Skip to main content
Log in

Strahlentherapie mit Protonen bei Hirntumoren

Irradiation of brain tumors with proton beam therapy

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Bei der Behandlung von Hirntumoren pädiatrischer und erwachsener Patienten stellt die Strahlentherapie eine regelhaft angewendete Behandlungsmodalität dar. Die Protonentherapie ist eine innovative Art der Bestrahlung, mit der die therapeutische Breite weiter verbessert werden soll. Aufgrund der technisch-physikalischen Besonderheiten kann mittels Protonentherapie eine bessere Normalgewebsschonung erreicht werden, während die Zielvolumenerfassung i. d. R. sehr ähnlich zur Standard-Photonentherapie ist. Dabei wird die biologische Strahlenwirkung unter Berücksichtigung eines Korrekturfaktors von 1,1 („relative biological effectiveness“, RBE) als vergleichbar angenommen. Bei kindlichen Hirntumoren ist die Indikation zur Protonentherapie i. d. R. aufgrund der erhöhten Strahlenempfindlichkeit des sich noch entwickelnden Nervengewebes sowie aufgrund bereits vorliegender vergleichender Daten gegeben, die eine geringere Toxizität der Protonentherapie im Vergleich zu Photonen zeigen. Pädiatrische Tumoren werden möglichst in klinischen Studien oder zumindest analog nach der Empfehlung von Referenzzentren behandelt. Trotz der zunehmend breiteren Anwendung der Protonentherapie bei Erwachsenen weltweit fehlen noch belastbare Studiendaten zur geringeren Toxizität im Normalgewebe für die meisten Tumorarten. Es muss untersucht werden, ob und in welchen Patientengruppen sich die veränderte Dosisverteilung in klinisch relevante Vorteile übersetzt und damit den erhöhten Aufwand bzw. die vermehrten Kosten einer Protonentherapie rechtfertigt. Translationaler Forschungsbedarf besteht auch bei der Identifikation von besonders profitierenden Subgruppen und der Integration biologischer Erkenntnisse, insbesondere zur Variabilität der Protonen-RBE, in die optimierte Bestrahlungsplanung.

Abstract

Radiotherapy is a commonly used modality for treatment of brain tumors in children and adults. Proton therapy is one promising innovation in radiooncology aiming to further broaden the therapeutic window. Due to its unique physical properties, proton therapy has the potential to reduce the dose in surrounding normal tissue while target volume coverage is often similar to standard photon radiotherapy. The biological effect is assumed to be comparable with a correction factor of 1.1 (relative biological effectiveness, RBE). Pediatric brain tumors represent a common indication for proton therapy due to the high radiosensitivity of the developing brain and because comparative datasets have shown lower toxicity of proton versus photon radiotherapy. For further treatment optimization, children should be treated within clinical trials or at least according to recommendations given by reference centers. Despite the increasing use of proton therapy worldwide in adults, evidence for lower normal tissue toxicity is still lacking for most indications. Further clinical trials are needed to show whether and in which patient groups the theoretical advantages translate into clinically relevant improvements that justify the high effort and costs of this emerging treatment. Moreover, translational research is necessary to identify subgroups of patients with specific benefits from proton radiotherapy and to integrate biological knowledge, particularly concerning a variable proton RBE, into optimized treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

Verwendete Literatur

  1. Bodensohn R, Corradini S et al (2016) A prospective study on neurocognitive effects after primary radiotherapy in high-grade glioma patients. Int J Clin Oncol 21:642–650

    Article  CAS  Google Scholar 

  2. Laack NN, Brown PD (2004) Cognitive sequelae of brain radiation in adults. Semin Oncol 31:702–713

    Article  Google Scholar 

  3. Klein M, Heimans JJ et al (2002) Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet 360:1361–1368

    Article  CAS  Google Scholar 

  4. Weber DC, Lim PS et al (2019) Proton therapy for brain tumours in the area of evidence-based medicine. Br J Radiol 93:20190237

    Article  Google Scholar 

  5. Combs SE, Laperriere N et al (2013) Clinical controversies: proton radiation therapy for brain and skull base tumors. Semin Radiat Oncol 23:120–126

    Article  Google Scholar 

  6. Kazda T, Jancalek R et al (2014) Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol 9:139

    Article  Google Scholar 

  7. Sherman JC, Colvin MK et al (2016) Neurocognitive effects of proton radiation therapy in adults with low-grade glioma. J Neurooncol 126:157–164

    Article  CAS  Google Scholar 

  8. Adeberg S, Harrabi SB et al (2016) Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma: A dosimetric comparison. Strahlenther Onkol 192(11):770–779

    Article  CAS  Google Scholar 

  9. Harrabi SB, Bougatf N et al (2016) Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlenther Onkol 192(11):759–769

    Article  CAS  Google Scholar 

  10. Noel G, Gondi V (2016) Proton therapy for tumors of the base of the skull. Chin Clin Oncol 5:51

    Article  Google Scholar 

  11. Laprie A, Hu Y et al (2015) Paediatric brain tumours: a review of radiotherapy, state of the art and challenges for the future regarding protontherapy and carbontherapy. Cancer Radiother 19:775–789

    Article  CAS  Google Scholar 

  12. Ares C, Hug EB et al (2009) Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys 75(4):1111–1118

    Article  Google Scholar 

  13. Greenberger BA, Yock TI (2020) The role of proton therapy in pediatric malignancies: Recent advances and future directions. Semin Oncol 47:8–22

    Article  CAS  Google Scholar 

  14. Ajithkumar T, Price S et al (2017) Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 18:e91–e100

    Article  Google Scholar 

  15. Shih HA, Sherman JC et al (2015) Proton therapy for low-grade gliomas: Results from a prospective trial. Cancer 121:1712–1719

    Article  Google Scholar 

  16. Pulsifer MB, Sethi RV et al (2015) Early cognitive outcomes following proton radiation in pediatric patients with brain and central nervous system tumors. Int J Radiat Oncol Biol Phys 93:400–407

    Article  Google Scholar 

  17. Yock TI, Bhat S et al (2014) Quality of life outcomes in proton and photon treated pediatric brain tumor survivors. Radiother Oncol 113:89–94

    Article  Google Scholar 

  18. Fukushima H, Fukushima T et al (2017) Co-morbidity and quality of life in childhood cancer survivors treated with proton beam therapy. Pediatr Int 59(10):1039–1045. https://doi.org/10.1111/ped.13323

    Article  CAS  PubMed  Google Scholar 

  19. Kahalley LS, Ris MD et al (2016) Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J Clin Oncol 34:1043–1049

    Article  CAS  Google Scholar 

  20. Thomas H, Timmermann B (2019) Paediatric proton therapy. Br J Radiol 93:20190601

    Article  Google Scholar 

  21. Marta GN, Murphy E et al (2015) The incidence of second brain tumors related to cranial irradiation. Expert Rev Anticancer Ther 15:295–304

    Article  CAS  Google Scholar 

  22. Hess CB, Thompson HM et al (2016) Exposure risks among children undergoing radiation therapy: considerations in the era of image guided radiation therapy. Int J Radiat Oncol Biol Phys 94:978–992

    Article  Google Scholar 

  23. Mizumoto M, Oshiro Y et al (2017) Proton beam therapy for pediatric brain tumor. Neurol Med Chir 57:343–355

    Article  Google Scholar 

  24. Verma V, Mishra MV et al (2016) A systematic review of the cost and cost-effectiveness studies of proton radiotherapy. Cancer 122:1483–1501

    Article  Google Scholar 

  25. Mailhot Vega R, Kim J, Hollander A et al (2015) Cost effectiveness of proton versus photon radiation therapy with respect to the risk of growth hormone deficiency in children. Cancer 121:1694–1702

    Article  Google Scholar 

  26. Eaton BR, Esiashvili N et al (2016) Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: a comparison of disease control and overall survival. Int J Radiat Oncol Biol Phys 94:133–138

    Article  Google Scholar 

  27. Marks LB, Yorke ED et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3 Suppl):S10–S19

    Article  Google Scholar 

  28. Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint,dose, and linear energy transfer. Phys Med Biol 59(22):R419–R472

    Article  Google Scholar 

  29. Lühr A, von Neubeck C et al (2018) Relative biological effectiveness in proton beam therapy-current knowledge and future challenges. Clin Transl Radiat Oncol 9:35–41

    Article  Google Scholar 

  30. Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59:R419–R472. https://doi.org/10.1088/0031-9155/59/22/R41930

    Article  PubMed  Google Scholar 

  31. Eulitz J, Lutz B, al etz (2019) A Monte Carlo based radiation response modelling framework to assess variability of clinical RBE in proton therapy. Phys Med Biol 64:22502031

    Article  Google Scholar 

  32. Eulitz J, Troost EGC et al (2019) Predicting late magnetic resonance image changes in glioma patients after proton therapy. Acta Oncol 58(10):1536–1539

    Article  CAS  Google Scholar 

  33. Giantsoudi D, Roshan VS et al (2016) Incidence of CNS injury for a cohort of 111 patients treated with proton therapy for medulloblastoma: LET and RBE associations for areas of injury. Int J Radiat Oncol Biol Phys 95(1):287–296. https://doi.org/10.1016/j.ijrobp.2015.09.015

Weiterführende Literatur

  1. Peeler CR, Mirkovic D et al (2016) Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol 121:395–401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seidlitz.

Ethics declarations

Interessenkonflikt

A. Seidlitz, K. Gurtner, J. Eulitz, S. Appold und M. Krause geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Schackert, Dresden

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidlitz, A., Gurtner, K., Eulitz, J. et al. Strahlentherapie mit Protonen bei Hirntumoren. best practice onkologie 16, 394–401 (2021). https://doi.org/10.1007/s11654-021-00304-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-021-00304-0

Schlüsselwörter

Keywords

Navigation