneration. BMB Rep 2021;54:295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao ZG, Hua F, Zhang HZ, et al. Olfactory dysfunction in the APP/PS1 transgenic mouse model of Alzheimer’s disease: morphological evaluations from the nose to the brain. Neuropathology 2017;37:485–494.

    Article  CAS  PubMed  Google Scholar 

  12. Dan X, Wechter N, Gray S, et al. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 2021;70:101416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woodward MR, Hafeez MU, Qi Q, et al. Odorant item specific olfactory identification deficit may differentiate Alzheimer disease from aging. Am J Geriatr Psychiatry 2018;26:835–846.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McIntyre JC, Thiebaud N, McGann JP, et al. Neuromodulation in chemosensory pathways. Chem Senses 2017;42:375–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong W, Yang W, Li F, et al. Electroacupuncture improves synaptic function in SAMP8 mice probably via inhibition of the AMPK/eEF2K/eEF2 signaling pathway. Evid Based Complement Alternat Med 2019;2019:8260815.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding N, Jiang J, Xu A, et al. Manual acupuncture regulates behavior and cerebral blood flow in the SAMP8 mouse model of Alzheimer’s disease. Front Neurosci 2019;13:37.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Wang Q, Ren B, et al. “Olfactory three-needle” enhances spatial learning and memory ability in SAMP8 mice. Behav Neurol 2020;2020:2893289.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Niu W, Yang X, et al. Effects of combined acupuncture and eugenol on learning-memory ability and antioxidation system of hippocampus in Alzheimer disease rats via olfactory system stimulation. J Tradit Chin Med 2013;33:399–402.

    Article  PubMed  Google Scholar 

  19. Kobayashi M, Tamari K, Al Salihi MO, et al. Anti-high mobility group box 1 antibody suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury. J Neuroinflammation 2018;15:124.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bu Y, Li WS, Lin J, et al. Electroacupuncture attenuates immune-inflammatory response in hippocampus of rats with vascular dementia by inhibiting TLR4/MyD88 signaling pathway. Chin J Integr Med 2022;28:153–161.

    Article  CAS  PubMed  Google Scholar 

  21. Peng L, Bestard-Lorigados I, Song W. The synapse as a treatment avenue for Alzheimer’s Disease. Mol Psychiatry 2022;27:2940–2949.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng X, Lin W, Jiang Y, et al. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy 2021;17:3833–3847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Wang Q, Luo D, et al. Electroacupuncture improves blood-brain barrier and hippocampal neuroinflammation in SAMP8 mice by inhibiting HMGB1/TLR4 and RAGE/NADPH signaling pathways. Chin J Integr Med 2023;29:448–458.

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Li S, Shen L, et al. Impairment of dendrodendritic inhibition in the olfactory bulb of APP/PS1 mice. Front Aging Neurosci 2019;11:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lam V, Takechi R, Albrecht MA, et al. Longitudinal performance of senescence accelerated mouse prone-strain 8 (SAMP8) mice in an olfactory-visual water maze challenge. Front Behav Neurosci 2018;12:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ueno M, Chiba Y, Matsumoto K, et al. Blood-brain barrier damage in vascular dementia. Neuropathology 2016;36:115–124.

    Article  CAS  PubMed  Google Scholar 

  27. Devanand DP, Lee S, Manly J, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. Neurology 2015;84:182–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan L, Jin Y, Pan J, et al. 7,8-Dihydroxycoumarin alleviates synaptic loss by activated PI3K-Akt-CREB-BDNF signaling in Alzheimer’s disease model mice. J Agric Food Chem 2022;70:7130–7138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin SW, Wang Y, Meng YL, et al. Effects of mild intrauterine hypoperfusion in the second trimester on memory and learning function in rat offspring. Neural Regen Res 2020;15:2082–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Lei M, Wen Q, et al. Dopamine receptor D2 regulates GLUA1-containing AMPA receptor trafficking and central sensitization through the PI3K signaling pathway in a male rat model of chronic migraine. J Headache Pain 2022;23:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang L, Ung K, Garcia I, et al. Task learning promotes plasticity of interneuron connectivity maps in the olfactory bulb. J Neurosci 2016;36:8856–8871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao ZH, Yao XL, Zhang SF, et al. Tripchlorolide may improve spatial cognition dysfunction and synaptic plasticity after chronic cerebral hypoperfusion. Neural Plast 2019;2019:2158285.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Caffino L, Messa G, Fumagalli F. A single cocaine administration alters dendritic spine morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex of adolescent rats. Neuropharmacology 2018;140:209–216.

    Article  CAS  PubMed  Google Scholar 

  34. Xia WG, Zheng CJ, Zhang X, et al. Effects of “nourishing liver and kidney” acupuncture therapy on expression of brain derived neurotrophic factor and synaptophysin after cerebral ischemia reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci 2017;37:271–278.

    Article  CAS  PubMed  Google Scholar 

  35. Lin H, Jacobi AA, Anderson SA, et al. D-Serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability. Front Cell Neurosci 2016;10:34.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang D, Li B, Wu Y, et al. The effects of maternal atrazine exposure and swimming training on spatial learning memory and hippocampal morphology in offspring male rats via PSD95/NR2B signaling pathway. Cell Mol Neurobiol 2019;39:1003–1015.

    Article  PubMed  Google Scholar 

  37. Oh JH, Nam TJ. Hydrophilic glycoproteins of an edible green alga capsosiphon fulvescens prevent aging-induced spatial memory impairment by suppressing GSK-3 ß -mediated er stress in dorsal hippocampus. Mar Drugs 2019;17:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caracciolo L, Marosi M, Mazzitelli J, et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun 2018;9:2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lisman J, Cooper K, Sehgal M, et al. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nature Neuroscience 2018;21:309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh AK, Kashyap MP, Tripathi VK, et al. Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-beta-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol 2017;54:5815–5828.

    Article  CAS  PubMed  Google Scholar 

  41. Salami M, Soheili M. The microbiota-gut-hippocampus axis. Front Neurosci 2022;16:1065995.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hao X, Ding N, Zhang Y, et al. Benign regulation of the gut microbiota: the possible mechanism through which the beneficial effects of manual acupuncture on cognitive ability and intestinal mucosal barrier function occur in APP/PS1 mice. Front Neurosci 2022;16:960026.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Govindarajulu M, Pinky PD, Steinke I, et al. Gut metabolite TMAO induces synaptic plasticity deficits by promoting endoplasmic reticulum stress. Front Mol Neurosci 2020;13:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Amato A, Di Cesare Mannelli L, Lucarini E, et al. Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome 2020;8:140.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coretti L, Cristiano C, Florio E, et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci Rep 2017;7:45356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kratsman N, Getselter D, Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 2016;102:136–145.

    Article  CAS  PubMed  Google Scholar 

  47. Wang M, Dong LN, Zhang F, et al. Correlation analysis of gut flora and expression of brain-derived neurotrophic factor and tight junction protein ZO-1 in patients with functional gastrointestinal diseases. China Med (Chin) 2018;13:1038–1042.

    Google Scholar 

  48. Danilova N, Abdulkhakov S, Grigoryeva T, et al. The role of gut microbiota in the formation of steroid resistance and dependence in patients with ulcerative colitis and Crohn’s disease. J Crohns Colitis 2018;12(supplement_1):S555–S556.

    Article  Google Scholar 

  49. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 2017;106:171–181.

    Article  PubMed  Google Scholar 

  50. Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017;49:60–68.

    Article  CAS  PubMed  Google Scholar 

  51. Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 2017;17:94.

    Article  PubMed  Google Scholar 

  52. Hoffman JD, Parikh I, Green SJ, et al. Age drives distortion of brain metabolic, vascular and cognitive functions, and the gut microbiome. Front Aging Neurosci 2017;9:298.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wang Y and Liu SY designed the experiments. Wang Y, Zheng AN, Yang H, and Wang Q performed the experiments. Dai B and Wang JJ analyzed the data. Wan YT and Liu ZB contributed to the reagents and materials. Wang Y wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Si-yang Liu.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Supported by the National Natural Science Foundation of China (No. 82074552), the Shaanxi Science and Technology Department Project (No. 2018JM7041), and Shaanxi Province TCM “Double Chain Integration” Young and Middle-Aged Scientific Research Innovation Team Construction Project (No. 2022-SLRH-LJ-012)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zheng, An., Yang, H. et al. Olfactory Three-Needle Electroacupuncture Improved Synaptic Plasticity and Gut Microbiota of SAMP8 Mice by Stimulating Olfactory Nerve. Chin. J. Integr. Med. (2023). https://doi.org/10.1007/s11655-023-3614-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11655-023-3614-3

Keywords

Navigation