Skip to main content

Advertisement

Log in

Andrographolide Inhibits Proliferation and Promotes Apoptosis in Bladder Cancer Cells by Interfering with NF- κ B and PI3K/AKT Signaling In Vitro and In Vivo

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the influences of andrographolide (Andro) on bladder cancer cell lines and a tumor xenograft mouse model bearing 5637 cells.

Methods

For in vitro experiments, T24 cells were stimulated with Andro (0–40 µmol/L) and 5637 cells were stimulated with Andro (0 to 80 µmol/L). Cell growth, migration, and infiltration were assessed using cell counting kit-8, colony formation, wound healing, and transwell assays. Apoptosis rate was examined using flow cytometry. In in vivo study, the antitumor effect of Andro (10 mg/kg) was evaluated by 5637 tumor-bearing mice, and levels of nuclear factor κ B (NF- κ B) and phosphoinositide 3-kinase/AKT related-proteins were determined by immunoblotting.

Results

Andro suppressed growth, migration, and infiltraion of bladder cancer cells (P⩽0.05 or P⩽0.01). Additionally, Andro induced intrinsic mitochondria-dependent apoptosis in bladder cancer cell lines. Furthermore, Andro inhibited bladder cancer growth in mice (P⩽0.01). The expression of p65, p-AKT were suppressed by Andro treatment in vitro and in vivo (P⩽0.05 or P⩽0.01).

Conclusions

Andrographolide inhibits proliferation and promotes apoptosis in bladder cancer cells by interfering with NF- κ B and PI3K/AKT signaling in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afshari M, Janbabaei G, Bahrami MA, Moosazadeh M. Opium and bladder cancer: a systematic review and meta-analysis of the odds ratios for opium use and the risk of bladder cancer. PLoS One 2017;12:e0178527.

    Article  Google Scholar 

  2. Svatek RS, Hollenbeck BK, Holmäng S, Lee R, Kim SP, Stenzl A, et al. The economics of bladder cancer: costs and considerations of caring for this disease. Eur Urol 2014;66:253–262.

    Article  Google Scholar 

  3. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 2017;71:96–108.

    Article  Google Scholar 

  4. Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, et al. Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules 2018;23:2592.

    Article  Google Scholar 

  5. Low M, Khoo CS, Münch G, Govindaraghavan S, Sucher NJ. An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide. BMC Complement Altern Med 2015;15:18.

    Article  Google Scholar 

  6. Yang PY, Hsieh PL, Wang TH, Yu CC, Lu MY, Liao YW, et al. Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget 2017;8:4196–4207.

    Article  Google Scholar 

  7. Gunn EJ, Williams JT, Huynh DT, Iannotti MJ, Han C, Barrios FJ, et al. The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leuk Lymphoma 2011;52:1085–1097.

    Article  CAS  Google Scholar 

  8. Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, et al. Notch1-MAPK signaling axis regulates CD133(+) cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol 2016;136:2462–2474.

    Article  CAS  Google Scholar 

  9. Lee YC, Lin HH, Hsu CH, Wang CJ, Chiang TA, Chen JH Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 2010;632:23–32.

    Article  CAS  Google Scholar 

  10. Deng Y, Bi R, Guo H, Yang J, Du Y, Wang C, et al. Andrographolide enhances TRAIL-induced apoptosis via p53-mediated death receptors up-regulation and suppression of the NF-κB pathway in bladder cancer cells. Int J Biol Sci 2019;15:688–700.

    Article  CAS  Google Scholar 

  11. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018;173:321–337.e10.

    Article  CAS  Google Scholar 

  12. Luo K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol 2017;9:022137.

    Article  Google Scholar 

  13. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006;25:6680–6684.

    Article  CAS  Google Scholar 

  14. Mussard E, Cesaro A, Lespessailles E, Legrain B, Berteina-Raboin S, Toumi H. Andrographolide, a natural antioxidant: an update. Antioxidants (Basel) 2019;8:571.

    Article  CAS  Google Scholar 

  15. Chu J, Li N, Li F. A risk score staging system based on the expression of seven genes predicts the outcome of bladder cancer. Oncol Lett 2018;16:2091–2096.

    PubMed  PubMed Central  Google Scholar 

  16. Sun J. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J Signal Transduct 2010;2010:985132.

    Article  Google Scholar 

  17. Annibaldi A, Walczak H. Death receptors and their ligands in inflammatory disease and cancer. Cold Spring Harb Perspect Biol 2020;12:a036384.

    Article  CAS  Google Scholar 

  18. Krammer PH. CD95’s deadly mission in the immune system. Nature 2000;407:789–795.

    Article  CAS  Google Scholar 

  19. Gurunathan S, Qasim M, Park CH, Arsalan Iqbal M, Yoo H, Hwang JH, et al. Cytotoxicity and transcriptomic analyses of biogenic palladium nanoparticles in human ovarian cancer cells (SKOV3). Nanomaterials (Basel) 2019;9:787.

    Article  CAS  Google Scholar 

  20. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014;15:49–63.

    Article  CAS  Google Scholar 

  21. Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, et al. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013;17:12–29.

    Article  CAS  Google Scholar 

  22. Peng S, Hang N, Liu W, Guo W, Jiang C, Yang X, et al. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways. Acta Pharm Sin B 2016;6:205–211.

    Article  CAS  Google Scholar 

  23. Zhu T, Wang DX, Zhang W, Liao XQ, Guan X, Bo H, et al. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB. PLoS One 2013;8:e56407.

    Article  CAS  Google Scholar 

  24. Chakraborty S, Ehsan I, Mukherjee B, Mondal L, Roy S, Saha KD, et al. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine 2019;20:102006.

    Article  CAS  Google Scholar 

  25. Liu YH, Zhang ZB, Zheng YF, Chen HM, Yu XT, Chen XY, et al. Gastroprotective effect of andrographolide sodium bisulfite against indomethacin-induced gastric ulceration in rats. Int Immunopharmacol 2015;26:384–391.

    Article  CAS  Google Scholar 

  26. Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism. Molecules 2020;26:5.

    Article  Google Scholar 

  27. Jaiswal PK, Goel A, Mittal RD. Survivin: a molecular biomarker in cancer. Indian J Med Res 2015;141:389–397.

    Article  Google Scholar 

  28. Wheatley SP, Altieri DC. Survivin at a glance. J Cell Sci 2019;132:jcs223826.

    Article  CAS  Google Scholar 

  29. Bansal K, Kapoor N, Narayana Y, Puzo G, Gilleron M, Balaji KN. PIM2 Induced COX-2 and MMP-9 expression in macrophages requires PI3K and Notch1 signaling. PLoS One 2009;4:e4911.

    Article  Google Scholar 

  30. Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 2016;6:a026104.

    Article  Google Scholar 

  31. Brenner D, Mak TW. Mitochondrial cell death effectors. Curr Opin Cell Biol 2009;21:871–877.

    Article  CAS  Google Scholar 

  32. Minhajuddin M, Bijli KM, Fazal F, Sassano A, Nakayama KI, Hay N, et al. Protein kinase C-delta and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. J Biol Chem 2009; 284:4052–4061.

    Article  CAS  Google Scholar 

  33. Chen D, Liu D, Liu D, He M, Peng A, Xu J, et al. Rheumatoid arthritis fibroblast-like synoviocyte suppression mediated by PTEN involves survivin gene silencing. Sci Rep 2017;7:367.

    Article  Google Scholar 

  34. Chen X, Duan N, Zhang C, Zhang W. Survivin and tumorigenesis: molecular mechanism stumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer 2016;7:314–323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wang CX designed the experiments and reviewed the final manuscript. Xuan L performed the experiments and wrote the first draft of the manuscript. Hu JH and Bi R contributed to analyzed the data. Liu SQ was responsible for some animal studies. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-xi Wang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supported by Science and Technology Department of Jilin Province (No. 20190905001SF)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, L., Hu, Jh., Bi, R. et al. Andrographolide Inhibits Proliferation and Promotes Apoptosis in Bladder Cancer Cells by Interfering with NF- κ B and PI3K/AKT Signaling In Vitro and In Vivo. Chin. J. Integr. Med. 28, 349–356 (2022). https://doi.org/10.1007/s11655-022-3464-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3464-4

Keywords

Navigation