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Abstract
Canonical variate analysis (CVA) entails a two-sided eigenvalue decomposition.When
the number of groups, J , is less than the number of variables, p, at most J − 1
eigenvalues are not exactly zero. A CVA biplot is the simultaneous display of the
two entities: group means as points and variables as calibrated biplot axes. It follows
that with two groups the group means can be exactly represented in a one-dimensional
biplot but the individual samples are approximated. We define a criterion to measure
the quality of representing the individual samples in a CVA biplot. Then, for the
two-group case we propose an additional dimension for constructing an optimal two-
dimensional CVA biplot. The proposed novel CVA biplot maintains the exact display
of group means and biplot axes, but the individual sample points satisfy the optimality
criterion in a unique simultaneous display of group means, calibrated biplot axes for
the variables, and within group samples. Although our primary aim is to address two-
group CVA, our proposal extends immediately to an optimal three-dimensional biplot
when encountering the equally important case of comparing three groups in practice.

Keywords Biplot · Canonical variate analysis · Classification · Data visualization ·
Discriminant analysis

Mathematics Subject Classification 62H30 · 15A21 · 93B60 · 91C20 · 97K80

1 Introduction

It is difficult to overrate the value of graphical displays to accompany formal statistical
classification procedures (see e.g., Tukey 1975). Indeed, it is an open question if
a complete assessment of group structure, including the overlap and separation of
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groups and the within groups sample behaviour is possible without the aid of suitable
graphics, relying exclusively on computed statisticalmeasures and tables. In particular,
graphical procedures that are capable of displaying simultaneously the means and the
individuals of different groups together with information on the relative contributions
of a chosen set of classification variables are highly in demand.

Gabriel (1971) proposed the biplot for displaying simultaneously the rows and
columns of a data matrix X : n× p in a single graph. A year later Gabriel showed how
to construct a canonical variate analysis (CVA) biplot (Gabriel 1972) that provides
a two-dimensional graphical approximation of various groups optimally separated
according to a multidimensional CVA criterion. This CVA biplot became popular
among statisticians and practitioners applying linear discriminant analysis (LDA) and
CVA in various fields. Gittins (1985) can be consulted for an overview of CVA. Dis-
tances in this classical Gabriel CVA biplot are interpreted in terms of inner products
between vectors. Such interpretations are not as straightforward as distances in an
ordinary scatter plot. The unified biplot methodology proposed by Gower (1995) and
extensively discussed in the monograph by Gower and Hand (1996) allows the CVA
biplot to be regarded as a multivariate extension of an ordinary scatter plot. The con-
cept of inter-sample distance is central in this approach, while information on the
classifier variables is added to the graph of means and individual sample points in
the form of biplot axes–an axis calibrated in its original units for each (classifier)
variable. The perspective of Gower and Hand (1996) inspires the biplot methodology
discussed in this paper. Gower et al. (2011) discuss the one-dimensional CVA biplot
for use in two-group studies in some detail. Although the latter authors provide several
enhancements to this one-dimensional CVA biplot they failed to address the challenge
of constructing an optimal two-dimensional biplot for the two-group case.

Classification procedures in practice are often confronted with the problem of
optimally distinguishing between two groups. The aim of several procedures used
in multidimensional classification is to separate the group means optimally. This
is the aim of CVA and the closely related procedure of LDA. These techniques
involve the transformation of the original observations into a so-called canonical
space. Flury (1997), among others, proves that in the case of J groups, only the first
K = min(p, J −1) elements of the group mean vectors differ in the canonical space.
This induces some pitfalls when routinely constructing CVA biplots in the case where
p > J − 1 with J equaling two or three. Since in the case of two groups the group
means can be exactly represented on a line, the associated CVA biplot becomes a one-
dimensional plot with all p biplot axes representing the different variables on top of
each other on the line extending through the representations of the two group means.
All n sample points also fall on this line. The theoretical basis for constructing this line
is provided by the eigenanalysis of a two-sided eigenvalue problem (see e.g., Gower
and Hand (1996) and Gower et al. (2011)). In the two-sample case this eigenanalysis
involves only one non-zero (positive) eigenvalue together with p − 1 zero eigenval-
ues. Therefore, only the eigenvector associated with the single non-zero eigenvalue
is uniquely defined. This eigenvector provides the scaffolding for constructing a one-
dimensional CVA biplot. Although a two-dimensional biplot can be constructed using
two eigenvectors, the second eigenvector will not be uniquely defined, as is the case
when J > 2, unless some precautions are taken. A similar situation arises in the case
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of three groups: the first two eigenvectors are then uniquely defined but not the third.
Why do we want extra scaffolding dimensions for constructing CVA biplots when
p > J − 1? There is a real advantage when we have a two-group or three-group clas-
sification problem: not only are the group means then represented exactly but also an
improvement in the approximations of the individual sample points is accomplished.
Therefore, in this paper, we first define a measure of how well any mean or individual
sample point is represented in a CVA biplot. Then we show, in the case of two groups,
how to construct a uniquely defined two-dimensional CVA biplot such that both the
means and individual samples are optimally represented together with the variables
in the form of calibrated biplot axes. In addition, we will show how this process can
be extended directly for constructing a uniquely defined optimal three-dimensional
biplot when three groups are considered.

The paper is organized as follows: in the next section, we begin with some historical
background of discriminant analysis. After that, we briefly review the basic concepts
and theory of CVA biplot methodology according to the perspective of Gower and
Hand (1996). This is followed by a section describing the geometry of the graphical
representation of the class means and the sample points about them. In section 4
it is discussed why the two-group CVA biplot deserves special attention. We then
put forward proposals for one-dimensional CVA biplots as well as a two-dimensional
CVAbiplot such that the groupmeans in a two-group classification problem are exactly
represented together with an optimal representation of the individual sample points.
We also show how to generalize this procedure to construct a three-dimensional biplot
with similar properties for use when J = 3 < p. In section 6 we briefly discussed
an alternative unique 2D biplot, which is based on the Bhattacharyya distance. The
theoretical results are illustrated in section 7 where we provide examples, covering
one- and two-dimensional CVA biplots. Some conclusions are considered in section 8.

2 A brief review of canonical variate analysis

2.1 Two-group discriminant analysis: Fisher’s LDA

Two-group discriminant analysis considers two populations (groups) G1 and G2. An
observation x of XT = (X1, X2, . . . , X p) is to be allocated to one of these populations.
It is assumed that the density fi (x) of X for i = (1; 2) is known with expected value
μi : p × 1 and covariance matrix Σ i : p × p, respectively. Let the prior probability
of an unknown x belonging to Gi be given by

p1 = P(G1) and p2 = P(G2), respectively, with pi > 0 and p1 + p2 = 1.
Define

μ =E(X) = p1μ1 + p2μ2,

T =E
[
(X − μ)(X − μ)T

]
,

B =p1(μ1 − μ)(μ1 − μ)T + p2(μ2 − μ)(μ2 − μ)T , and

W =p1Σ1 + p2Σ2.
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Under the assumption that Σ1 = Σ2 = Σ , (say) it follows that W = Σ . The Fisher
LDA (Fisher 1936) searches for the linear function

Y = mT X

with E(Y ) = mT E(X) = mTμ, E(Y |Gi ) = mTμi and var(Y ) = mTWm to
maximize

p1
(
mTμ1 − mTμ

)2 + p2
(
mTμ2 − mTμ

)2
mTWm

= mT Bm
mTWm

. (1)

The maximum is obtained from the eigenequation

(W−1B)m = mΛ.

Pre-multiplying the above equation with W1/2 leads to

(
W−1/2BW−1/2

)(
W1/2m

)
=
(
W1/2m

)
Λ,

so that l = W1/2m is the eigenvector of W−1/2BW−1/2 associated with the largest
eigenvalue λ1 and m = W−1/2l.

Since rank(B) = 1 = rank(W−1B) = rank(W−1/2BW−1/2), it follows that

BM = WM

⎡
⎢⎢⎢⎣

λ1 0 . . . 0
0 0 . . . 0
...

...
...

...

0 0 . . . 0

⎤
⎥⎥⎥⎦. (2)

If we choose L to be an orthogonal matrix in (W−1/2BW−1/2)L = LΛ, then

LT L = I = MTWM

and

MT BM = MTWMΛ = Λ.

The transformation

Yk = mT
k X

for k = 1, 2, . . . , p is termed a transformation into the canonical space with Y1 the
first canonical variate, where

E(Y1|Gi ) = mT
1 μi and Var(Y1|Gi ) = Var(Y1|Gi ) = 1 for i = 1; 2.
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After properly scaled, the solution m1 maximizing (1) can be written as

W−1(μ1 − μ2), (3)

which is known as Fisher’s linear discriminant function (LDF). The maximum of (1)
is given by the squared Mahalanobis distance, namely

(μ1 − μ2)
TW−1(μ1 − μ2).

For k = 2, 3, . . . , p we have Var(Yk |Gi ) = 1 and

mT
k Bmk = 0. (4)

Since

B =p1(μ1 − μ)(μ1 − μ)T + p2(μ2 − μ)(μ2 − μ)T

=
(
p1 p

2
2 + p2 p

2
1

)
(μ1 − μ2)(μ1 − μ2)

T ,

it follows from (4) that mT
k (μ1 − μ2) = 0 and all differences vanish between the

groups for the second and further canonical variates.
Rao (1948) extends the Fisher’s LDA procedure to J > 2 groups by deriving

J − 1 linear discriminant functions of the form (3), but in this paper we are primarily
interested in the case J = 2.

2.2 Bayes linear and quadratic classifiers

Under the assumption of multivariate normal distributions with different covariance
matrices Σ1 and Σ2, the Bayes quadratic classifier (see e.g., Hastie et al. 2001) is
given by

1

2
(X − μ1)

TΣ−1
1 (X − μ1) − 1

2
(X − μ2)

TΣ−1
2 (X − μ2)

+ 1

2
log

( |Σ1|
|Σ2|

)
>
<log

(
p1
p2

)
.

If Σ1 = Σ2 = Σ , (say) we have the Bayes linear classifier

1

2
(μ2 − μ1)

TΣ−1X + 1

2

(
μT
1 Σ−1μ1 − μT

2 Σ−1μ2

)>
<log

(
p1
p2

)
.

It is clear that if p1 = p2, the Bayes linear classifier is equivalent to Fisher’s LDF.
In general, the Bhattacharyya distance measures the similarity of two probability

distributions. When the distributions concerned are Np(μ1,Σ1) and Np(μ2,Σ2) it is
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given by (see e.g., Fukunaga 1990; Hennig 2004):

DBhat = 1

8
(μ2 − μ1)

T
(

Σ1 + Σ2

2

)−1

(μ2 − μ1) + 1

2
log

⎛
⎝

∣∣∣Σ1+Σ2
2

∣∣∣
√|Σ1||Σ2|

⎞
⎠. (5)

It can be shown that the sample form of (5) provides an upper bound for the Bayes
error (see e.g., McLachlan 1992). Furthermore, when Σ1 = Σ2 = Σ then (5) is
proportional to a squaredMahalanobis distance. For this case, Fukunaga (1990) shows
that DBhat is maximized by Y = mT X where Bm = λ1Wm, so that maximization
is achieved when m is taken as (3).

2.3 Two-group discrimination where groupmeans and or group covariance
matrices may differ

While LDA discussed above allows only for groups to differ with respect to the means,
Fukunaga (1990) looks for a linear transformation Y = XM to separate groups with
respect to their means or covariance matrices. With the notation of the subsection
above, write

W =p1Σ1 + p2Σ2 = p1E
[
(X − μ1)(X − μ1)

T |G1

]

+ p2E
[
(X − μ2)(X − μ2)

T |G2

]
.

Fukunaga (1990) provides four criteria for class separability:
J1 = tr(S−1

2 S1); J2 = log|S−1
2 S1|; J3 = tr(S1) − λ(tr(S2) − c), where λ is

a Lagrange multiplier, c is a constant, and J4 = tr(S1)/tr(S2), where S1 and S2,
respectively, are one of T , B, or, W .

Let Ji (k) indicate the criterion with S1 = B and S2 = W , and where Y = XM
with M : p × k. Since we are restricted to linear transformations, optimization of
J1(1) is equivalent to Fisher discriminant analysis with (1) and J1(1) = λ1 with no
other dimension contributing to the value of J1. Fukunaga (1990) further shows that
criterion J1 gives the same optimum transformation for other combinations of B, W ,
and T for S1 and S2 and also for optimizing J2.

When μ1 = μ2 = μ, (5) becomes

DBhat =1

2
log

⎛
⎝

∣∣∣Σ1+Σ2
2

∣∣∣
√|Σ1||Σ2|

⎞
⎠

=1

4

[
log

(
|Σ−1

2 Σ1 + Σ−1
1 Σ2 + 2I p|

)
− plog(4)

]
. (6)

If more than a single dimension is needed we have that

J1 = log|(MTΣ2M)−1(MTΣ1M) + (MTΣ1M)−1(MTΣ2M) + 2Ik |
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is maximized by Y = XM with M : p × k, where

(Σ−1
2 Σ1)M = M

((
MTΣ2M

)−1(
MTΣ1M

))

and

(Σ−1
1 Σ2)M = M

(
(MTΣ1M)−1(MTΣ2M)

)
.

Thus, M must contain the eigenvectors of both Σ−1
2 Σ1 and Σ−1

1 Σ2. However, they
have the same eigenvectors since Σ−1

2 Σ1 = (Σ−1
1 Σ2)

−1 and we have that

(MTΣ2M)−1(MTΣ1M) = Λ

and

(MTΣ1M)−1(MTΣ2M) = Λ−1,

so that (Σ−1
2 Σ1)M = MΛ and (Σ−1

1 Σ2)M = MΛ−1.
Therefore, if k > 1 dimensions are needed the k eigenvectors are chosen, which

correspond to the k largest values for J , i.e., corresponding to the largest values λi +
1
λi

+ 2.

3 Discriminant analysis with sampled data

In practice, discriminant analysis is usually performed using sampled data. This neces-
sitates the substitution of population parameters with sample estimates in the formulas
introduced in section 2. The plug-in principle and maximum likelihood method are
popular methods for this.

It is well known that LDAoften outperforms quadratic discriminant analysis (QDA)
evenwhen the assumption of equal covariancematrices is violated (see e.g., Flury et al.
1997; McLachlan 1992). This can be attributed to the large number of parameters that
have to be estimated in QDA with over-parameterization inducing a loss of power.
This contributes to the popularity of LDA among practitioners and so in the rest of the
paper, our focus will be on LDA.

Consider the data matrix X : n × p centered such that 1T X = 0T . The data
contained in X consists of p measurements made for each of the J groups. The
group sizes are n1, n2, . . . , nJ , respectively, such that

∑J
i=1 ni = n. Let Ng =

diag(n1, n2, . . . , nJ ), so that a matrix of group means can be calculated as

X : J × p = N−1
g GT X = (GTG)−1GT X, (7)

where G : n × J denotes an indicator matrix defining the J groups.
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Let V(XT ) denote the vector space generated by the columns of XT . We assume
this vector space of p-vectors to be of dimension p. Since each row of X is a linear

combination of the rows of X it follows that X
T ∈ V(XT ).

Define:

1. SB : p × p, as the between-group matrix of squares and products: SB =
X

T
NgX = XTG(GTG)−1GT X and

2. SW : p × p as the within-group matrix of squares and products: SW = XT X −
X

T
NgX = XT (I − G(GTG)−1GT )X .

Generally, rank(SW ) = p while rank(SB) = min(J − 1, p).
The two-sided eigenvalue problem

(SB)B = (SW )BΛ (8)

provides the solution b1 to the CVA criterion

maximize
b

(
bT (SB)b

bT (SW )b

)
, subject to bT (SW )b = 1. (9)

In the above, the diagonal matrixΛ : p× p contains the eigenvalues λ1 ≥ λ2 ≥ . . . ≥
λp ≥ 0, where λJ = λJ+1 = . . . = λp = 0 if J < p + 1.

The matrix B = [
b1, b2, . . . , bp

]
contains all p solutions to the two-sided eigen-

value problem. Only the solution b1 is optimal for the CVA criterion (9). The matrix
B : p × p is non-singular with B−1 = BT (SW ), while the columns of B are orthog-
onal in the metric SW because of the constraints BT (SW )B = I .

Canonical variates are defined by the transformation yT = xT B, where x is any
p-vector belonging to V(XT ). The centered data matrix itself is transformed to the
canonical variate values matrix Y : n × p through the one-to-one (canonical) trans-
formation

Y : n × p = XB. (10)

The transformation (10) implies a transformation of V(XT ) to V(Y T ), the canonical
space, of dimension p since rank(Y) = rank(X). Furthermore, (10) implies that

XB = Y : J × p. (11)

We will call Y the canonical means matrix. It follows that the columns of Y
T
generate

a subspace of dimensionmin(J−1, p) ofV(Y T ). This subspace is denoted byV(Y
T
).
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4 Biplot display of the canonical meansmatrix Y and the canonical
variates values matrix Y

An r-dimensional canonical variate analysis (CVA) plot is constructed by taking the
first r canonical variates, associated with

Br = [b1, b2, . . . , br ], where B = [
Br , br+1, . . . , bp

]
(12)

to provide the coordinates (or scaffolding) for representing the J canonical group
means contained in (11) as points in r dimensions. If this plot is equipped with p
linear axes to represent the original p variables, a CVA biplot is obtained. Each of
these biplot axes is determined by a vector, which induces also a graduation on it.
Gower and Hand (1996) consider two types of CVA biplots, each one characterized
by its system of p linear axes, its aim and its corresponding geometry:

– The interpolation biplot, which has the aim of placing on the plot the image
(y1, y2, ..., yr ) of any new point x ∈ V(XT ).

– The prediction biplot, which has the aim of estimating the point x (i.e., the set of
variable values) having as an image a given point (y1, y2, ..., yr ) in the plot.

Once the CVA biplot for representing the group means is constructed, all transformed
samples contained in Y can be interpolated into the biplot. Thus both the canonical
means and the transformed samples Y can be displayed in a CVA biplot in an r-

dimensional subspace of V(Y
T
), (with r ≤ min(J − 1, p)). Typically, an r of two or

three will be chosen to construct this subspace that we will call the biplot space.
Gower and Hand (1996) show the above processes of prediction and interpolation

to be based on the following: A sample x : p × 1 can be interpolated into V(Y T ) by

y : p × 1 = BT x, i.e., yT = xT B =
p∑

k=1

(xkeTk )B.

The representation of x in the biplot space is given by

zT : 1 × r = xT Br =
p∑

k=1

(xkeTk )Br , (13)

where Br is defined in (12).
Prediction is the inverse of interpolation and since B is non-singular it follows by

inverting the above formula for interpolation that
xT = yT B−1. The matrix B−1 can be partitioned into

B−1 =
[

B(r) : r × p
B(2) : p − r × p

]
. (14)

123



N. le Roux, S. Gardner-Lubbe

The predicted value for the kth variable can bewritten as x̂k = zT B(r)ek and therefore,
the predicted value for xT is

x̂T =zT B(r)[e1, . . . , ep
]

=zT B(r)

=xT Br B(r). (15)

It follows from (15) that

X̂ = XBr B(r), (16)

and in addition

X̂ = XBr B(r). (17)

Since in the CVA biplot described above, the samples are interpolated into the biplot
constructed for the canonical means, it is expected that the class means will be better
represented than the canonical variate values i.e., the rows of Y . What is needed then,
are measures of fit for use in CVA.

4.1 Measures of fit for use in CVA

From the identity

X = G(GTG)−1GT X +
(
I − G(GTG)−1GT

)
X,

we have that

XT X = XT QX + XT (I − Q)X,

where the matrix Q : n × n = G(GTG)−1GT is positive semi-definite, symmetric
and idempotent.

This between-and-within group structure is of interest for:

– Assigning a given sample to its most appropriate group.
– Relating the groups to one another.

A study of the relationships among the groups encourages the use of low-dimensional
approximations for visualization, including CVA biplots.

4.2 Measures of fit for CVA biplots: recovering the canonical groupmeans

The orthogonal partitioning

BT X
T
NgXB = BT (X̂)T Ng X̂ B + BT

(
X − X̂

)T
Ng

(
X − X̂

)
B,
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(see Gardner-Lubbe et al. 2008) allows an overall measure of how well the group
means are represented in the CVA biplot, namely

Overall quali t y =
tr
(
BT (X̂)T Ng X̂ B

)

tr
(
BT X

T
NgXB

) =
∑r

k=1 λk∑p
k=1 λk

.

In the orthogonal partitioning above, the matrix B can be eliminated to define axis
predictivities as the diagonal elements of the matrix

Π : p × p = diag
(
(X̂)T Ng X̂

)[
diag(X

T
NgX)

]−1
.

Each axis predictivity is a measure of how well the values for the group means can
be determined from the CVA biplot for the variable associated with that particular
biplot axis. We note that the overall quality is a weighted mean of the individual axis
predictivities.

4.3 Measures of fit for CVA biplots: recovering the individual samples

We also need predictivities for individual samples corrected for class means i.e., for
(I − Q)X . So, our starting point becomes the decomposition

(I − Q)XB = (I − Q)X̂ B + (I − Q)
(
X − X̂

)
B,

where X̂ is defined in (16). Then the following orthogonal decompositions (see Gower
et al. 2011) hold:

1. Type A

BT XT (I − Q)XB =BT X̂
T
(I − Q)X̂ B

+ BT
(
X − X̂

)T
(I − Q)

(
X − X̂

)
B.

2. Type B

(I − Q)XBBT XT (I − Q) =(I − Q)X̂ BBT X̂
T
(I − Q)

+ (I − Q)
(
X − X̂

)
BBT

(
X − X̂

)T
(I − Q).

While the class means are exactly represented in a subspace of dimension min(J −
1, p) of the canonical space, this is generally not true for the individual samples. From
TypeB orthogonalitywithin-group sample predictivities can be defined as the diagonal
elements of
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�W : n × n = diag
(
(I − Q)X̂ S

−1
W X̂

T
(I − Q)

)[
diag

(
(I − Q)XS−1

W XT (I − Q)
)]−1

4.4 CVA biplots for J = 2 groups

When J = 2 it now follows that:

– The underlying two-sided eigenequation has one non-zero eigenvalue and p − 1
zero eigenvalues.

– All p class means are exactly represented in a single dimension.
– This single dimension contains the p biplot axes (each with predictivity 100% for
recovering the group means) on top of each other.

– Overall quality of representing group means is 100%.
– The one-dimensional CVA biplot is optimal for representing groups irrespective of
the number of variables p.

– The samples are not exactly represented in the one-dimensional CVA biplot.

Our challenge is now to add another dimension for improving recovering of sample
information without changing optimality properties already available for the group
means. We address this challenge by considering the orthonormal complement in
the canonical space of the subspace containing the two group means. Therefore, we
consider eigenvectors associated with the zero eigenvalues. These eigenvectors have
no natural ordering associated with them. So, any one of these eigenvectors or even
any linear combination of them has the same claim to be used as a second scaffolding
axis. Hence, our aim is to find the linear combination that satisfies some optimality
criterion using Type A and Type B orthogonality for natural candidates.

4.5 Optimal two-dimensional CVA biplot for J = 2 groups: optimality criterion
based on Type B orthogonality

Consider minimizing

sum
{
diag

(
(I − Q)

(
X − X̂

)
BBT (X − X̂

)T
(I − Q)

)}
.

Now,

(I − Q)
(
X − X̂

)
=
(
I − G(GTG)−1GT

)(
X − X̂

)

=
(
X − X̂

)
− G(GTG)−1GT

(
X − X̂

)

=
(
X − X̂

)
− GX + GX̂ .

We have GX̂ = GX if the eigenvector associated with λ > 0 is chosen. There-
fore, maximizing the sum of within-group sample predictivities becomes equivalent
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tominimizing sum

{
diag

((
X − X̂

)
BBT

(
X − X̂

)T)}
. However, this sum remains

constant for any additional eigenvector. This is not surprising because in the canoni-
cal space the constraint BT SW B = I , implies constant variation in all dimensions,
resulting in Type B orthogonality not useful to define a criterion for an optimal two-
dimensional biplot.

4.6 Optimal two-dimensional CVA biplot for J = 2 groups: optimality criterion
based on Type A orthogonality

Since thematrix B is non-singular it can be eliminated from the equation defining Type

A orthogonality. As before, (I − Q)
(
X − X̂

)
=
(
X − X̂

)
. Therefore, the proposed

optimality criterion for constructing an optimal two-dimensional CVA biplot for two
groups is the total squared reconstruction error for samples:

T SRES = tr
{(

X − X̂
)(
X − X̂

)T }
. (18)

A similar measure of the goodness of approximations of the means can be defined as
the total squared reconstruction error for means:

T SREM = tr

{(
X − X̂

)(
X − X̂

)T}
. (19)

5 Optimal CVA biplots when the number of groups is less
than or equal to the number of variables

From now onwe consider the case where J < p+1. Then it follows that the canonical
means matrix Y is of the form

⎡
⎣
yT1
· · ·
yTJ

⎤
⎦ =

⎡
⎣
k11 · · · k1(J−1) 0 · · · 0
· · · · · · · · · · · · · · · · · ·
kJ1 · · · kJ (J−1)1 0 · · · 0

⎤
⎦, (20)

(see e.g., Flury, 1997, p. 491).
Hence, the canonical transformation optimally separates the p-vectors
yT1 , yT2 , . . . , yTJ in J − 1 dimensions while all differences among them vanish

in dimensions J , J + 1, . . . , p. It follows that V(Y
T
) is now of dimension J − 1

and it is thus possible to consider a biplot space of dimension r > J − 1. The
resulting r-dimensional CVA biplot is not uniquely defined because the first J − 1
columns of B : p × p appended with any set of r − J + 1 of its remaining columns
will result in a biplot where the canonical means are exactly represented. Therefore,
xTj B = [

k j1 . . . k j(J−1)0 . . . 0
]
for j = 1, 2, . . . , J with the predicted value for x j
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given by the jth row, x̂
T
j , of (17). It follows that

x̂
T
j =xTj Br B(r)

=xTj
[
b1 b2 . . . bJ−1 bJ . . . br

]
⎡
⎢⎢⎣

b(1)

b(2)

· · ·
b(r)

⎤
⎥⎥⎦, where

⎡
⎢⎢⎣

b(1)

b(2)

· · ·
b(r)

⎤
⎥⎥⎦ = B(r)

=xTj
[
b1 b2 . . . bJ−1 bJ . . . 0

]
⎡
⎢⎢⎣

b(1)

b(2)

· · ·
b(p)

⎤
⎥⎥⎦, with

⎡
⎢⎢⎣

b(1)

b(2)

· · ·
b(p)

⎤
⎥⎥⎦ = B−1

=xTj for j = 1, 2, . . . , J .

Therefore, in the above r-dimensional CVA biplot the canonical means are exactly
represented, resulting in T SREM = 0. For a sample xTi , we have the ith row of X ,

xTi = xTi Br B(r) �= xTi BB−1,

since in general xTi b j is not zero for all j = J , J + 1, . . . , p so that T SRES > 0.
This leaves us with the challenge to construct scaffolding axes j = J , J +1, . . . , r

in addition to those contained in B J−1 so that TSRES is minimized without sacrificing
what we already have for the class means in J − 1 dimensions.

Possible candidates for the additional scaffolding axes are any r − J + 1 of the
vectors bJ , bJ+1, . . . , bp. All these vectors are associated with the zero eigenvalues
(diagonal elements ofΛ). Therefore, there is no natural ordering of them as is the case
with the J − 1 eigenvectors associated with the non-zero eigenvalues. Furthermore,
since Xbi = 0 for i = J , J + 1, . . . , p it follows that Xd = 0 where d is any linear
combination of the vectors bJ , bJ+1, . . . , bp. A similar result will hold for any set of
basis vectors of the vector space generated by the columns of the matrix

B∗ = [
bJ , bJ+1, . . . , bp

]
, (21)

so that XB∗ = 0.
Therefore, a set of r − J + 1 linear independent vectors of the form d where d is a

linear combination of any basis of V(B∗) is needed such that the scaffolding vectors
consisting of the first J−1 columns of B togetherwith the r− J+1 d vectorsminimize
TSRES for all legitimate choices of the {d}. Write these r scaffolding vectors as the
columns of the matrix Dr i.e.,

Dr = [
b1, b2, . . . , bJ−1, d J , d J+1, . . . , dr

]
(22)

and let the columns of D : p× p = [
Dr , dr+1, . . . , d p

]
represent a basis of V(B). It

follows that any column of B can be written as a linear combination of the columns
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of D. Therefore, there exists a non-singular matrix C : p × p such that B = DC i.e.,
D = BF with F = C−1.

Straightforward algebraic manipulation shows that F is of the form

F =
[
I J−1 0
0 F∗

]
, (23)

where F∗ is an (p − J + 1) × (p − J + 1) orthogonal matrix. We provide a detailed
derivation as supplementary material. Write

F∗ =
[
f ∗
1, f ∗

2, . . . , f ∗
p−J+1

]
. (24)

Then, F−1 =
[
I 0
0 (F∗)T

]
and our scaffolding vectors for constructing the r-

dimensional CVA biplot are the columns of

Dr =[b1, b2, . . . , bJ−1, d J , d J+1, . . . , dr
]

=B
[[

I J−1

0

][
0
f ∗
1

]
· · ·

[
0

f ∗
r−J+1

]]
. (25)

Furthermore,

D(r) =

⎡
⎢⎢⎣

I J−1 0
0T ( f ∗

1)
T

· · · · · ·
0T ( f ∗

r−J+1)
T

⎤
⎥⎥⎦B−1. (26)

The approximations of the rowsof X , i.e., the original samples, in the biplot constructed
on the scaffolding provided by the columns of Dr follow from (16) and using (25)
and (26) as

X̂ =XDr D(r)

=XB
[[

I J−1

0

][
0
f ∗
1

]
· · ·

[
0

f ∗
r−J+1

]]
⎡
⎢⎢⎣

I J−1 0
0T ( f ∗

1)
T

· · · · · ·
0T ( f ∗

r−J+1)
T

⎤
⎥⎥⎦B−1

=XB
[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
B−1, (27)

where, from the orthogonality of F∗, it follows that ( f ∗
1)

T f ∗
1 = ( f ∗

2)
T f ∗

2 = · · · =
( f ∗

r−J+1)
T f ∗

r−J+1 = 1.
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The criterion TSRES now becomes

∥∥∥X − X̂
∥∥∥
2

= tr
{
(X − X̂)(X − X̂)T

}

=
∥∥∥∥X

(
I p − B

[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
B−1

)∥∥∥∥
2

.

(28)

To construct an r-dimensional CVA biplot satisfying our aim of minimizing TSRES
while simultaneously providing 100% accurate predictions for the J sample means
when J < p, we propose the following:

– Find the solution of

argmin
∥∥∥X

(
I p − BLB−1

)∥∥∥
2
, (29)

where L =
[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
and the

minimum is taken with respect to the f ∗
j such that ( f ∗

j )
T f ∗

j = 1 for j =
1, 2, . . . , r − J + 1.

– Use the optimum { f ∗
1, f ∗

2, . . . , f ∗
r−J+1} to construct (Bopt )r =[

b1, . . . , bJ−1, d J , . . . , dr
]
where

d j =B∗( f ∗
j−J+1)opt

=B

[
0

( f ∗
j−J+1)opt

]

= f optJ ( j−J+1)bJ + f opt(J+1)( j−J+1)bJ+1 + · · · + f optp( j−J+1)bp,

for j = J , J + 1, . . . , r .
– Next,(Bopt )r is used for constructing the r-dimensional CVA biplot with calibrated
prediction (or interpolation) axes.

– Finally, calculate a standardised form of min(TSRES): min(T SRES(X,X̂))

tr(XXT )
, as a mea-

sure of the accuracy of the approximations of the individual sample points in the
r-dimensional biplot.

The solution for (29) can be found from (28) as follows: Since BT SW B = I p it
follows that

I p =BT XT XB − BT X
T
NgXB

=
[
(B J−1)

T XT XB J−1 (B J−1)
T XT XB∗

(B∗)T XT XB J−1 (B∗)T XT XB∗
]
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−
[
(B J−1)

T X
T
NgXB J−1 (B J−1)

T X
T
NgXB∗

(B∗)T XT
NgXB J−1 (B∗)T XT

NgXB∗

]

=
[
(B J−1)

T XT XB J−1 (B J−1)
T XT XB∗

(B∗)T XT XB J−1 (B∗)T XT XB∗
]

−
[
(B J−1)

T X
T
NgXB J−1 0

0 0

]
,

establishing that

(B∗)T XT XB∗ = I p−J+1. (30)

Since B = [
B J−1 B∗] and non-singular, we set

B−1 =
[

B(J−1) : (J − 1) × p
B(2) : (p − J + 1) × p

]
.

WriteU : (p−J+1)×(p−J+1) = f ∗
1( f

∗
1)

T + f ∗
2( f

∗
2)

T +· · ·+ f ∗
r−J+1( f

∗
r−J+1)

T ;
then it follows that

X
(
I p − B

[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
B−1

)

= X
(
I p −

(
B J−1B(J−1) + B∗UB(2)

))
. (31)

From
[
B J−1 B∗]

[
B(J−1)

B(2)

]
= I p it follows that B J−1B(J−1) = I p − B∗B(2) so that

(31) can be written as

X
(
I p −

(
B J−1B(J−1) + B∗UB(2)

))
= X

(
B∗B(2) − B∗UB(2)

)
. (32)

Therefore,

∥∥∥∥X
(
I p − B

[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
B−1

)∥∥∥∥
2

=
∥∥∥XB∗(I p−J+1 − U)B(2)

∥∥∥
2

= tr
{
XB∗(I p−J+1 − U)B(2)(B(2))T (I p−J+1 − U)(B∗)T XT

}

= tr
{
XB∗(B(2))T (B∗)T XT

}
− 2tr

{
XB∗UB(2)(B(2))T (B∗)T XT

}

+ tr
{
XB∗U(B(2))TU(B∗)T XT

}
(33)

= tr
{
B(2)(B(2))T

}
− 2tr

{
UB(2)(B(2))T

}
+ tr

{
UB(2)(B(2))TU

}
(34)

123



N. le Roux, S. Gardner-Lubbe

by substituting (30) in (33). Write H = B(2)(B(2))T : (p − J + 1) × (p − J + 1)
then it follows that H has rank (p − J + 1) and is thus positive definite. Therefore,

∥∥∥∥X
(
I p − B

[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
B−1

)∥∥∥∥
2

= tr{H} − 2tr{UH} + tr{UHU}, (35)

where

tr{UH} = ( f ∗
1)

T H f ∗
1 + ( f ∗

2)
T H f ∗

2 + · · · + ( f ∗
r−J+1)

T H f ∗
r−J+1 (36)

and

tr{UHU} = tr{UUH}
= tr

{(
f ∗
1( f

∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T
)

×
(
f ∗
1( f

∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T
)
H
}
.

Since ( f ∗
i )

T f ∗
j =

{
1 if i = j
0 if i �= j

it follows that

tr{UHU} = tr
{(

f ∗
1( f

∗
1)

T H + f ∗
2( f

∗
2)

T H + · · · + f ∗
r−J+1( f

∗
r−J+1)

T H
)}

= ( f ∗
1)

T H f ∗
1 + ( f ∗

2)
T H f ∗

2 + · · · + ( f ∗
r−J+1)

T H f ∗
r−J+1. (37)

Substituting (36) and (37) into (35) leads to

∥∥∥∥X
(
I p − B

[
I J−1 0
0T f ∗

1( f
∗
1)

T + f ∗
2( f

∗
2)

T + · · · + f ∗
r−J+1( f

∗
r−J+1)

T

]
B−1

)∥∥∥∥
2

= tr{H} − (
( f ∗

1)
T H f ∗

1 + ( f ∗
2)

T H f ∗
2 + · · · + ( f ∗

r−J+1)
T H f ∗

r−J+1

)
. (38)

Remembering that H is positive definite, the criterion (38) can be minimized by
maximizing eachof the terms ( f ∗

j )
T H f ∗

j with respect to f ∗
j for j = 1, 2, . . . , r−J+1

under the constraint ( f ∗
j )
T f ∗

j = 1. This is readily accomplished by introducing the
Lagrange multiplier λ j to form

( f ∗
j )
T H f ∗

j − λ j
(
( f ∗

j )
T f ∗

j − 1
)
. (39)

Differentiating (39) with respect to λ j and equating to zero leads to H f ∗
j = λ j f ∗

j

i.e., λ j = ( f ∗
j )
T H f ∗

j . Thus ( f ∗
j )
T H f ∗

j is maximized when f ∗
j is a normalized

eigenvector associated with the jth largest eigenvalue of H and hence the criterion (39)
attains its minimum when the

{
f ∗
j

}
are set to the normalized eigenvectors associated

with the largest r − J + 1 eigenvalues of H = B(2)(B(2))T , respectively. Denote
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these eigenvectors by f opt1 , f opt2 , · · · , f optr−J+1, respectively, where r ≤ p then a
p × r matrix (Bopt )r can be constructed as

(Bopt )r =
[
B J−1, B∗[ f opt1 , f opt2 , · · · , f optr−J+1

]]
. (40)

Setting r = p in the above leads to a matrix Bopt of size p× p which is non-singular,
allowing for the computation of the matrices (Bopt )r , consisting of the first r columns
of Bopt , and (Bopt )

(r), consisting of the first r rows of (Bopt )
−1. Therefore

X̂ = XDr D(r) = X(Bopt )r (Bopt )
(r) (41)

will minimize TSRES.

6 An alternative biplot based on the Bhattacharyya distance
for the two sample case

If, analogous to section 3 the population parameters in (5) are replaced with their sam-
ple estimates the sample version of the Bhattacharyya distance consists of two terms.
The first measures the dissimilarity between the two sample means and the second
measures the dissimilarity between the two sample covariance matrices. Fukunaga
(1990) uses this property to construct a second dimension for a visual display of the
rows of a data matrix X : n × p in two dimensions. Furthermore, Hennig (2004) uti-
lizes the Bhattacharyya distance, among other methods to construct two-dimensional
visualizations of the dispersions of two asymmetric samples – asymmetric in the sense
that one is known to be more homogeneous and the other to be more heterogeneous.
However, it should be noted that none of the visualizations proposed by Fukunaga
(1990) and Hennig (2004) are biplots because no information regarding the columns
of X is displayed. The optimal two-group CVA biplot proposed in section 5 assumes
equality of covariance matrices as is usual for CVA. This implies that the second term
of the sample version of (5) will vanish and optimization of (5) becomes equivalent
to maximizing (9).

Denote the transformation to the canonical space C by Y = XM with M : p × p.
We can write

C = C1 ∪ V,

where C1 is one-dimensional based on m1 and V is (p − 1)-dimensional with basis
m2,m3, . . . ,mp. In V we have

Y∗T = [Y2,Y3, . . . ,Yp],
Y∗|Gi : (p − 1) × 1 ∼ (μ∗,Σ∗

i ), i = 1; 2,

with μ∗T = [μ(Y )
2 , μ

(Y )
3 , . . . , μ

(Y )
p ],Σ∗

1 = M∗TΣ1M∗,Σ∗
2 = M∗TΣ2M∗ and M∗ :

p × (p − 1) = [m2,m3, . . . ,mp].
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Since μ∗
1 = μ∗

2 = μ∗, (say) we have from (5)

DBhat = 1

2
log

⎛
⎝

∣∣∣Σ
∗
1+Σ∗

2
2

∣∣∣
√|Σ∗

1||Σ∗
2|

⎞
⎠. (42)

Maximization of the sample version of (42) proceeds parallel to the process described
in section 2.3. The outcome is the matrix A : (p−1)× (p−1) containing as columns
the required eigenvectors arranged in decreasing order of the values of λ∗

i + 1
λ∗
i

+ 2.

A 2D biplot can now be constructed using the methods described in sections 3 and 4
by first noting that the matrix M is available as the matrix B of section 3. Next, we
calculate the matrix

K : p × p = [m1 M∗A]

and its inverse K−1. Let a : (p − 1) × 1 denote the first column of A, then the 2D
biplot can be constructed as described in section 4 using the rows of Z : n × 2, where

Z = [Xm1 Y∗a] = X[m1 M∗a]

for plotting the samples. The variables are represented by p calibrated biplot axes
constructed from

marker

eTk K
(2)T K (2)ek

K (2)ek,

where K (2) denotes the first 2 rows of K−1.

7 Examples

As an example, we consider the Vertebral Column Data Set from the UCI Machine
Learning Repository (Barreto et al. 2011) and discussed in detail by da Rocha Neto
et al. (2011). The full data set contains measurements on six continuous/numeric
variables relating to the shape and orientation of the pelvis and lumbar spine for each
of the 310 individuals (samples). These samples are classified as normal, disk hernia,
or spondylolisthesis patients. As an example of a two-group CVA, we study the subset
of 60 disk hernia and 150 spondylolisthesis patients. The six numeric variables are
Pelvic incidence, Pelvic tilt, Lumbar lordosis angle, Sacral slope, Pelvic radius, and
Degree spondylolisthesis.

Table 1 contains the group means for each of the six variables - with the outlier (see
Fig. 2) included and excluded. It is hard to see from the table the presence of the outlier
but, as is evident from Figs. 1 and 2, the outlier will be clearly revealed in a CVAbiplot.

The one-dimensional biplot of this two-group data set is shown in Fig. 1. In this
biplot, the two group means as well as all six variables (in the form of six calibrated
axes) lie on the one scaffolding line defined by the singular vector associated with
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Table 1 Group means for the six
measurements V1 = Pelvic
incidence, V2 = Pelvic tilt, V3
= Lumbar lordosis angle, V4 =
Sacral slope, V5 = Pelvic radius
and V6 = Degree
spondylolisthesis

Disk Hernia Spondylolisthesis

Outlier included Outlier excluded

V1 47.6383 71.5137 71.1223

V2 17.3987 20.7480 20.8309

V3 35.4635 64.1099 64.2154

V4 30.2400 50.7661 50.2919

V5 116.4750 114.5183 114.5642

V6 2.4793 51.8969 49.4362

Fig. 1 1D biplot of the two-group Vertebral Column data. V1 = Pelvic incidence, V2 = Pelvic tilt, V3
= Lumbar lordosis angle, V4 = Sacral slope, V5 = Pelvic radius, V6 = Degree spondylolisthesis. The
one-dimensional biplot is enhanced by superimposing density estimates for the interpolated sample points
in the two groups
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the single non-zero singular value of the underlying two-sided eigenequation. The
six calibrated axes representing the variables have been vertically translated to aid
the interpretation of the biplot. The values for each of the group means for all six
variables can easily be read from the biplot axes and it can be verified that these values
coincide exactly with the corresponding values in Table 1. As expected all variables
have predictivities of 100% for determining the mean values with T SREM = 0. All
the individual sample points have been interpolated onto the bipot and therefore they
also lie on the single scaffolding axis defining the biplot. However, T SRES > 0
with a standardized version T SRES/(tr(XXT ) = 0.4702. To visualize the within
groups variation the biplot has been enhanced by the addition of density estimates
of the two sets of sample points interpolated onto the one-dimensional CVA biplot.
These density estimates show graphically the separation/overlap of the two groups.
Inspection of the six biplot axes suggests V5 to be negatively correlated with the
other five variables; the latter are all pairwise positively correlated.

It is clear that much can be learned from the one-dimensional CVA biplot but some
serious issues are calling for considering a second scaffolding axis:

– Is the conspicuous outlier an outlier on all variables?
– Can the approximation of the sample points be improved without sacrificing what
has been achieved with the mean vectors?

– Is it possible to construct a more detailed visualization of the separation/overlap of
the two groups?

– Is it possible to construct amore accurate and detailed visualization of the correlation
structure of the six variables?

Figure 2 provides an answer to the above issues. The optimal two-dimensional CVA
biplot in Fig. 2 demonstrates the following:

– The biplot is uniquely defined.
– Each of the six biplot axes has a predictivity of 100% for determining the values
of the two groups for all variables.This results in TSREM to remain zero. Figure 2
provides a clearer picture of how the predictivities are determined.

– Introducing the second scaffolding axis improves the approximation of the samples
appreciably: the standardized TSRES decreases to 0.1799 (a decrease of more than
60% of the corresponding value obtained in Fig. 2).

– The second scaffolding axis is optimal in the sense that no other scaffolding axis
can be found, which will improve TSRES while restricting TSREM to zero.

– It is clear that Sample 116 is less of an outlier on V3 and V4 than on V2 and V6.
– There is a suggestion that while V5 appears to be negatively correlated with V3 and
V4 it appears to be positively correlated with V2 and V6. We note that the addition
of a second scaffolding axis provides angles between the biplot axes, which allow
for visualizing the approximate correlational structure between the variables.

The biplot in Fig. 2 has been enhanced by superimposing 95%-bags onto the biplot.
Alpha-bags are discussed in detail byGower et al. (2011). The 95%-bag used here con-
tains the innermost 95% of the bivariate sample points, where the innermost is relative
to the Tukey median (Ruts and Rousseeuw 1996). Now, we are ready for a detailed
appraisal of the overlap/separation of the two groups based on the two-dimensional
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Fig. 2 Optimal 2DCVA biplot of the two-group Vertebral Column data. V1= Pelvic incidence, V2= Pelvic
tilt, V3 = Lumbar lordosis angle, V4 = Sacral slope, V5 = Pelvic radius, V6 = Degree spondylolisthesis.
The optimal two-dimensional biplot is enhanced by superimposing bags containing the innermost 95%
samples of the two groups respectively

clouds of points visualizing the within groups sample variation. However, we first
exclude Sample 116 from the analysis and consider the optimal two-dimensional
CVA biplot given in Fig. 3 overlaid with 95%-bags. This figure shows:

– Clearly how the biplot axes are used to determine the group means exactly for each
variable.

– The angles between the biplot axes allow for an approximate visual appraisal of the
correlation structure.

– It is seen that the two 95%-bags almost touch each other but do not overlap giving us
an overall quantitative measure of the degree of separation between the two groups.

– The standardized TSRES value is 0.2155.
– Although the two clouds of points have a high degree of separation it can also be
seen that

123



N. le Roux, S. Gardner-Lubbe

Fig. 3 Optimal 2D CVA biplot of the two-group Vertebral Column data excluding outlier sample 116. V1
= Pelvic incidence, V2 = Pelvic tilt, V3 = Lumbar lordosis angle, V4 = Sacral slope, V5 = Pelvic radius,
V6 = Degree spondylolisthesis. The optimal two-dimensional biplot is enhanced by superimposing bags
containing the innermost 95% samples of the two groups respectively

– there is a high degree of overlap between the two groups concerning V2 and V5;
– there is almost no overlap on V1, V3 and V6;
– on V4 large Disk Hernia values overlap with small Spondylolisthesis measure-
ments, while small measurements of V4 almost exclusively occur in Disk Hernia.

The CVA biplots in Figs. 2 and 3 assume equal covariance matrices. We can now relax
this assumption and construct in Fig. 4, the biplot based on the Bhattacharyya distance
as discussed in section 6.

Although the appearance of this biplot is quite similar to that of the corresponding
optimal CVA biplot shown in Fig. 3 its standardized TSRES value is approximately
10% higher, namely 0.2367.
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Fig. 4 The 2D biplot based on the Bhattacharyya distance of the two-groupVertebral Column data excluding
outlier sample 116. V1 = Pelvic incidence, V2 = Pelvic tilt, V3 = Lumbar lordosis angle, V4 = Sacral
slope, V5= Pelvic radius, V6=Degree spondylolisthesis. The optimal two-dimensional biplot is enhanced
by superimposing bags containing the innermost 95% samples of the two groups respectively

8 Conclusions

CVA biplots are constructed to show in a single plot the group means as points and all
the variables as calibrated linear biplot axes. In the case of two groups the CVA biplot
becomes a line containing all these points and biplot axes. Furthermore, there is no
approximation in the positions of the group means and their respective values, which
can be exactly determined from the biplot axes. It is common practice to interpolate
the individual sample points onto the CVA biplot as well, but then they appear as
approximations in the one-dimensional CVA biplot space. Since all the biplot axes lie
on top of each other it is difficult to use them for determining the values of the two
means for the different variables. However, the vertical translation of one of these axes
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does not affect the values of the two means for that particular variable. Therefore, as
has been shown in Fig. 1, vertical translation of the biplot axes does not change the
dimensionality of the CVA biplot but increases the usefulness of the different biplot
axes for reading off values of the respective variables.

The fundamental question that is addressed in this paper is: What can be gained, if
anything, by increasing the dimensionality of the above one-dimensional CVA biplot
to two dimensions? This question can be rephrased as: Canwe add a second dimension
to our one-dimensional CVA biplot to improve the approximation of the individual
sample points leading to a better understanding of the within groups variability while
leaving unchanged the optimal representation of the two groupmeans? As it turned out
the addition of a second dimension is not a straightforward process since there are an
infinite number of ways that this can be done. Furthermore, if existing software is used
for constructing a two-dimensional CVA biplot in the two-group case the result can be
highly misleading. This is because the two-sided eigenequation underlying the CVA
procedure has only a single non-zero singular value with no natural ordering of the
zero singular values resulting in the indeterminacy of singular vectors associated with
zero singular values. Therefore, to guarantee a unique solution for finding a second
dimension, we had to consider a criterion to optimize the approximation of the sample
points while leaving the optimal representation of the group means unchanged. We
suggested the TSRES criterion for meeting this goal. Minimizing TSRES results in a
uniquely defined two-dimensional CVA biplot for the two-group case. It optimizes the
approximations of the within-group samples while the two group means are exactly
represented with the linear biplot axes providing exact values for both groups on all
variables.

Figure 3 shows that our proposed optimal two-dimensional CVA biplot for two
groups has the potential to provide the researcher with a tool that not only distin-
guishes the group means optimally but also where the within sample variation can
be depicted graphically to gain deeper insight into the separation/overlap of the two
groups. Moreover, it is unique and thus prevents any possibility of ambiguity when
routinely using existing software. Thus we have attained our primary objective as is
illustrated in the example discussed above.

The algebra underlying the optimal two-dimensional CVA biplot extends directly
to an optimal three-dimensional biplot when dealing with a three-groups case having
a CVA biplot space of dimension two.

An alternative suggestion based on the Bhattacharyya distance is available when
relaxing the equal within-group covariance matrix assumption. As can be seen from
Fig. 4, the biplot is slightly different, but the overall conclusion regarding overlap and
separation in terms of the individual variables remains unchanged. However, the biplot
based on Bhattacharyya distance is designed to optimize a different objective than the
optimization of the sum of the squared approximations of the data matrix. Therefore,
our preferred 2DCVAbiplot to construct in the two-group case is the proposed optimal
CVA biplot.

Finally, we note that our R code for constructing the biplots discussed in this paper
is available in Lubbe et al. (2023).
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