Skip to main content

Advertisement

Log in

Curcumin Inhibits Proliferation of Renal Cell Carcinoma in vitro and in vivo by Regulating miR-148/ADAMTS18 through Suppressing Autophagy

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the effect of curcumin on the proliferation of renal cell carcinoma and analyze its regulation mechanism.

Methods

In RCC cell lines of A498 and 786-O, the effects of curcumin (2.5, 5, 10 µ mo/L) on the proliferation were analyzed by Annexin V+PI staining. Besides, A498 was inoculated into nude mice to establish tumorigenic models, and the model mice were treated with different concentrations of curcumin (100, 200, and 400 mg/kg), once daily for 30 days. Then the tumor diameter was measured, the tumor cells were observed by hematoxylin-eosin staining, and the protein expressions of miR-148 and ADAMTS18 were detected by immunohistochemistry. In vitro, after transfection of miR-148 mimics, miR-148 inhibitor or si-ADAMTS18 in cell lines, the expression of ADAMTS18 was examined by Western blotting and the cell survival rate was analyzed using MTT. Subsequently, Western blot analysis was again used to examine the autophagy phenomenon by measuring the relative expression level of LC3-II/LC3-I; autophagy-associated genes, including those of Beclin-1 and ATG5, were also examined when miR-148 was silenced in both cell lines with curcumin treatment.

Results

Curcumin could inhibit the proliferation of RCC in cell lines and nude mice. The expression of miR-148 and ADAMTS18 was upregulated after curcumin treatment both in vitro and in vivo (P<0.05). The cell survival rate was dramatically declined upon miR-148 or ADAMTS18 upregulated. However, si-ADAMTS18 treatment or miR-148 inhibitor reversed these results, that is, both of them promoted the cell survival rate.

Conclusion

Curcumin can inhibit the proliferation of renal cell carcinoma by regulating the miR-148/ ADAMTS18 axis through the suppression of autophagy in vitro and in vivo. There may exist a positive feedback loop between miR-148 and ADAMTS18 gene in RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao HW, Yu HJ, Feng YG, Chen L, Liang F. Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis. Cancer Chemother Pharmacol 2017;79:985–994.

    Article  CAS  PubMed  Google Scholar 

  2. Li JT, Wei HL, Liu YG, Li Q, Guo H, Guo YJ, et al. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evid Based Complement Alternat Med 2020;2020:2892917.

    PubMed  PubMed Central  Google Scholar 

  3. Liu L, Fu YL, Zheng YY, Ma MK, Wang CH. Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/ PSMB5 axis. Phytomedicine 2020;78:153312.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ, Kan QC. Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev 2014;15:3363–3368.

    Article  PubMed  Google Scholar 

  5. Sun CL, Zhang SP, Liu CH, Liu XQ. Curcumin promoted miR-34a expression and suppressed proliferation of gastric cancer cells. Cancer Biother Radiopharm 2019;34:634–641.

    CAS  PubMed  Google Scholar 

  6. Lelli D, Pedone C, Majeed M, Sahebkar A. Curcumin and lung cancer: the role of microRNAs. Curr Pharm Des 2017;23:3440–3444.

    Article  CAS  PubMed  Google Scholar 

  7. Saini S, Arora S, Majid S, Shahryari V, Chen Y, Deng GR, et al. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res 2011;4:1698–1709.

    Article  CAS  Google Scholar 

  8. Li W, Li GX, Cao LQ. Circular RNA Eps15-homology domain-containing protein 2 induce resistance of renal cell carcinoma to sunitinib via microRNA-4731-5p/ABCF2 axis. Bioengineered 2022;13:9729–9740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou YD, Zhang ZH, Wo MY, Xu WF. The long non-coding RNA NNT-AS1 promotes clear cell renal cell carcinoma progression via regulation of the miR-137/Y-box binding protein 1 axis. Bioengineered 2021;12:8994–9005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pei L, Lv XQ, Jia GP, Tan XL, Li M, Zhang AL. Silencing circular RNA circ_0054537 and upregulating microRNA-640 suppress malignant progression of renal cell carcinoma via regulating neuronal pentraxin-2(NPTX2). Bioengineered 2021;12:8279–8295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang KY, Gu YZ, Ni JL, Zhang HL, Wang YD, Zhang YF, et al. Noncoding-RNA mediated high expression of zinc finger protein 268 suppresses clear cell renal cell carcinoma progression by promoting apoptosis and regulating immune cell infiltration. Bioengineered 2022;13:10467–10481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong XL, Jiang L, Li W, Liang QB, Li Z. Curcumin induces apoptosis and autophagy inhuman renal cell carcinoma cells via Akt/mTOR suppression. Bioengineered 2021;12:5017–5027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Zhang W, Shao Y, Zhang C, Wu Q, Yang H, et al. High-resolution melting analysis of ADAMTS18 methylation levels in gastric, colorectal and pancreatic cancers. Med Oncol 2010;27:998–1004.

    Article  PubMed  Google Scholar 

  14. Xu B, Zhang L, Luo C, Qi Y, Cui Y, Ying JM, et al. Hypermethylation of the 16q23.1 tumor suppressor gene ADAMTS18 in clear cell renal cell carcinoma. Int J Mol Sci 2015;16:1051–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu B, Peng YJ, Zhu WJ. Curcumin inhibits viability of clear cell renal cell carcinoma by down-regulating ADAMTS18 gene methylation through NF-kB and AKT signaling pathway. Chin J Integr Med 2022;28:419–424.

    Article  CAS  PubMed  Google Scholar 

  16. Rinwa P, Kumar A. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Res 2012;1488:38–50.

    Article  CAS  PubMed  Google Scholar 

  17. Feng WR, Zhao XM, Liu LP, Hu RJ. The effect of curcumin administration in vivo or vitro and its drug serum on the proliferation of spleen lympholeukocytes. Lishizhen Med Mater Med Res (Chin) 2009;20:192–193.

    CAS  Google Scholar 

  18. Zhao M, Ke TM, Ouyang CH. Effect of curcumin on memory acquisition and consolidation in Alzheimer’s disease model mice. J Hubei Univ Sci Technol (Med Sci) 2016;30:372–374.

    Google Scholar 

  19. Guo ZL, Li HJ, Yu XL. Effects on gastrointestinal peristalsis of mice by curcumin gavage in different time and dose. Chin J Child Health Care (Chin) 2012;20:514–515.

    Google Scholar 

  20. Zhong LP, Zhong XW. Long non-coding RNA ARAP1-AS1 contributes to cell proliferation and migration in clear cell renal cell carcinoma via the miR-361-3p/placental growth factor axis. Bioengineered 2021;12:6629–6642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu B, Zhu WJ, Peng YJ, Cheng SD. Curcumin reverses the sunitinib resistance in clear cell renal carcinoma (ccRCC) through the induction of ferroptosis via the ADAMTS18 gene. Trransl Cancer Res 2021;10:3158–3167.

    Article  CAS  Google Scholar 

  22. Tran TA, Leong HS, Jimenez AP, Fedyshyn S, Yang J, Kucejova B, et al. Fibroblast growth factor receptor-dependent and -independent paracrine signaling by sunitinib-resistant renal cell carcinoma. Mol Cell Biol 2016;36:1836–1855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prior C, Gracia JLP, Donas JG, Antona CR, Guruceaga E, Esteban E, et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One 2014;9:e86263.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang CY. Study on the function and molecular mechanism of sunitinib resistance induced by LncRNA AFAP1-AS1 in renal cell carcinoma D [Dissertation]. Zhenjiang: Jiangsu University; 2020.

    Google Scholar 

  25. Rad JS, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020;11:01021.

    Article  Google Scholar 

  26. Xiao JW, Cai X, Zhou WJ, Wang RS, Ye ZZ. Curcumin relieved the rheumatoid arthritis progression via modulating the linc00052/miR-126-5p/PIAS2 axis. Bioengineered 2022;13:10973–10983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang JZ, Guan BB, Lin LJ, Wang YP. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered 2021;12:11947–11958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schanza LM, Seles M, Stotz M, Fosselteder J, Hutterer GC, Pichler M, et al. MicroRNAs associated with von Hippel-Lindau pathway in renal cell carcinoma: a comprehensive review. Int J Mol Sci 2017;18:2495.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li K, Chen ZT, Qin YW. Expression profiles of microRNA related to atherosclerosis in patients with OSA. J Clin Otorhinolaryngol Head Neck Surg (Chin) 2019;33:304–309.

    CAS  Google Scholar 

  30. He YH, Tian G. Autophagy as a vital therapy target for renal cell carcinoma. Front Pharmacol 2020;11:518225.

    Article  CAS  PubMed  Google Scholar 

  31. Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, et al. Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci 2018;39:1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cao Q, Bai P. Role of autophagy in renal cancer. J Cancer 2019;10:2501–2509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouhamdani N, Comeau D, Cormier K, Turcotte S. STF-62247 accumulates in lysosomes and blocks late stages of autophagy to selectively target von Hippel-Lindau-inactivated cells. Am J Physiol Cell Physiol 2019;316:605–C620.

    Article  Google Scholar 

  34. Turcotte S, Chan DA, Sutphin PD, Hay MP, Denny WA, Giaccia AJ. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 2008;14:90–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bray K, Mathew R, Lau A, Kamphorst JJ, Fan J, Chen J, et al. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 2012;7:e41831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120:237–248.

    Article  CAS  PubMed  Google Scholar 

  37. Jones TM, Carew JS, Nawrocki ST. Therapeutic targeting of autophagy for renal cell carcinoma therapy. Cancers (Basel) 2020;12:1185.

    Article  CAS  PubMed  Google Scholar 

  38. Zigeuner R, Ratschek M, Rehak P, Schips L, Langner C. Value of p53 as a prognostic marker in histologic subtypes of renal cell carcinoma: a systematic analysis of primary and metastatic tumor tissue. Urology 2004;63:651–655.

    Article  PubMed  Google Scholar 

  39. Kang JH, Lee JS, Hong D, Lee SH, Kim N, Lee WK, et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis 2016;7:e2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu B, Peng YJ, Ma BL, Cheng SD. Aberrant methylation of the 16q23.1 tumor suppressor gene ADAMTS18 promotes tumorigenesis and progression of clear cell renal cell carcinoma. Genes Genom 2021;43:123–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xu B carried out the design of this research, analysis and interpretation of data, and drafted the manuscript. Yuan CW participated in the collection of data and data analysis. Zhang JE assisted in the design of this research and project development. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ben Xu.

Additional information

Conflict of Interest

There is no conflict of interest involved in this manuscript.

Supported by Beijing Traditional Chinese Medicine Development Fundation (No. QN-2020-03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Yuan, Cw. & Zhang, Je. Curcumin Inhibits Proliferation of Renal Cell Carcinoma in vitro and in vivo by Regulating miR-148/ADAMTS18 through Suppressing Autophagy. Chin. J. Integr. Med. 29, 699–706 (2023). https://doi.org/10.1007/s11655-022-3690-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3690-9

Keywords

Navigation