Skip to main content
Log in

Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model.

Methods

Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively.

Results

Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05).

Conclusion

LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999389–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2019;4:389–398.

    Article  Google Scholar 

  2. Romeo S. Notch and nonalcoholic fatty liver and fibrosis. New Engl J Med 2019;380:681–683.

    Article  Google Scholar 

  3. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2017;67:328–357.

    Article  Google Scholar 

  4. Zhang X, Yang J, Guo Y, Ye H, Yu C, Xu C, et al. Functional proteomic analysis of nonalcoholic fatty liver disease in rat models: enoyl-coenzyme a hydratase down-regulation exacerbates hepatic steatosis. Hepatology 2010;51:1190–1199.

    Article  CAS  Google Scholar 

  5. Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, Borengasser SJ, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol 2010;52:727–736.

    Article  CAS  Google Scholar 

  6. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016;473:4527–4550.

    Article  CAS  Google Scholar 

  7. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008;134:424–431.

    Article  CAS  Google Scholar 

  8. Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J, Darland C, et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with non-alcoholic fatty liver disease. Hepatology 2012;55:1389–1397.

    Article  CAS  Google Scholar 

  9. Masci A, Carradori S, Casadei MA, Paolicelli P, Petralito S, Ragno R, et al. Lycium barbarum polysaccharides: extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. a review. Food Chem 2018;254:377–389.

    Article  CAS  Google Scholar 

  10. Zhang N, He ZJ, He SY, Jing P. Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties. Food Res Inter 2019;116:810–818.

    Article  CAS  Google Scholar 

  11. Liu Y, Cao L, Du J, Jia R, Wang J, Xu P, et al. Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.). Com Biochem Physiol Toxicol Pharm 2015;169:65–72.

    Article  CAS  Google Scholar 

  12. Po KK, Leung JW, Chan JN, Fung TK, Sanchez-Vidana DI, Sin EL, et al. Protective effect of Lycium barbarum polysaccharides on dextromethorphan-induced mood impairment and neurogenesis suppression. Brain Res Bull 2017;134:10–17.

    Article  CAS  Google Scholar 

  13. Niu T, Jin L, Niu S, Gong C, Wang H. Lycium barbarum polysaccharides alleviates oxidative damage induced by H2O2 through down-regulating microRNA-194 in PC-12 and SH-SY5Y cells. Cell Physiol Biochem: Inter J Exper Cellular Physiol Biochem Pharmacol 2018;50:460–472.

    Article  CAS  Google Scholar 

  14. Cai H, Liu F, Zuo P, Huang G, Song Z, Wang T, et al. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Med Chem 2015;11:383–390.

    Article  CAS  Google Scholar 

  15. Wang F, Tipoe GL, Yang C, Nanji AA, Hao X, So KF, et al. Lycium barbarum polysaccharide supplementation improves alcoholic liver injury in female mice by inhibiting stearoyl-CoA desaturase 1. Mol Nutr Food Res 2018;62:e1800144.

    Article  Google Scholar 

  16. Zhou L, Liao W, Chen X, Yue H, Li S, Ding K. An arabinogalactan from fruits of Lycium barbarum L. inhibits production and aggregation of Abeta42. Carbohydrate Polymers 2018;195:643–651.

    Article  CAS  Google Scholar 

  17. Wang X, Pang L, Zhang Y, Xu J, Ding D, Yang T, et al. Lycium barbarum polysaccharide promotes nigrostriatal dopamine function by modulating PTEN/AKT/mTOR pathway in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson’s disease. Neurochem Res 2018;43:938–947.

    Article  CAS  Google Scholar 

  18. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith FF. Colorimetric method for determination of sugars and related substances. Analytical Chem 1956;2:350–356.

    Article  Google Scholar 

  19. Huang XJ, He CJ, Liang S, Wang J, Li J, Yang GZ, et al. Veratrilla baillonii franch could alleviate lipid accumulation in LO2 cells by regulating oxidative, inflammatory, and lipid metabolic signaling pathways. Front Pharm 2020;11:575772.

    Article  CAS  Google Scholar 

  20. Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015;308:E1389–E20.

    Article  Google Scholar 

  21. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010;375:2267–2277.

    Article  CAS  Google Scholar 

  22. Hagberg CE, Mehlem A, Falkevall A, Muhl L, Fam BC, Ortsater H, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 2012;490:426–430.

    Article  CAS  Google Scholar 

  23. Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protocols 2013;8:1149–1154.

    Article  Google Scholar 

  24. Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, et al. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol 2008;28:1982–1988.

    Article  CAS  Google Scholar 

  25. Chella Krishnan K, Kurt Z, Barrere-Cain R, Sabir S, Das A, Floyd R, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Systems 2018;6:103–115.e107.

    Article  CAS  Google Scholar 

  26. Yenki P, Khodagholi F, Shaerzadeh F. Inhibition of phosphorylation of JNK suppresses Aβ-induced ER stress and upregulates prosurvival mitochondrial proteins in rat hippocampus. J Mol Neurosci 2013;49:262–269.

    Article  CAS  Google Scholar 

  27. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, et al. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 2014;39:1322–1331.

    Article  CAS  Google Scholar 

  28. Navarro E, Gonzalez-Lafuente L, Perez-Liebana I, Buendia I, Lopez-Bernardo E, Sanchez-Ramos C, et al. Heme-oxygenase I and PCG-1alpha regulate mitochondrial biogenesis via microglial activation of alpha7 nicotinic acetylcholine receptors using PNU282987. Antioxidants Redox Sign 2017;27:93–105.

    Article  CAS  Google Scholar 

  29. Rayamajhi N, Kim SK, Go H, Joe Y, Callaway Z, Kang JG, et al. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxidative Med Cell Longevity 2013;154279.

  30. Jia JJ, Zhang X, Ge CR, Jois M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity, and diabetes. Obesity Rev 2009;10:519–526.

    Article  CAS  Google Scholar 

  31. Adams SH. Uncoupling protein homologs: emerging views of physiological function. J Nutr 2000;130:711–714.

    Article  CAS  Google Scholar 

  32. Dalgaard LT, Andersen G, Larsen LH, Sorensen TI, Andersen T, Drivsholm T, et al. Mutational analysis of the UCP2 core promoter and relationships of variants with obesity. Obesity Res 2003;11:1420–1427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhang YN and Yang JJ contributed to the conception and design of this work. Zhang YN, Guo YQ and Fan YN performed the experiments. Tao XJ and Gao QH contributed to data analyses. Zhang YN and Guo YQ wrote the manuscript. All authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Jian-jun Yang.

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supported by National Natural Science Foundation of China (No. 81660537), Special Talents Start-up Project of Ningxia Medical University (No. XT2018009) and Natural Science Foundation of Ningxia (No.2020AAC03163)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yn., Guo, Yq., Fan, Yn. et al. Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model. Chin. J. Integr. Med. 28, 975–982 (2022). https://doi.org/10.1007/s11655-021-3309-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-021-3309-6

Keywords

Navigation