
Advances in Data Analysis and Classification
https://doi.org/10.1007/s11634-024-00594-6

REGULAR ART ICLE

Liszt’s Étude S.136 no.1: audio data analysis of two different
piano recordings

Matteo Farnè1

Received: 2 September 2022 / Revised: 23 March 2024 / Accepted: 26 March 2024
© The Author(s) 2024

Abstract
In this paper, we review the main signal processing tools of Music Information
Retrieval (MIR) from audio data, and we apply them to two recordings (by Leslie
Howard and Thomas Rajna) of Franz Liszt’s Étude S.136 no.1, with the aim of uncov-
ering the macro-formal structure and comparing the interpretative styles of the two
performers. In particular, after a thorough spectrogram analysis, we perform a segmen-
tation based on the degree of novelty, in the sense of spectral dissimilarity, calculated
frame-by-frame via the cosine distance. We then compare the metrical, temporal and
timbrical features of the two executions by MIR tools. Via this method, we are able
to identify in a data-driven way the different moments of the piece according to their
melodic and harmonic content, and to find out that Rajna’s execution is faster and less
various, in terms of intensity and timbre, than Howard’s one. This enquiry represents
a case study able to show the potentialities of MIR from audio data in supporting tra-
ditional music score analyses and in providing objective information for statistically
founded musical execution analyses.

Keywords Music information retrieval · Audio data · Spectral analysis · Execution
analysis · Liszt

Mathematics Subject Classification 00A65 · 60G35 · 62M15

1 Introduction

The digitization process in which we are immersed is affecting many fields of human
activity, from business to personal relationships. This new digital age has led to the
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introduction of radically new technologies for communicating and storing information,
making available vast and ever-expanding sources of data in digital format. Musicol-
ogy, too, has recently been invested in this revolution, thanks to the great expansion
of specific computational tools and data sources. In fact, the modern ease of data
transmission has given rise to the possibility of performing, by means of ad hoc com-
putational routines, a statistical analysis of a piece ofmusic based on a symbolic digital
representation, or on one or more recorded executions of it. This process gradually
led to the emergence of a new discipline, called computational musicology Meredith
(2016).

Although supported for centuries by paper sources, musicology has always been
the subject of very fruitful application of mathematical concepts, such as algebraic
topology, set theory and number theory Fauvel et al. (2006), long before the advent
of modern computers. This occurred because a piece of music can be represented as
a set of sequences, understood as ordered collections, of musical parameters over a
number of time points. Considering the symbolic digital representation of a music
sheet, in fact, all the elements of music (Martineau 2008), like harmony, melody,
rhythm etc., could be simply serialized and analyzed by the tools of (discrete) time
series analysis (Priestley 1981). This type of investigation remains strongly linked
to traditional musical score analysis, although today it can be performed with digital
tools.

On theother hand, since any recordedmusic object is essentially a discrete collection
of signals sampled over time, their analysis requires the discovery ofmusic information
from the recovered signals in absence of a direct mapping to the original music score.
The analysis of audio content Lerch (2012) requires tools from signal processing
(Little 2019) to perform Music Information Retrieval (MIR), which may complement
both score analysis and direct listening.

Throughout history, music data types include: sheet music data, i.e., graphical rep-
resentations of music via symbols; symbolic data, referring to musical notation in a
digital format, likeMIDI (Musical InstrumentDigital Interface) orMusicXML(eXten-
sibleMarkup Language) format; audio data, encoding the acoustic waves produced by
a physical execution, typically inMP3 (MPEG-1Audio Layer III) orWAV (WAVeform
audiofile) format. Symbolic music data contain the relevant information for music-
theoretical analysis, as opposed to audio data, containing the musical recordings.

While most of research on classical music data is focused on analyzing a huge
number of audio traces pertaining to different epochs Nakamura and Kaneko (2019),
composers Georges and Nguyen (2019), or pieces Weiss et al. (2019), in this paper we
focus on how to employ standard MIR tools to perform the analysis of a single piece
from audio data, and to compare objectively two different recordings of it. In fact,
MIR may uncover from audio recordings hidden similarities and unexpected patterns,
which may be missed by a music score analyst. For this reason, our aim is to present
a case study able to show how the data-driven extraction of musical features can
complement traditional score analyses, or catch the difference between two different
executions of a simple piece. Our article’s style is intentionally divulgative, with the
declared scope to interest unfamiliar readers to this topic.

For this purpose, we have chosen to exploit Franz Liszt’s Étude S.136 no.1 because
of its clear recognizability, as the first study (in C major) of a collection of piano
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studies. We have chosen the first version of it, instead of the more popular definitive
version, Transcendental Étude S.139 no.1, because S.139 no.1 is much more virtuoso
in nature, and this could obscure the underlying harmonic and melodic patterns, for
instance. We consider two recordings of Franz Liszt’s Étude S.136 no.1, one by Leslie
Howard (1994), and the other by Thomas Rajna (1979), because they are two of the
most renowned experts of Liszt’s piano performance, with a contrastive execution
style.

The paper proceeds as follows. In Sect. 2, we present the different tasks of MIR
with respect to symbolic and audio music data analysis. In Sect. 3, we review the MIR
statistical techniques used to estimate the spectrogram, to perform a segmentation
based on spectral features, to retrieve harmonic patterns by estimating the chromagram,
to recover temporal and metrical structures, and to analyze timbrical features from
audio data. Our review moves from the MIR toolbox in Matlab (Lartillot et al. 2008),
which is a complete collection of tools in this respect. In particular, we describe in
Sects. 3.1, 3.2, and 3.3 the spectral analysis tools needed to recover frequency and
intensity patterns over time by a WAV/MP3 trace, we explain how to automatically
segment it in Sect. 3.4 according to its spectral content over time,we present in Sect. 3.5
the harmonic-melodic analysis over time based on the estimated chromagram, and we
show how to derive temporal, metrical and timbrical parameters in Sect. 3.6. In Sect.
4, we employ the described tools to the two recordings of Franz Liszt’s Étude S.136
no.1, with the aim to perform a systematic macro-formal data-driven analysis, and
to compare Howard’s recording with the same Étude recording by Thomas Rajna, to
identify the different interpretative styles. Finally, Sect. 5 provides some concluding
remarks.

2 MIR between symbolic and audio data

In Li et al. (2014), it is argued that MIR systems were created to provide music
recommendations tailored to a person’s tastes and needs, and therefore should be
based on four main musical characteristics: genre, emotion, style, and similarity. This
has opened up significant computational challenges: how to translate these qualitative
characteristics into numerical terms? Furthermore, how to infer from symbolic data
(such as MIDI files) or audio data (such as actual recordings encoded in WAV/MP3
format) such characteristics?

In principle, these features can be inferred from both symbolic and audio data,
and the statistical methods used may overlap to some extent. While symbolic data
preserve a direct correspondence with the original musical score, audio data bring
relevant information not only about the musical text, but also about the musical per-
formance. This requires first of all a thorough estimation of spectral characteristics,
which represent the physical qualities of the recorded sound, instead of its abstract
symbolic representation, and has paved the way to analyze musical performance via
audio data analysis, beyond the musical score Lerch et al. (2021). In fact, the specific
recording is one empirical realization of a musical text, that may also substantially
differ from other recordings and from the theoretical realization represented by the
music score. This twofold nature of MIR analyses may also depend on the type of
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performed task: for instance, extracting tempo, intensity, and timbre mainly refers to
performance analysis, while retrieving key and chords mainly refers to score analysis.

MIR tasks can be grossly divided in three different categories:

1. Retrieval of spectral features over time frames: time-frequency spectrum, based on
Short-Time Fourier Transform (STFT), amplitude spectrum, envelope spectrum,
spectral statistics.

2. Retrieval of functional musical features, like beats, tempo, rhythm, key, timbre and
chromagram (i.e. the harmonic characterization in terms of the 12 pitch classes at
each retrieved beat).

3. More difficult tasks like recommender system, genre classification, musical source
separation, audio tagging, segmentation, and automatic music transcription.

These tasks are mostly already included in the MIR packages of modern statisti-
cal/mathematical software, which typically work on MP3 or WAV data, indifferently.
In particular, the MIR toolbox performs most of these tasks in Matlab, where the
built-in Audio toolbox and Signal Processing toolbox already performed many of
them (with less graphical features). Similarly, in Python the package LIBROSA is a
complete suite for music analysis in digital format. An overview of MIR toolboxes
can be found in Moffat et al. (2015), where one can realize that, beyond Matlab and
Phyton, relevant feature extraction tools are written in C++ and Javascript, among
others.

The difficult tasks mentioned above are usually referred to as high-level descriptors
Ras and Wieczorkowska (2010). Retrieving high-level descriptors requires a massive
use of statistical methodologies, like classification, clustering, dimension reduction,
text mining, neural networks. However, as widely explained in Müller (2015), high-
level descriptors are subject to the prior estimation of the functional musical features
described above, usually labelled as middle-level descriptors, that in turn rely on the
correct estimation of spectral features (the so called low-level descriptors).

Specific music signal processing tools have been developed for these purposes
Müller et al. (2011). For example, recovering hidden harmonic patterns requires first
to provide a characterization of the piece in terms of the 12 pitch classes, and then to
recover simultaneously onsets throughout the track. This means that, in advance, one
needs to estimate from the WAV/MP3 trace the onsets, i.e. the time points at which
musical events are occurring. Similarly, the detection of segment boundaries (which
can be seen as event location) requires first to estimate relevant music parameters, like
intensity, pitch or duration, across the recovered onsets, and then to label recovered
segments, whose degree of mutual similarity is estimated.

Exhaustive reviews on the retrieval of high-level descriptors include Kim et al.
(2010); Yang et al. (2018) for emotion recognition, Humphrey and Bello (2015);
Pauwels et al. (2019) for automatic chord estimation, Benetos et al. (2018) for auto-
maticmusic transcription, Cano et al. (2018) formusical source separation, Tzanetakis
and Cook (2002) for musical genre classification, Theodorou et al. (2014) for auto-
matic audio segmentation. Those tasks rely on crucial middle-level descriptor tasks
such as beat tracking, tempo estimation, and chroma retrieval. Foundational algo-
rithms for their solution can be found in Ellis (2007) and Ellis and Graham (2007),
respectively. In Sect. 3, we report the up-to-date techniques to retrieve themiddle-level
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and low-level descriptors relevant to the real signal analysis of Sect. 4, following the
Matlab MIR toolbox explained in Lartillot et al. (2008).

3 MIR and spectral analysis

The aim of this work is to practically show how to exploit the insights of Music
Information Retrieval (MIR) from audio data. Our guide in this journey will be the
Matlab MIR toolbox (Lartillot et al. 2008), which provides a detailed explanation of
many signal processing tools able to retrieve music information from audio data. In
particular, the MIR toolbox in Matlab can estimate and plot spectral features, retrieve
functional music parameters, and propose a spectrum-based segmentation of any input
WAV/MP3 trace. In this section, following Priestley (1981), we briefly review the
foundations of such signal processing tools, in order to prepare the ground for our
subsequent case study.

3.1 Spectrum definition

With the aim to get a mathematically founded understanding of a music piece, we
consider the inputWAV/MP3 trace as a sequence of signals xt , t = 1, . . . , T , discrete-
time and real-valued, where T is the total number of samples. The observed signal
xt can be seen as a single empirical realization of the underlying stochastic process
Xt , usually re-centered in order to be zero-mean (i.e., E(Xt ) = 0) across the samples.
Audio traces contain a high number of samples (typically, 44,100 per second), each
one bringing a value between −1 and 1.

In order to introduce the notion of spectrum, it is worth recalling the definition of
elementary wave in the real field, which is defined as any function f (t), t ∈ R, such
that:

f (t) = r cos (ωt − φ) = r cosω(t − ξ), (1)

where ω ∈ [−π, π ] is the angular frequency (or fundamental frequency) in radians,
f = ω/2π , with f ∈ [− 1

2 ,
1
2 ], is the normalized frequency, that represents the number

of cycles per time unit, p = 1/ f is the period, i.e. the time necessary to complete a
whole cycle, r is the wave amplitude, φ is the phase in radians, ξ = φ/ω is the phase
shift in time units. The frequencies 2ω, 3ω, . . . are the partial harmonics. We refer to
Fig. 1 to display all the listed features.

The sequence of values xt , t = 1, . . . , T , is the time domain representation
of the recorded signal. From those values, it is convenient to derive the Fourier
transform dx (ω) of xt , defined at each frequency ω ∈ [−π, π ] as dx (ω) =
1√
2π

∑T
t=1 xt exp{−2π iω}. The Fourier transform dx (ω) allows to provide the fre-

quency domain representation of the recorded signal. The corresponding stochastic
quantity is dX (ω) = 1√

2π

∑T
t=1 Xt exp{−2π iω}.

Even if the stochastic process Xt is not periodic, it is possible to measure the
contribution of each frequency ω to the total power of Xt (i.e., its variance E(X2

t )), as
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Fig. 1 Elementary wave with fundamental frequencyω = 2π
100 radians and f = 1

100 cycles, period p = 100
time units, amplitude r = 10, phase φ = π

4 radians and ξ = 12.5 time units

h(ω) = limT→∞ E

( |dX (ω)|2
2T

)
, where |x | denotes the modulus of the complex number

x = a + bi , defined as |x | = √
a2 + b2. The limit h(ω) is defined as the power

spectral density (or spectrum) of Xt at frequency ω, and a sufficient condition for its
existence is the absolute integrability of Xt , i.e.

∫
DX

|Xt |dt < ∞, with DX = [−1, 1].
The spectrum of Xt represents the contribution of frequency ω to the total power of
the process Xt . Parseval’s theorem (see Percival and Walden (1993)) ensures that the
integral of all spectra across the frequency range equals the total power of the process:∫ π

−π
h(ω)dω = E(X2

t ). More, the spectrum of real-valued discrete-time stochastic
processes is periodic over the frequency range [0, π ] (also see Priestley (1981)).

Once recalled that a frequency of 1 Hertz (Hz) is equal to 2π radians per second
(rad/s), such that 1 rad/s equals 0.1591549 Hz, we can note that the spectrum may
actually be estimated at frequencies expressed in Hertz. It is possible to establish an
approximate correspondence between the twelve notes of the chromatic scale at each
register (as identified by the 12 equal temperament, 12TET) and their Hertz values, that
may also be expressed as wave time periods. This correspondence may be imprecise
for several reasons: there might be different tuning systems (other than 12TET) or
intonations (other than A4=440 Hz), there can be intonation inaccuracies (which are
still understood as a certain pitchby the listener), and there are simplymany frequencies
that do not match a particular pitch of any discrete system (including 12TET). For this
reason, as explained in Sect. 3.5, the Matlab MIR toolbox allocates recorded pitches
to specific notes of the chromatic scale with a certain tolerance around the expected
Hertz value.

3.2 Spectrum estimation

Even if the spectrum h(ω) is defined on a continuous frequency range, because Xt

is not periodic, it is actually estimated on a discrete set of frequencies: the Fourier
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frequencies, defined as ωh = 2π fh , fh = h/T , h = 0, 1, . . . , [T /2] ([.] denotes
the integer part). The discrete Fourier transform d(ω)x is actually computed via the
Fast Fourier Transform (FFT), that presents many possible variants (Takahashi 2019).
Denoting by ĥ(ωh) the estimated spectrum at frequencies ωh , h = 0, 1, . . . , [T /2],
we note that it naturally holds ĥ(−ωh) = ĥ(ωh), as for real-valued discrete-time
stochastic processes the spectrum h(ω) is periodic over [0, π ].

The most immediate estimator of the spectrum at each frequency ωh = 2π fh ,
with fh ∈ [0, 1

2 ], would be the natural periodogram I (ωh), defined as I (ωh) =
dx (ωh)dx (ωh)

∗, where dx (ωh)
∗ denotes the complex conjugate of dx (ωh). How-

ever, I (ωh) is not a consistent estimator of h(ωh), which means that the estimation
error of I (ωh) does not disappear as T → ∞ (see Priestley (1981), Chap. 6).
In order to get a consistent estimate of h(ωh), a possible way is to calculate the
smoothed periodogram, which can be defined as the spectral density estimator
ĥ(ωh) = ∑[T /2]

k=−[T /2] I (ωh)W (ωh −ωk), where the functionW (θ), with θ = ωh −ωk

and θ ∈ [−π, π ], is the spectral window (see Brillinger (2001), Chap. 5). W (θ) is a
function of θ , such that W (θ) = W (−θ) and argmaxθ W (θ) = 0. There are many
different kinds of spectral windows, as shown in Priestley (1981), paragraph 6.2.3.
The spectral window choice impacts on the bias and the variance of ĥ(ωh).

The estimated spectra, or power spectral densities, are nonnegative quantities by
definition. If the signal is discrete-time and real-valued, the spectrum is real as well,
and the complex modulus |̂h(ωh)|, that is the amplitude spectrum, actually coincides
with ĥ(ωh). The estimated root mean square energy RMS, displaying the average

amount of energy across frequencies, is defined as RMS =
√

1
[T /2]

∑[T /2]
h=0 |̂h(ωh)|2.

The definition of spectral density h(ω) implicitly presupposes that the recurrence
structure behind the stochastic process is constant over time (see Stoica and Moses
(2005)). The intensity and the direction of time recurrences can be measured by

the auto-covariance function C(s) = E

(
1
T

∑T
t=s+1 Xt Xt−s

)
and the autocorrela-

tion function R(s) = C(s)
C(0) or order s, with s = 0, 1, . . . It naturally holds that

R(s) ∈ [−1, 1] for any s, with R(0) = 1. R(s) expresses the expected correlation
intensity between the signal Xt and the signal Xt−s (s steps behind). C(s) and R(s)
are symmetric functions, i.e., C(−s) = C(s) and R(−s) = R(s). If the recurrence
structure of the stochastic process Xt is constant over time, it means thatC(s) and R(s)
are constant for t = 1, . . . , T , and that the zero-mean process Xt is covariance sta-
tionary. C(s) and R(s), s = 0, 1, . . ., can be estimated as Ĉ(s) = 1

T−|s|
∑T

t=s Xt Xt−s

and R̂(s) = Ĉ(s)
Ĉ(0)

, respectively.

3.3 Spectrogram

A music piece is typically characterized by a continuous change in the recurrence
structure, such that the assumption of covariance stationarity is pretty unrealistic. For
this reason, the observed signal can only assumed to be locally stationary. In order
to provide spectral estimates, the signal is thus divided in many partially overlapping
frames. On each of these small intervals, the stationarity assumption is assumed to
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hold, and the spectrum is consequently estimated. The discrete Fourier transform
is estimated over each frame by the Short-Time Fast Fourier Transform (STFT). The
sequence of estimated spectra over the partially overlapping frames is the spectrogram,
that provides a time-frequency representation of the observed signal (Sejdić et al.
2009).

The spectral window choice varies across available functions in software packages
(see Gharaibeh (2021) for a recent comparison of spectral windows). The function
mirspectrum in the MIR toolbox uses the Hanning window by default. Spectral statis-
tics like spectral centroid, entropy, and flux (i.e., spectral change) over time frames
may also be estimated via the functions mircentroid, mirentropy and mirflux, respec-
tively. The function mirenvelope extracts instead the spectral envelope, which is the
spectral strength over time frames, as follows (see MIRtoolbox 1.8.1 User’s Manual,
pp. 30–36 for more details):

(1) Full-wave rectification of Xt , that corresponds to the reflection of the negative
wave lobes of Xt to the positive field (absolute value function).

(2) Application of Infinite Impulse Response (IIR) filter to the output of (1).
(3) Downsampling, by dividing the sampling rate by 16.

Any spectral plot may appear different according to the frequency scale used, visible
in the x-axis. Frequencies may be expressed in Hertz, but also in alternative ways, like
inMel orBark scales, that provide a sequence of frequency bands, according to human
ear perception. More, frequencies can be expressed in Cents too, assuming that one
octave equals 1200 Cents. Concerning the y-axis, spectral values may be reported in
the original or in the decibel (dB) scale, or normalized by the maximum value across
frequencies.

3.4 Segmentation

Music data mining is described in Hand (2002) as follows:

In music data mining one seeks to “detect”, “discover”, “extract” or “induce”
melodic or harmonic (sequential) patterns in given sets of composed or impro-
vised works.

In more detail, a sequential pattern is therein defined as a set of music segments shar-
ing a significant degree of resemblance, meaning similarity over a certain threshold,
according to some measure. For the purpose of MIR-based segmentation, which is
a boundary identification procedure according to some macro-formal criterion, it is
therefore crucial to properly define the appropriate notion of similarity. Such choice
may help traditional, score-based segmentations, due to the capability of the machine
to identify hidden similarities over time.

Let us denote the spectrogram as ĥτ (ωh), h = 1, . . . , [T /2], τ = 1, . . . , T . The
spectral vector at frame τ is denoted by ĥτ . The most common similarity measure
between two estimations of the spectrum at different frames is the cosine distance,

that is defined as scos(̂hτ ′ , ĥτ ′′) = 1 − |〈̂hτ ′ ,̂hτ ′′ 〉|
‖̂hτ ′ ‖‖̂hτ ′′ ‖ , where τ ′, τ ′′ = 1, . . . , T , and

|〈̂hτ ′ ,̂hτ ′′ 〉|
‖̂hτ ′ ‖‖̂hτ ′′ ‖ is the cosine of the angle between the two spectral vectors at τ ′ and τ ′′.
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The similarity matrix of the framed spectrum, obtained via the function mirsimatrix,
collects the pairwise similarity measures for each pair of frames. The functionmirnov-
elty estimates instead the degree of novelty of the spectrum at each frame compared
to the previous one, via the multi-granular approach (see Lartillot et al. (2013)), that
performs the task by comparing the spectrum of each new frame with the spectra
estimated over a homogenous segment of previous frames, thus detecting the piece
macro-formal markers and their degree of importance. In this case, the similarity

measure used is typically the function sexp(̂hτ ′ , ĥτ ′′) = exp
{
− |〈̂hτ ′ ,̂hτ ′′ 〉|

‖̂hτ ′ ‖‖̂hτ ′′ ‖
}
, further

normalized between 0 and 1. This is the method called by default by the function
mirsegment, that automatically segments any WAV/MP3 trace, typically pre-framed
in 50ms long half-overlapping portions.

It is worth defining in a formal way spectral flux and novelty, explaining their con-
ceptual differences. The spectral flux at time frame τ is defined as 1

[T /2] ‖̂hτ − ĥτ−1‖2
where ‖·‖2 is the Euclidean norm. It is a descriptive measure which calculates spectral
variations across consecutive time frames. The novelty is instead a quantity estimated
in a more complex way. According to Lartillot et al. (2013), first, the exponential
similarity sexp(̂hτ ′ , ĥτ ′−1) is calculated between consecutive frames at each τ , until
sexp(̂hτ ′ , ĥτ ′−1) decreases and is lower than s̄exp(̂hτ ′ , ĥτ ′−1) − 2σ(sexp(̂hτ ′ , ĥτ ′−1)),
where s̄exp(̂hτ ′ , ĥτ ′−1) and σ(sexp(̂hτ ′ , ĥτ ′−1)) are themean and the standard deviation
of the exponential similarity measure over the current segment. When this condition
is no longer satisfied, the current segment ends and a new one starts in τ . At each
time frame τ , the recorded similarity measure is then sexp(̂hτ , ĥτ−), where τ− is
the previous segment boundary detected as just described. In the end, this similarity
measure will be normalized to stand between 0 and 1, and will be adaptive, as it mea-
sures the resemblance with reference to homogenous segments in the piece structure.
Note that, in principle, both flux and novelty can be estimated with objects other than
spectrograms, like autocorrelation functions or chromagrams (see Sect. 3.5).

3.5 Chromagram

Once the WAV/MP3 trace has been segmented determining segment boundaries by
novelty peak detection (see Sect. 3.4), wemay perform amelodic-harmonic analysis of
each segment by the function mirchromagram, which produces the chromagram, also
known asHarmonic Pitch Class Profile, of each segment Ellis andGraham (2007). The
chromagram is the redistribution, normalized to the maximum value, of the spectrum
over the twelve notes of the chromatic scale across all the registers. In this way, we
may both acquire melodic information (i.e., the most relevant notes for each segment)
and harmonic information (i.e., the most relevant chords behind each segment). This
results in a relative frequency histogram over the twelve pitch classes, where each pitch
class interval is centered on a specific note frequency (in Hertz) of the twelve, and
the pitch class intervals are equally wide and non-overlapping. The chromagram of a
piece allows to relate the segmentation based on spectral dissimilarity to the harmonic
content, thus providing a solid ground for the macro-formal analysis of any recorded
music signal, even in absence of its music score.
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3.6 Rhythm, tempo and timbre

When dealing with pulsation, rhythmical and temporal structures in music, the rele-
vant concept coming into play is recurrence. In fact, it is reasonable to estimate the
occurrences of the main musical events, the pulsation pace, the tempo and the metrical
structure by retrieving the recurrences in the estimated spectra or spectral envelope.
For any given WAV/MP3 music trace, the identification of beats (also called onsets),
i.e. the time points at which musical events are occurring, can be performed by the
function mirevents, that determines the most relevant peaks in the overall intensity to
disentangle two consecutive events across time frames, by deriving the peaks in the
estimated spectral envelope over time frames, as returned by mirenvelope.

The function mirtempo returns an estimate of the piece tempo, by calculating the
autocorrelation function of the output ofmirevents, and identifying the autocorrelation
peak, representing the most relevant time recurrence. The options Change and Metre
of mirtempo can display how tempo and rhythmical pulse evolve over time frames.
The former option is based on applying the just described technique to each time
frame individually, while the latter explores all the possible metrical pulses coherent
with the estimated tempo and then determines the most relevant ones (see Lartillot
and Grandjean (2019) for more details). Their results are plotted in beats per minute
(BPM) over time.

Finally, the function mirroughness estimates the degree of dissonance between
successive spectral peaks, i.e., the contrast between consecutive estimated spectra
(see MIRtoolbox 1.8.1 User’s Manual, pp. 140–142 for more details). These tools are
particularly important when comparing different executions of the same piece.

4 MIR-based analysis of Étude S.136 no.1

In this section, we apply the MIR statistical tools explained in Sect. 3 to the WAV
recording of Franz Liszt’s Étude S.136 no.1 by Leslie Howard, drawn by his piano
album “The Young Liszt” (Hyperion, 1994), and theMP3 recording of Thomas Rajna,
drawn by his album “Douze Etudes op.1 and Etudes d’execution transcendante” (CRD
Records, 1979). Our aim is to uncover the piece macro-formal structure from the
recorded traces and to perform a comparative analysis by using the MIR tools uncov-
ering intensity, metrical and timbrical structures, which are particularly important
when comparing different performances of the same piece, as they represent the dif-
ferent interpretative styles of the performers. We adopt as reference musical text the
work “Franz Liszt. Neue Ausgabe sämtlicher Werke”, which is the second complete
authentic edition of the music of Franz Liszt, published jointly by Edition Musica
Budapest and the Bärenreiter-Verlag Kassel from 1970 to 1985.

4.1 Spectral analysis

Wefirst load theWAV trace of Howard’s and theMP3 trace of Rajna’s recording by the
function miraudio, that automatically sums the two audio channels of each trace in a
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Fig. 2 Étude S.136 no.1: miraudio output, featuring the waveforms of Howard’s (left panel) and Rajna’s
(right panel) execution

single mono channel. In Fig. 2, we can note that Howard’s version (left panel) is 74.2 s
long, with silence frames at the beginning and at the end. The wave peaks exactly
correspond to the frames with extreme intensity: for instance, the large oscillations of
the interval [55–60 s] correspond to the cadence in forte of bars 29–30 with chords
at both hands, while the smallest intensity region around 25 s corresponds instead
to bar 14. Both fragments are reported in Fig. 3. On the contrary, Rajna’s version
(right panel), 59 s long, does not present so relevant differences between the different
moments of the piece, even if the same waveform shape is clearly recognizable.

In Fig. 4, we report the spectrogram of the recording by Leslie Howard, obtained
via the function mirspectrum. That plot contains in white the spectral bands over time
frames, like a radiography of the music trace. Looking at the spectrogram, we can
immediately perceive the frequency evolution over time, thus identifying repetitions,
ascending/descending patterns and sudden shifts.Wehave reported specific excerpts of
the Étude during the exposition, butwe always refer for an overview to the "Appendix",
where the whole macro-formal and harmonic analysis is reported, and to the music
score with comments attached as a Supplement.

A close look at Fig. 4, containing the spectrogram of the trace of Howard’s exe-
cution, allows to recognize several patterns. First, the spectral bands in the regions
[4–7 s] and [8–11 s] are very similar. This occurs because those intervals represent
bars 1–2 and 3–4, that contain two repetitions of the same element, reported in Fig. 5.
That motif, repeated twice, is the key element of the first musical phrase (bars 1–4).
More, we can see that across the regions [38–41 s] and [42–45 s] the spectral bands
look very similar to the regions [4–7 s] and [8–11 s]. This cannot surprise, because they
represent bars 20–23, where the first phrase is repeated. Also, regions [12–15 s] and
[16–19 s] roughly present the same spectral bands, as they contain the same element,
reported in Fig. 5 and repeated in bars 5–6 and 7–8, that constitute together the second
phrase. Another repetition lies in the Coda, bars 31–35, where an arpeggio structure
is recurring five times, as it can be inferred at the right end of the plotted spectrogram,
across the region [60–70 s].

123



M. Farnè

Fig. 3 Étude S.136 no.1: bars 14–15 and bars 29–30

Across the region [19–24 s], we observe a sharp and continuous increase of the
frequency range, resembling the continuous ascent of bars 9–10, that contain two-
octave scales in C major on both hands, one third apart (Fig. 6). Another continuous
ascent is clearly visible across the region [44–52 s], representing bars 24–27, reported
in Fig. 7. The region [25–38 s] is instead more heterogenous, even if two descending
patterns, roughly located across intervals [25–30 s] and [31–36 s], are clearly visible.
The first one corresponds to bars 11–13, reported in Fig. 8, the second one corresponds
to bars 15(Q4)-17, reported in Fig. 9.

The plotted spectral shape also allows to spot the sudden upward shift of bar 28,
clearly visible in the region [52–55 s] (see Fig. 10). Across the interval [55–60 s],
corresponding to bars 29–30, we then notice a very wide frequency range, resembling
the cadence in forte with chords on both hands reported in Fig. 3.

As previously explained, the spectrogram is mostly similar when comparing differ-
ent recordings of the same piece, as it essentially represents the frequencies over time,
that strictly depend on the given music score. On the contrary, the spectral envelope,
featuring intensity over time, may present much more variety.

Figure 11 shows the spectral envelope of Howard’s (left panel) and Rajna’s (right
panel) recording. In Howard’s version, the envelope peak clearly stands in the region
[55–60 s], corresponding to the cadence of bars 29–30. The envelope profile of regions
[4–7 s] and [8–11 s] is very similar, as they both contain the motif reported in Fig. 5
(bars 1–2). For the same reason, regions [38–41 s] and [42–45 s] present a similar
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Fig. 4 Étude S.136 no.1 (Howard’s version): mirspectrum output with Frame option and frequency range
[27.5Hz, 4000Hz], frame length 50ms and overlapping proportion 0.5, and mirspectrum output with Bark
option, featuring spectral values in the Bark scale
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Fig. 5 Étude S.136 no.1: bars 1–2 and bars 5–6

Fig. 6 Étude S.136 no.1: bars 9–10

envelope profile, even if the estimated envelope is higher, thus showing that the second
repetition is played louder by the pianist.

Then, the interval [18–27 s] presents a continuous descent. It roughly corresponds
to bars 9–14, which are played increasingly piano, starting from the forte of bar 10
(see Fig. 6). That descent is followed by a sudden rebound around 30 s, corresponding
to bar 15 (see Fig. 3). A stable intensity region ([30–38 s]), corresponding to bars
16–19, is then followed by a strong upturn, corresponding to bar 20, where the first
phrase is repeated. The sudden power drop around 52 s corresponds to bar 28, due
to the high register shift, repeating the right hand pattern of bar 27 one octave above
(see Fig. 10). As already highlighted, the cadence in C major ([55–60 s]) presents
the most outstanding envelope values. Finally, the plot interestingly shows that in the
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Fig. 7 Étude S.136 no.1: bars 24–27

Fig. 8 Étude S.136 no.1: bars 11–13

Fig. 9 Étude S.136 no.1: bars 16–17

Fig. 10 Étude S.136 no.1: bars 27–28
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Fig. 11 Étude S.136 no.1:mirenvelope output with the default Filter option, featuring the envelope spectrum
of Howard’s (left panel) and Rajna’s (right panel) execution

Coda ([60–70 s]) the first four arpeggios are played with increasing intensity, while
the last one shows a power decrease, just before the last C2 closing the piece.

In Rajna’s version, the intensity differences appear much less relevant than in
Howard’s one. However, we can note that, in the final part, the pattern concerning
the consecutive arpeggios is still the same. In addition, the peaks at 32 s and 35 s
represent the starts of the two repetitions of the motif in Fig. 5, at bars 20 and 22. The
peak at 40 s represents the end of the ascent of Fig. 7 (bar 27). The main cadence,
around 45 s, is instead not as prominent as before. The local peak around 15 s repre-
sents the end of the ascent of Fig. 3, at bar 11(Q1). The plot also shows that the first
part of Rajna’s execution does not present a remarkable variety of colors compared to
Howard’s. This is confirmed by the spectral flux of both recordings (Fig. 12), where
we can see that Howard’s recording (left panel) presents a much more pronounced
variation than Rajna’s recording (right panel).

The described intensity differences between the two recordings would be very
difficult to detect in real time even by an experienced human listener, due to their
volatile nature and to the possible presence of external noise. Only repeated listening
in a quiet environment could guarantee to pick up some of these differences, which
would still remain questionable without a systematic spectral analysis of quantitative
nature such as that presented.

4.2 Tempo, rhythm and timbre

Figure 13 shows the onset curve derived from the functionmirevents applied to the two
different recordings. We can see that the event curve of Howard’s version (left panel)
presents a much more pronounced trend than Rajna’s version (right panel), reflecting
the envelope curve (Fig. 11).

The estimated tempo is 118.2959 beats per minute (BPM) for Howard’s and
154.5757 BPM for Rajna’s execution, which is much faster, while the tabulated tempo
in the music score is 132 BPM. We can note in Fig. 14 that both pianists tend to
increase the execution tempo, although starting from different levels. The climax is
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Fig. 12 Étude S.136 no.1: mirflux output, featuring the spectral flux of Howard’s (left panel) and Rajna’s
(right panel) execution

reached around 55 s (cadence area) by Howard, while Rajna reaches the climax around
30 s (bar 20, repetition of the first phrase) and at the end (the Coda region).

Figure 15 reports the temporal evolution of the metrical centroid for the two music
traces, that is a proxy of the rhythmical activity across time. Its value (in BPM) is high
when fast figures, like semiquavers, are prevailing, while it is low when slow figures,
like half notes, are prevailing. For this reason, it cannot surprise that a low is attained
in correspondence of the main cadence of bars 29–30 (see Fig. 3), characterized by
long chords at both hands. We can note that the metrical centroid of Rajna’s execution
is systematically higher than Howard’s one.

Figure 16 displays the degree of dissonance over time for both executions. We can
see that Howard’s one presents a much higher degree of dissonance than Rajna’s, par-
ticularly at the repetition of the first phrase (bar 20) and the main cadence (bars 28–29,
see Fig. 3). Although the music score is the same, in fact, the intensity is much more
variable in Howard’s execution, thus leading to a roughness peak in correspondence
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Fig. 13 Étude S.136 no.1: mirevents output featuring the event curve of Howard’s (left panel) and Rajna’s
(right panel) execution
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Fig. 14 Étude S.136 no.1: mirtempo with Change option output featuring the estimated tempo of Howard’s
(left panel) and Rajna’s (right panel) execution
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Fig. 15 Étude S.136 no.1: mirtempo with Metre option output featuring the rhythmical pace of Howard’s
(left panel) and Rajna’s (right panel) execution
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Fig. 16 Étude S.136 no.1:mirroughness output featuring the roughness of Howard’s (left panel) and Rajna’s
(right panel) execution
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of the main cadence, characterized by long chords with a descending chromatic scale
in the bass.

Just as changes in intensity can be difficult even for an expert listener to perceive,
changes in tempo can be even more so, as establishing a comparison from a live
recording is very difficult. The same goes for timbrical contrasts over time. A MIR-
based analysis such as the one exposedprovides a validation tool for humanperceptions
of subtle variations in tempo or timbre when comparing different live performances.

4.3 Macro-formal analysis

The function mirsimatrix provides a way to weigh the inherent difference between
different moments in a piece of music. In particular, mirsimatrix performs a pairwise
comparison, frequency by frequency, of the estimated spectra across a high number
of time frames. In Fig. 17, we observe that for Howard’s recording a high degree
of similarity, signalled by intense yellow, is found out between frames at intervals
[4–12 s], [38–45 s], [55–70 s], corresponding to bars 1–4 (first phrase), 20–23 (first
phrase repetition), main cadence and Coda region (bars 29–36). It cannot surprise that
these regions are all characterized by a clear and stable presence of C major chord.
According to this criterion, the other frames do not showany relevantmutual similarity.

For Rajna’s recording, the similarity matrix is very similar to Howard’s. This may
be expected, as the similarity matrix mainly depends on the played frequencies, which
are given by the music score.

The functionmirnovelty is able to identify the occurrences of major musical events
across the two recordings of Étude S.136 no.1, as Fig. 18 shows. We can note that,
even if the novelty peaks may differ for the two executions, due to the different inter-
pretation, the relevant peaks, exceeding 0.3, identify the fundamental moments of the
piece in a similar way. This highlights the important role of MIR in identifying the
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Fig. 17 Étude S.136 no.1:mirsimilarity of framed spectra for Howard’s (left panel) and Rajna’s (right panel)
recording. This picture provides a summary of the mutual similarities between different time frames, based
on the frequency-by-frequency comparison of their estimated spectra. The intense yellow is the highest
intensity in the color legend, followed by ocher, dark blue and light blue. Color legend is reported below
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Fig. 18 Étude S.136 no.1: mirnovelty output of Howard’s (left panel) and Rajna’s (right panel) execution.
The picture displays the novelty over time, i.e., the degree of novelty measured as explained in Sect. 3.4. It
helps to distinguish the most relevant musical events over time

most relevant macro-formal markers of a piece, which may prevent a human analyst
to separate homogenous segments or merge dissimilar segments. The values of the
novelty measure across time, in fact, allow to distinguish the most relevant changes
from other minor changes in the underlying spectrum. In this case, the two executions
of the same piece provide an implicit validation of identified macro-formal markers.

Figure 18 provides a clear idea of the macro-formal structure of the piece. In the
left panel (Howard’s execution), we can observe that the novelty peaks exceeding 0.3
are located at:

• 4 s, i.e., the beginning of the first phrase (bar 1, Fig. 5);
• 12 s, i.e., the beginning of the second phrase (bar 5, Fig. 5);
• 20 s and 22 s, i.e., bars 9 and 11 (Figs. 6 and 8), at the development start;
• 35 s, i.e., the median cadence in C major (bar 18);
• 52 s, i.e., the sudden upward shift of bar 28 (Fig. 10),
• 55 s, i.e., the main cadence in C major (bar 29, Fig. 3);
• 65 s, i.e., the fourth arpeggio in the Coda region (bar 34);
• 70 s, i.e., the recording end.

In the right panel (Rajna’s execution), we can find almost the same markers in a
compressed time frame, becauseRajna’s execution is faster thanHoward’s (seeFigs. 14
and 15). The novelty peaks exceeding 0.3 are located at:

• 6 s, i.e., the beginning of the second phrase (bar 5, Fig. 5);
• 13 s, i.e., bar 9 (Fig. 6), where the development starts;
• 21 s and 25 s, i.e. bars 14 and 16;
• 40 s, i.e., the sudden upward shift of bar 28 (Fig. 10),
• 43 s, i.e., the main cadence in C major (bar 29, Fig. 3);
• 48 s, i.e., the Coda beginning (bar 31);
• 52 s, i.e., the fourth arpeggio in the Coda region (bar 34).

Commenting the outcomes of Fig. 18, we notice that there are strong similarities and
some differences. On one hand, the second phrase (bar 5), the development (bar 9),
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the main cadence (bars 29–30) and the fourth arpeggio in the Coda region (bar 34) are
commonly highlighted. It is relevant that these points are characterized in the score
by the presence of forte or crescendo. On the other hand, the novelty peaks at bar 1
and at the recording end are highlighted in Howard’s recording because of the silence
frames which start and close it, differently from Rajna’s. The other main differences
between the two novelty profiles regard the development: Rajna emphasizes more bars
14 and 16, while Howard emphasizes more bars 11 and 18. These are subtle stylistic
differences between the two interpretations.

All in all, while reading novelty profiles, score and performance analysis mix up
together, thus allowing to identify themost relevant macro-formal markers of the piece
as well as differences in performance between the two interpreters.

4.4 Harmonic analysis

InMIR toolbox, the fundamental tool to performharmonic analysis is the chromagram.
Figure 19 reports the chromagram estimated on the two traces segmented by the
function mirsegment, as explained in Sect. 3.4. This leads to a MIR-based systematic
harmonic analysis of the whole piece. Considering Howard’s recording (left panel),
we observe:

• Across the interval [4–11 s], corresponding to the bar interval 1–4, we observe a
clear prevalence of the pitches in the C7 chord;

• Across the interval [12–24 s], corresponding to bars 5–10, we note the superposition
of pitches from C major and G major chords (C-G-D);

• Across the interval [25–38 s], corresponding to bars 11–19, the harmony is first
changing every measure within the C major tune, before reverting to C in measure
16, and re-affirming C major by a cadence in bars 18–19;

0 10 20 30 40 50 60 70 80
time axis (in s.)

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

ch
ro

m
a 

cl
as

s

Chromagram

0 10 20 30 40 50 60
time axis (in s.)

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

ch
ro

m
a 

cl
as

s

Chromagram

Fig. 19 Étude S.136 no.1: output of mirchromogram applied to Howard’s (left panel) and Rajna’s (right
panel) recordings, segmented by the function mirsegment as explained in Sect. 3.4. This picture shows a
different chromagram into each retrieved segment, and allows to get a clear idea of the harmonic dynamics
across time. The intense yellow is the highest intensity in the color legend, followed by ocher, dark blue
and light blue. Color legend is reported below
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• Across the interval [38–42 s], bars 20–21, we observe a very similar pitch distribu-
tion compared to the region [4–8 s], because here the same phrase is repeated;

• Across the interval [42–52 s], bars 22–27, we find a long region characterized by a
three-octave chromatic scale in the bass, C2–C5, where the pitches of C major and
F major chords show a prevalence;

• Across the interval [52–55 s], bar 28, the four pitches E-A-G-F, played by the right
hand, are prevalent;

• Across the interval [55–60 s], bars 29–30, the pitches of G major are prevalent, as
we are in the main cadence area;

• Across the interval [60–70 s], bars 31–36, the pitches of C major (C, E and G) are
clearly prevalent, as we are in the Coda area.

Concerning Rajna’s recording (right panel), the described patterns are essentially the
same, although we note that Rajna’s chromagram is quite less clear and more noisy. In
particular, Rajna’s chromagram often presents C	, F and G	 highlighted when C, E,
andG are, differently fromHoward’s. This inconvenient typically occurs whenever the
instrument tuning is sharper than the expected tuning (withC4=261.63Hz andA4=440
Hz). This fact is clearly perceivable while listening. Therefore, instrument tuning
accuracy is another information which MIR harmonic analysis is able to uncover.

Based on this information, we can eventually resort to traditional means to perform
the detailed score-based analysis of the piece, relying on the noveltymeasures provided
in Fig. 18, and the chromagram of the segmented traces reported in Fig. 19. In this
case, theMIR functions performing harmonic-formal analysis constitute a data-driven
starting point for a traditional score analysis, with the relevant plus to be an automatic
guide to identify macro-formal structure and underlying harmonies. The full analysis,
reported in the "Appendix", can also be appreciated by looking at the music score with
comments attached as a Supplement.

5 Concluding remarks

In this work, we have reviewed the main statistical tools that are used in Matlab MIR
toolbox to retrieve the functional parameters of a music composition, and we have
presented a case study about Liszt’s Étude S.136 no.1, which has been analyzed by
means of a comparison between two live recordings: a WAV trace by Leslie Howard
(1994) and an MP3 trace by Thomas Rajna (1979). The piece macro-formal and
harmonic structure has been uncovered, and the intensity, tempo and timbre of the two
executions have been systematically compared. At the end of this journey, we provide
a summary of the main results in the case study, and a discussion regarding the main
advantages and limitations of the described tools.

Concerning the main results of our case study (Sect. 4), we have discovered that
Rajna’s execution of Liszt’s Étude S.136 no.1 is faster and less various, in terms of
intensity and timbre, than Howard’s one. This means that Howard’s playing style
emphasizes contrasts much more than Rajna’s. Spectrograms, novelty measures and
chromagrams over time frames have provided a macro-formal and harmonic analysis
of the piece, which has become the starting point for a subsequent traditional analysis.
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All in all, it emerges that MIR-based analysis of a simple piano solo piece from
audio data can complement and support traditional score analysis as far as pitch,
macro-formal and harmonic analyses are concerned, while it can provide a reliable set
of tools for comparative performance analysis regarding tempo, timbre, and intensity,
with a degree of detail that is very difficult even for trained human listeners to achieve.
In this respect,MIR toolbox is like a huge extension of humanmemory and elaboration
capability, which relevantly enlarges the natural perception of a human listener. This
results in a superior ability of the machine to objectively compare different executions.

Beyond the presented case study, we can illustrate the general usefulness of the
described MIR tools for formal and harmonic analysis via the following example.
Suppose that a new musical archive is discovered, with several unedited manuscripts.
In that case, the problem to attribute discovered music to a precise style rises up.
Therefore, while preparing a critical edition, recording live executions of discovered
pieces may already allow to uncover important facts on the underlying style.

Suppose for instance that the discovered pieces are thought to be sonatas belonging
to the Viennese style. In that case, we expect to observe a specific tripartite form and
typical chord sequences based on the tonic-dominant relationship. Should segmen-
tation and chromagram say anything different, the belonging of those sonatas to the
Viennese style could be questioned.

Another relevant argument that shows the general usefulness of those MIR tools
regards the pieces which belong to a transition phase between two different styles. In
this respect, a pregnant example regards for instance the famous Liebestraum n.3 by
Liszt, where tonal harmony coexists with a triad circle called Weitzmann region, so
that Cohn (2012) refers to this practice as “double syntax”. In such a case, MIR-based
chromagram over the segmented trace can provide a useful tool to compare theoretical
expectations with empirical recordings, to verify if the identified co-existence of two
harmonic grammars is consistent to the outcome of a MIR analysis, which could be
enlarged to a corpus of coeval works by the same author.

Anyway, the engine of automatic MIR is spectral analysis. The spectrum is a pow-
erful tool: it allows for a clear understanding of two fundamental parameters like
frequency and intensity, on the base of which more complex tasks may be performed.
One of those is segmentation, that provides the division of the music piece in mutu-
ally exclusive sections, on the base of the spectral evolution. The machine is also
able to provide an importance ranking of proposed segments, and to retrieve timbrical
differences over time.

These tasks are particularly informative when applied to sound-based music like
electro-acoustic music, for which there is nothing similar to a music score and a sound
ordering is hard to identify. In that case, a thorough spectral analysis is unavoidable
to explore the musical structure, while segmentation allows to identify the different
moments of a piece according to some founded criterion, unlike human perception
Emmerson and Landy (2016). Beyond that, synthesized timbres are typical materials
in this music, so that roughness measure becomes crucial to identify homogenous or
dissimilar segments over time.

In the end, we should mention that automatising complex tasks like harmonic anal-
ysis may lead to possible issues, as it happens when complex techniques requiring
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specific knowledge are popularized (see for instance the effects of the surge in popu-
larity of ChatGPT ). At the same time, a judicious use of MIR tools can really open
new avenues in themusic analysis field. For instance, the retrieval of hiddenmotifs and
their occurrences over timeWeiss and Bello (2011) is a relevant and very refined task,
that may potentially uncover the roots of the composition style of a specific period
or author. Comparing recovered harmonic, dynamic, rhythmical, or timbrical patterns
to existing codified musical grammars, in order to test for the overlapping degree, is
now a concrete path, that could open up unforeseen possibilities in the understanding
of our immense musical heritage.
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Appendix

In this section, we report the harmonic-formal analysis of Liszt’s Étude S.136 no.1, and
we show the correspondence with the outcomes of Section 4, particularly in Figs. 18
and 19. All reported elements are also highlighted in the music score with comments
attached as a Supplement.

• Exposition starts at bar 1. Bars 1–4 (Fig. 5), which constitute Phrase 1, are charac-
terized by a stable presence of C major.

• Phrase 2 (Fig. 5) is constituted by bars 5–8, featuring the alternation of C major and
G major.

• Development starts at bar 9. Bars 9 and 10 (Fig. 6) constitute Phrase D1, and contain
an ascending pattern in octaves onboth hands, one third apart, alongCmajor diatonic
scale.

• Phrase D2 is constituted by bars 11–14(Q1) (Fig. 8), Phrase D3 by bars 14(Q2)-
15(Q3) (Fig. 3). They contain a descending thirds progression built over the bass
C–A–F–D–B, which ends in a G7 major segment.

• Phrase D4 goes from bar 15(Q4) to bar 17 (Fig. 9). It contains the same descending
progression of bars 11–15, at double speed, characterized by a pattern of descending
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thirds in the bass interjected by leading notes one semitone below (from the last
quaver of bar 15, we can find in the bass the sequence B–C–G	–A–E–F–C	–D–B).

• The median cadence, a cadenza composta in C major, lies in bars 18–19.
• Reprise starts at bar 20. Bars 20–23 contain the repetition of Phrase 1.
• Bars 24–29(Q1) constitute a new Development (see Fig. 7).
• Bars 22–27 contain a long chromatic progression, where a three-octave chromatic
scale from C2 to C5 is featured in the bass. Bar 28 contains a sudden upturn shift
of the motif E–A–G–F by one octave at the right hand (see Fig. 10).

• The main cadence, a cadenza composta in Cmajor preceded by a chromatic descent
in the bass (C–B
–A–A
–G), occupies bars 29–30 (Fig. 3).

• Coda region occupies bars 31–36, subdivided in three sub-regions: C1 (bars 31–32,
with two C major—G major arpeggios, ending in G5), C2 (bars 33–35, with three
C major arpeggios, ending in C6), C3 (bar 36, the final C2, gradually disappearing).
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