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New coronavirus SARS-CoV-2 are single-
stranded RNA genome-containing viruses with 
medical and veterinary importance.(1) These include 
transmissible gastroenteritis virus, porcine epidemic 
diarrhea virus, and the human CoVs. The SARS-CoV-2 
belongs to the betacoronavirus genus similar to severe 
acute respiratory syndrome coronavirus, and the Middle 
East respiratory syndrome coronavirus.(1,2) The human 
coronaviruses SARS-CoV-2 are positive-sense with a 
length of 30,000 bp and single-stranded RNA viruses.(3)

The two groups of proteins characterized in 
SARS-CoV-2 are (i) structural proteins (e.g., spike 
(S), nucleocapsid (N), matrix (M) and envelope (E)) 
and (ii) non-structural proteins (e.g., proteases, 
3-chymotrypsin-like protease (3CLPRO), papain-like 
protease (PLPRO) and RNA-dependent RNA polymerase 
(RdRp).(1) The CoV polyprotein encodes two proteases 
like 3CLPRO, and PLPRO which share in its processing 
and release of the translated non-structural proteins.(4) 
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The RdRp is a crucial viral enzyme in the life cycle of 
RNA viruses.(5) The nsp12 is the polymerase that binds 
to its essential cofactors, nsp7 and nsp8. It is important 
in replication and transcription of the viral genome. 
S protein is a crucial factor for viral attachment and 
entry to the host cells, which present on the outer 
surface of the virion, in a homo-trimeric state.(6) 3CLPRO 
is the main protease that cleaves host polyproteins 
into viral replication-related proteins, and is highly 
conserved across the SARS-CoV-2 family, including 
SARS-CoVs and Middle East respiratory syndrome 
corona.(7) The PLPRO cleaves the nsp1/2, nsp2/3 and 
nsp3/4 boundaries. It works with 3CLPRO to cleave 
the polyproteins into nsps.(8) The nsp13 (helicase) 
catalyzes the unwinding of duplex oligonucleotides into 
single strands in a nucleoside 5'-triphosphate (NTP)-
dependent manner. It is also an ideal target to develop 
antiviral drugs due to its sequence conservation in all 
CoV species.(9) The N-terminal exoribonuclease and 
C-terminal guanine-N7 methyl transferase (nsp14) of 
CoV is important for viral replication and transcription.(10) 

The N-terminal  exor ibonuclease domain 
plays a proofreading role in prevention of the lethal 
mutagenesis, and the C-terminal domain functions as 
a guanine-N7 methyl transferase for mRNA capping.(11) 
The nsp15 forms a hexameric endoribonuclease that 
preferentially cleaves 3' of uridines, also named as 
uridylate-specific endoribonuclease. It is one of the 
RNA-processing enzymes encoded by the CoV,(12) 
while nsp16 is an S-adenosylmethionine dependent 
nucleoside-2'-O-methyltransferase. The latter one is 
only activated by the binding of nsp10.(13) On the other 
hand, nsp10 is an essential co-factor and forms a 
complex with nsp14 and nsp16. 

Development of new drugs against the SARS-
CoV-2 focuses on blocking virus entry into the host 
cells, and preventing viral transcription and replication. 
The 3CLPRO, plays a pivotal role in mediating viral 
replication complex and transcription, is a particularly 
attractive target for anti-SARS-CoV-2 drug design.(14) It 
has gained much attention as a valuable target in drug 
discovery efforts and also been termed 'the Achilles 
heel of coronaviruses'.(15) In addition to 3-chymotrypsin-
like protease (3CLPRO), papain-like protease (PLPRO), 
and RNA-dependent RNA polymerase (RdRp), there 
are other target proteins, such as the receptor 2 of the 
human angiotensin-converting enzyme (hACE2R), 
calcineurin-activated nuclear T cell factor (NFAT) and 

murine abelson homologue 1 of the leukemia viral 
oncogene (ABL1). Molecular docking simulations were 
used to perform in silico screening of potential active 
compounds against hACE2R, 3CLPRO, PLPRO, RdRp, 
nsp10, nsp13–16, calcineurin-NFAT, transmembrane 
protease serine 2 (TMPRSS2), and ABL1.(16-18)

In this respect, numerous plants containing 
high concentrations of flavonoids and polyphenolic 
compounds are known to have antioxidant, anticancer, 
anti-depressant, anti-infl ammatory, anti-diarrheal, anti-
diabetic, and anti-viral effects. Furthermore, a recent 
study showed that above mentioned compounds exert 
anti-SARS-CoV-2 activity with inhibitory concentration 
50/effective concentration 50 less than 10 μmol/L.(19) 
In this study, we have performed an in silico survey 
of 25 potential natural products acting against SARS-
CoV-2 and compared the data with antiviral drugs as 
standards (Appendix 1).

METHODS

In Silico Prediction of Activity Spectra for 
Substances 

Prediction of antiviral activity of 25 potential 
natural products was carried out using the "prediction 
of activity spectra for the substances" (PASS) computer 
program. This software estimates predicted activity 
spectrum of a compound as probable activity (Pa) and 
probable inactivity (Pi). The values of Pa and Pi vary 
between 0.000 and 1.000. Only activities with Pa > Pi 
are considered as possible for a particular compound. If 
Pa > 0.7, the probability of experimental pharmacological 
action is high and if 0.5 < Pa < 0.7, probability of 
experimental pharmacological action is less. If the 
value of Pa < 0.5, the chance of experimentally fi nding 
the activity is less, but it may also indicate a chance of 
fi nding a new lead compound.(20)

Macromolecules and Preparation
Glide of Schrödinger-Maestro (version 11.1, 

https://www.schrodinger.com/products/maestro, 
Schrodinger, USA)) was used for the molecular docking 
analysis to predict the behavior of the mentioned 
compounds against the macromolecular targets of the 
human coronavirus: 3CLPRO (PDB 6LU7), PLPRO (PDB 
4OW0), hACE2R (PDB 2AJF), RdRp (PDB 6NUR), 
S protein (PDB 2GHV), nsp13 (PDB 6JYT), nsp14 (PDB 
5C8S), nsp15 (PDB 2H85), nsp16 (PDB 3R24), nsp10 
(PDB 2XYR), calcineurin-NFAT (PDB 2JOG), ABL1 
(PDB 6T3B) and TMPRSS2 (PDB 2OQ5, Appendix 2). 



• 251 •Chin J Integr Med 2022 Mar;28(3):249-256

For the purpose of energy minimization crystal 
structure, we utilized Swiss-PDB Viewer software 
package (version 4.1.0, Structural Bioinformatics 
Group, SIB Swiss Inst i tute of Bioinformatics, 
Switzerland), and then all the hetero atoms and water 
molecules of proteins were removed by using PyMOl 
(version 1.7.4.5, BIOVIA, Schrodinger, USA) before 
docking. A simple docking method was used to explore 
the properties of our Gaussian Scoring Function, i.e., 
a Quasi-Newton solid body optimization of the ligand 
location from random starting positions near the 
receptor site.(21) The receptor grid generation was done 
by PockDrug selecting the best binding sites.

Ligand Preparation
Twenty-five natural compounds (Appendix 3)(22) 

and commercially available antiviral drugs (i.e., 
alisporivir, chloroquine, cyclosporine, favipiravir, grl0617, 
lopinavir, remdesivir, ritonavir, selumetinib, trametinib, 
Table 2) were downloaded from the PubChem 
(a database for chemical molecules). By using Gaussian 
view 09 package (Gaussian Inc, USA) and Chem3D 
Pro12.0 program (University of Bath, England) package, 
all internal energies of the ligands were optimized. 

Active Site and Grid Generation
The Van der Waals scaling factor 1.00 and 

charge cutoff 0.25 subjected to OPLS 2005 force 

fi eld. The bounding box was set to 15×15×15 for the 
docking study.

 Docking Analysis and Binding Site
The actives sites are the coordinates of the ligand 

in the original target protein grids and these active 
binding sites of target protein were scrutinized using Drug 
Discovery Studio version 4.5 (BIOVIA Dassault Systèmes, 
USA). The non-covalent interactions were calculated 
using Discovery Studios Software (Biovia, England).

RESULTS

Docking with Non-structural Proteins
Interaction with 3CLPRO

Amentoflavone, berbamine, cepharanthine, 
glucogallin, juglanin and papyriflavonol A exhibited 
binding affi nities with 3CLPRO (Table 1). Amentofl avone 
showed the highest binding energy compared to the 
other compounds. The 2D and 3D structures of non-
bond interactions of amentoflavone with 3CLPRO are 
shown in Appendix 4. The standard drugs ritonavir 
and lopinavir showed binding affi nities towards 3CLPRO 
by –6.8 and –6.5 kcal/mol, respectively (Table 2). 
The 2D and 3D structures of non-bond interactions of 
ritonavir with 3CLPRO are shown in Appendix 5.

Interaction with PLPRO

Amentoflavone, broussoflavan A, cepharanthine, 

Table 1. Natural Products-Derived Compounds Showing Highest Binding Affi nity with 
SARS-CoV-2 Non-structural Proteins

Compounds
Binding affi nity (kcal/mol)

  3CLPRO 

  (6LU7)
  PLPRO 
(4OW0)

 RdRp 
(6NUR)

nsp10 
(2XYR)

Helicase 
 (6JYT)

nsp14   
(5C8S)

 nsp15  
 (2H85)

nsp16 
(3R24)

7-Methoxycryptopleurine – –   –8.4 – – –   –8.6 –

Aloe emodin – –   –8.0 – – –   –8.8   –8.0

Amentofl avone –9.7 –8.2 –10.5 –8.2 –9.8 –8.5 –10.5   –9.3

Berbamine –8.6 –   –8.6 –7.9 –8.9 –   –9.1 –

Betulinic acid – –   –9.6 – –9.4 – – –

Betulonic acid – – – –7.8 –9.3 –7.7 –

Broussofl avan A – –8.5 – – – –   –9.1 –

Cepharanthine –8.6 –8.1   –9.6 –8.3 –9.3 –9.2   –9.3 –10.4

Glucogallin –8.2 –   –9.6 – –9.4 – –10.4 –

Juglanin –8.1 –7.8 – – – – –

Papyrifl avonol A –8.3 –8.6 –7.9 –8.2 –   –8.5

Quercetin – – – – – – –   –9.0

Tanshinone I – – – – –8.0 –   –8.5   –8.8

Tomentin A – – – – –8.0 –   –9.3   –9.2

Tomentin B – – – – –8.3 –7.7 –   –8.8

Tomentin E – –   –8.5 – –8.0 –   –9.1   –8.6
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papyriflavonol A and juglanin showed good binding 
affi nity with PLPRO (Table 1). The 2D and 3D structures 
of non-bond interactions of these compounds with PLPRO 
are shown in Appendix 4. The standard drugs, lopinavir 
and GRL0617 showed binding affinities towards PLPRO 
by –6.8 and –6.5 kcal/mol, respectively (Table 2). 
The 2D and 3D structures of non-bond interactions of 
lopinavir with PLPRO are shown in Appendix 5.

Interaction with RdRp
7-Methoxycryptop leur ine ,  a loe  emodin , 

amen to f l avone ,  be rbamine ,  be tu l i n i c  ac id , 
broussoflavan A, cepharanthine, ferruginol, juglanin, 
papyriflavonol A, tanshinone Ⅰ, tomentin A, B and E 
displayed binding affinities with RdRP (Table 1). Among 
those compounds, amentoflavone exhibited strong 
binding energy with RdRp protein (Appendix 4). The 
standard drugs, chloroquine, remdesivir and favipiravir 
showed binding affi nities towards RdRp by –6.1, –7.8 
and –5.5 kcal/mol, respectively (Table 2). The 2D and 
3D structures of non-bond interactions of remdesivir 
with RdRp are shown in Appendix 5.

Interaction with nsp10
The binding affi nities of amentofl avone, berbamine, 

betulonic acid, cepharanthine and papyrifl avonol A with 
nsp10 are shown in Table 1. Cepharanthine exhibited 
best the binding interaction with nsp10 (Appendix 4).

Interaction with nsp13
Molecular docking against nsp13 (helicase, PDB 

6JYT) indicated that amentofl avone, berbamine, betulinic 
acid, betulonic acid, broussoflavan A, cepharanthine, 
glucogal l in,  papyr i f lavonol A, tanshinone Ⅰ , 
tomentin A, B and E exhibited the binding affinities 

with nsp 13 (Table 1). In comparison to the other 
compounds, amentofl avone displayed the best binding 
affi nity with this helicase protein (Appendix 4).

Interaction with nsp14
Amentoflavone, betulonic acid, cepharanthine 

and tomentin B exhibited binding affi nities with nsp14 
(Table 1). Cepharanthine showed a good binding 
interaction with nsp14 with a single hydrogen bond 
with Pro84, van der Waals bond with Asn85, and alkyl 
bonds with Leu92 and Leu112 amino acid residues 
(Appendix 4). On the other hand, amentoflavone 
bound with Asp91 and Cys90 through 2 hydrogen 
bonds, while betulonic acid with Thr5, Gly70, Ala71 
and Lys95 and tomentin B with Asn85, Asp91, Phe89 
and Cys74 though 4 hydrogen bonds.

Interaction with nsp15
7-Methoxycryptop leur ine ,  a loe  emodin , 

amentof lavone, berbamine, broussof lavan A, 
cepharanthine, glucogallin, tanshinone Ⅰ, tomentin A 
and E exhibited binding affi nities with nsp15, respectively 
(Table 1). Amentoflavone and glucogallin showed 
the best binding energies, –10.5 and –10.4 kcal/mol, 
respectively. The 2D and 3D structures of non-bond 
interactions of amentofl avone and glucogallin with nsp15 
are shown in Appendix 4.

Interaction with nsp16
The  b ind ing  a f f i n i t i es  o f  a loe  emod in , 

amentoflavone, cepharanthine, papyriflavonol A, 
quercetin, tanshinone Ⅰ, tomentin A, B and E were 
shown in Table 1. Cepharanthine exhibited a stronger 
binding capacity with nsp16 (PDB 3R24) than the 
other compounds. The 2D and 3D structures of non-

Table 2. Binding Affi nities of Some Standard Drugs with Respective Targets of SARS-CoV-2

Standards
Binding affi nity (kcal/mol)

Interacting amino acid residues3CLPRO 
(6LU7)

 PLPRO 
(4OW0)

 RdRp 
(6NUR)

 NFAT 
(2JOG)

 ABL1 
(6T3B)

Ritonavir –6.8 Phe294, Gly109, Asn203, Thr292, Pro293, Val104, Arg105, Val297

Lopinavir –6.5 –6.8
Lys158, Glu168, Gln270, Asp165, Tyr265, Tyr269

GRL0617 –6.5

Chloroquine –6.1

Gln724, Leu708, Ala125, Val128, Tyr129, His133, His725, Tyr728Remdesivir –7.8

Favipiravir –5.5

Alisporivir –6.8
Tyr159, Leu156, Pro344, His151, Phe160, Trp232

Cyclosporine –6.7

Trametinib –9.2
Lys298, Asn299, Glu852, Glu880, His295, Arg849

Selumetinib –5.9
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bonding interactions of cepharanthine the nsp16 are 
given in Appendix 4. 

Docking with Structural Proteins 
Interaction with hACE2R

Amentoflavone, berbamine, betulinic acid, 
be tu lon ic  ac id ,  cepharan th ine ,  g lucoga l l i n , 
papyrif lavonol A, tomentin A and E exhibited 
binding affinity with hACE2R protein (Table 3). 
Amentoflavone and berbamine displayed the best 
binding affi nity with hACE2R (Appendix 6). 

Interaction with S protein
The binding af f in i t ies of  amentof lavone, 

berbamine, cepharanthine, ferruginol, papyrifl avonol A, 
tanshinone Ⅰ and tomentin B are shown in Table 3. 
Cepharanthine exhibited the best binding affinity with 
the SARS-CoV-2 S protein (PDB 2GHV) than the 
other compounds. The interactions of cepharanthine 
with the spike glycoprotein include 2 pi-pi bonds with 
Phe364 and Phe361 as well as 1 alkyl bond with 
Leu355 amino acid residues (Appendix 6). 

Interaction with ABL1 
The binding affinities of 7-methoxycryptopleurine, 

aloe emodin, amentofl avone, berbamine, betulinic acid, 
betulonic acid, cepharanthine, juglanin, papyrifl avonol A, 

quercetin, tanshinone Ⅰ, tomentin A, tylophorine are 
shown in Table 3. In comparison with cepharanthine, 
other compounds showed lower binding affinity with 
ABL1 protein (Appendix 6). The standard drugs, 
trametinib and selumetinib showed binding affinities 
towards ABL1 by –9.2 and –5.9 kcal/mol, respectively 
(Table 2). The 2D and 3D structures of non-bond 
interactions of trametinib with ABL1 are shown in 
Appendix 5.

Interaction with Calcineurin-NFAT
Amentoflavone, betulinic acid, betulonic acid, 

cepharanthine, papyriflavonol A, tomentin A and E 
exhibited binding affi nity with the calcineurin-NFAT protein 
(Table 3). Amentoflavone showed the best binding 
energy as compared to the other compounds against 
this protein. The 2D and 3D structures of non-bonding 
interactions between amentoflavone and calcineurin-
NFAT protein are shown in Appendix 6. The standard 
drugs alisporivir and cyclosporine showed binding 
affinities towards NFAT by –6.8 and –6.7 kcal/mol, 
respectively (Table 2). The 2D and 3D structures of 
non-bond interactions of alisporivir with NFAT are 
shown in Appendix 5.

Interaction with TMPRSS2
Amentoflavone, cepharanthine, glucogallin, 

Table 3. Compounds Showing the Highest Binding Affi nity with 
SARS-CoV-2 Structural Proteins and Other Host Proteins 

Compounds
Binding affi nity (kcal/mol)

hACE2R (2AJF) S protein (2GHV) ABL1 (6T3B)  Calcineurin-NFAT (2JOG) TMPRSS2 (2OQ5)

7-Methoxycryptopleurine – –   –8.6 – –

Aloe emodin – –   –8.7 – –

Amentofl avone –10.1   –9.5 –11.5 –10.3   –9.2

Berbamine –10.0   –8.3 –10.2 – –

Betulinic acid   –8.1 –   –9.5   –8.8 –

Betulonic acid   –8.1 –   –8.8   –9.0 –

Cepharanthine   –9.0   –9.7 –11.8   –9.0   –8.3

Ferruginol –   –8.0 – – –

Glucogallin   –9.1 – –10.0   –9.2   –8.7

Juglanin – –   –8.6 –   –8.2

Papyrifl avonol A   –8.5   –8.4   –9.6   –8.6 –

Quercetin – –   –8.6 –   –8.0

Tanshinone Ⅰ –   –8.5   –9.2 – –

Tomentin A   –8.4 –   –9.6 –   –8.5

Tomentin B –   –8.1 – –   –8.9

Tomentin E   –8.5 – –   –8.6 –

Tylophorine – –   –8.5 – –
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juglanin, quercetin, tomentin A and B displayed 
binding affi nity with TMPRSS2 (PDB 2OQ5, Table 3). 
The amentoflavone showed the best binding energy 
as compared to the other compounds against this 
protein. Tomentin B and glucogallin showed interaction 
with Glu218, Trp215 and Val227, and His99, Glu216, 
Cys219, Gln192, Ser195, Thr62, Cys58, Gly216, 
Cys191, His57 and Thr61, respectively (Appendix 6). 

DISCUSSION

For controlling the outbreak of SARS-CoV-2, 
the researchers are working diligently to discover anti-
SARS-CoV-2 agents. For this purpose, medicinal plant-
derived compounds (phytochemical) may be a potential 
source of the lead compounds to combat the SARS-
CoV-2 infection.(23) There are 12 targets for creating 
antiviral agents against SARS-CoV-2. The SARS-
CoV-2 polyprotein have 2 proteases.(4) 3CLPRO is highly 
conserved across the SARS-CoV-2 family,(7) and plays 
a pivotal role in mediating viral replication complex and 
transcription, is a particularly attractive target for the 
anti-CoV drug design.(14) In our study, amentoflavone, 
berbamine, cepharanthine, glucogallin, juglanin and 
papyrifl avonol A exhibited the good binding affi nities with 
3CLPRO, amentofl avone, broussofl avan A, cepharanthine, 
papyriflavonol A and juglanin showed good binding 
affinity with PLPRO. Amentoflavone showed strong 
binding capacity with both of 3CLPRO and PLPRO proteins.

SARS-CoV-2 utilize RdRp as a crucial enzyme 
in their life cycle.(5) Therefore, RdRp can be one of the 
best targets for the discovery of antiviral drug against 
SARS-CoV-2. In this study, 7-methoxycryptopleurine, 
aloe emodin, amentofl avone, berbamine, betulinic acid, 
broussoflavan A, cepharanthine, ferruginol, juglanin, 
papyriflavonol A, tanshinone Ⅰ, tomentin A, B and E 
showed good binding affi nity with tRdRp protein, where 
amentoflavone exhibited a strong binding energy with 
this protein. Moreover, the nsp10, nsp13, nsp14, nsp15, 
and nsp16 also play an important role in SARS-CoV-2 
infection. In this study, we found a number of compounds 
interact with these proteins, such as cepharanthine with 
nsp10 and nsp14, amentofl avone with nsp13 and nsp15, 
and papyrifl avonol A with nsp16 proteins. 

The SARS-CoV-2 could possibly use hACE2R for 
attaching in human lung cells.(24) Therefore, hACE2R 
might be another potential target for inhibiting the 
viral attachment with the host cells.(16-18) Our results 
demonstrate that amentoflavone, berbamine, betulinic 

acid, betulonic acid, cepharanthine, glucogallin, 
papyrifl avonol A, tomentin A and E exhibited good binding 
affinity with hACE2R protein, where amentoflavone and 
berbamine showed a strong binding capacity with this 
protein. Moreover, ABL1 and calcineurin-NFAT also play 
an important role in SARS-CoV-2 infection. In this study, 
we found a number of compounds interact with these 
proteins, such as cepharanthine with ABL1, and betulonic 
acid and cepharanthine with calcineurin—NFAT protein.

The bifl avonoid derivative, amentofl avone is evident 
to inhibit SARS-CoV-2 3CLPRO with 8.3 μmol/L.(25) 
Amentoflavone has good interaction with 3CLPRO, 
thereby suggesting an agreement with the previous 
study on this anti-CoV-2 agent. Additionally, it was 
also found to interact with the PLPRO, hACE2R, RdRp, 
S protein, nsps, ABL1 and NFAT protein. The antiviral 
effect of berbamine is undefined in the HCoV-NL63 
model at 1.48 μmol/L.(22) In our study, berbamine 
showed good binding affinity with 3CLPRO, hACE2R, 
RdRp, S protein, nsp10, nsp13, and nsp15 and 
ABL1 protein. On the other hand, cepharanthine and 
papyrifl avonol A were shown to inhibit 3CLPRO and PLPRO, 
respectively.(26,27) Our in silico study also demonstrates 
that these two compounds exhibited signifi cant binding 
affi nity with 3CLPRO and PLPRO. Additionally, they also 
showed binding affinity towards hACE2R, RdRp, 
S protein, nsps, ABL1 and NFAT protein. 

Juglanin evidently blocks the 3a channel in a 
SARS-CoV-2 model.(28) Our study reports it also has 
binding affi nities towards the 3CLPRO, PLPRO, RdRp and 
ABL1 proteins. On the other hand, glucogallin blocked 
viral entry in SARS-CoV-2 model.(29) In this study, this 
complex compound displayed binding affinity with the 
3CLPRO, hACE2R, nsp13, and nsp15. Broussoflavan 
A can inhibit PLPRO.(27) Beside this, we found that it has 
binding affinities towards RdRp, hACE2R, nsp13 and 
nsp15 proteins. Betulinic acid inhibit viral replication 
at 0.63 μmol/L, while betulonic acid inhibited 3CLPRO 
at 10 μmol/L in a SARS-CoV-2 model.(30) Our study 
demonstrates these compounds have binding affinity 
towards hACE2R, RdRp, nsp13, ABL1 and NFAT 
proteins. Tanshinone Ⅰ inhibited SARS-CoV-2 viral 
infection and replication.(31) In this study, it has been 
found to interact with hACE2R, RdRp, S protein, nsp13, 
nsp15 and nsp16, and ABL1 proteins. Tomentin A, B 
and E can inhibit of PLPRO.(32) In this in silico study, these 
tomentins also found to show good binding affinity 
towards the PLPRO as well as hACE2R, RdRp, nsp13, 
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nsp15 and nsp16, ABL1, NFAT and S glycoprotein. In 
a SARS-CoV-2 model, aloe emodin exhibited inhibitory 
effect against 3CLPRO.(33) Here we found its good 
interaction capacity with the RdRp, nsp15 and ABL1 
protein.

Furruginol can inhibit SARS-CoV-2 replication.(30) 
Our study reports it has good binding affinity towards 
RdRp and S glycoprotein. 7-Methoxycryptopleurine and 
tylophorine are evident to inhibit SARS-CoV-2 protease, 
respectively.(34) We found that these two compounds 
showed binding affi nity against RdRp, nsp15 and ABL1 
proteins. The TMPRSS-2 facilitates SARS-CoV-2, 
including SARS-CoV-2 infections via 2 independent 
mechanisms: (i) proteolytic cleavage of hACE2R which 
promotes viral uptake, and (ii) cleavage of SARS-CoV-2 
S proteins which activates glycoprotein for host cell 
entry.(35) It has been also suggested that the intestine is 
one of the potential sites of SARS-CoV-2 replication, that 
may contribute to local and systemic illness and overall 
disease progression in SARS-CoV-2. In a recent study, 
besides TMPRSS2, TMPRSS4 was seen to facilitate 
SARS-CoV-2 spike fusogenic activity, thereby promoting 
viral entrance into the host cell.(36)

In this study, amentoflavone, cepharanthine, 
glucogallin and tomentin A, showing best binding 
affinities towards hACE2R, have also been evident 
to show good bindings capacity towards TMPRSS2. 
Moreover, the compounds such as amentoflavone, 
cepharanthine, ferruginol, and tomentin B showing the 
best binding affi nities towards S protein also showed 
good bindings capacity towards TMPRSS2. Quercetin 
also showed good binding affi nity towards this protein.

The main strengths of this research derive from 
our findings which suggest that the studied natural 
derivatives compounds can be considered as potential 
adjuvant treatment against SARS-CoV-2. Therefore, (i) 
amentofl avone may act through inhibiting the 3CLPRO, 
RdRp, nsp13, nsp15, hACE2R¸ ABL1 and calcineurin-
NFAT protein; (ii) berbamine may inhibit hACE2R and 
ABL1 protein; (iii) cepharanthine may interact with 
nsp10, nsp14, nsp16, Spike and ABL1 protein; (iv) 
papyriflavonol A may interact with PLPRO protein; (v) 
glucogallin may interact with nsp15 protein of SARS-
CoV-2. Also, our fi ndings will be helpful for further pre-
clinical and clinical studies with these compounds and 
will be able to inspire medicinal scientists to conduct 
adequate research on the natural products and their 

derivatives as novel anti-viral agents against the 
SARS-CoV-2.
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