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Abstract
This paper proposes a fuzzy C-medoids-based clustering method with entropy regu-
larization to solve the issue of grouping complex data as interval-valued time series.
The dual nature of the data, that are both time-varying and interval-valued, needs to be
considered and embedded into clustering techniques. In this work, a new dissimilarity
measure, based on Dynamic Time Warping, is proposed. The performance of the new
clustering procedure is evaluated through a simulation study and an application to
financial time series.
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1 Introduction

In this paper, we propose a fuzzy C-medoids-based clustering method with entropy
regularization to group data objects characterized by two sources of complexity: they
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are both time-varying and interval-valued data, i.e. interval-valued time series (ITS).
Specifically, ITS are time series for which an interval covering the observed values
rather than a single value is associatedwith each time point: they are thus characterized
by lower and upper boundaries, as well as by centres and radii.

The proposed clustering procedure is based on a new dissimilarity measure suitable
for ITS which builds on the Dynamic Time Warping (DTW) and accounts for within-
series variability rather than intrinsic imprecision.

It is worth noting that there has been a growing interest in these complex data in
recent years, as they have become much more widely available and are being used
in a variety of contexts. However, as the next section will detail, research about ITS
clustering is still relatively limited. The main reason for deeply investigating this area
of research is motivated by the importance of clustering these complex data objects
taking into account intra-series variability, without losing this source of information by
considering a summary of it as the corresponding mean or median values. Developing
effective methods for handling and clustering ITS is proved to be highly valuable,
especially when studying the range of variation of a particular variable over time.
For instance, ITS can be used for analyzing wind speed levels, daily asset prices,
electricity demand in regions, or a person’s blood pressure fluctuations over time,
among others. In general, there is a growing need for methodologies that deal with
this type of symbolic data. According to the above considerations, we propose a new
clustering technique for ITS based on a fuzzy approach, whose main advantage is that
it produces a blurred partition of the objects to the clusters; in this way, there is no
crisp assignment of units to clusters, allowing the identification of the second-best
cluster too (Everitt and Leese 2001). Moreover, fuzzy clustering is distribution-free
(Hwang et al. 2007). The fuzziness is introduced in the objective function through a
regularization term based on the Shannon entropy (Li and Mukaidono 1995, 1999;
Miyamoto and Mukaidono 1997). We consider a medoids-based clustering technique
(Fcmd, Krishnapuram et al. 1999, 2001), given that the identification of the “virtual”
prototype, i.e. the time series centroid, in this context may be meaningless, unlike the
time series medoid, which is instead an observed time series.

The paper is structured as follows. Section 2 contains a review of the literature on
time series clustering while Sect. 3 provides a formal definition of the ITS and then
focuses on the new proposed dissimilarity measure. Section 4 introduces the fuzzy
clustering method with entropy regularization based on the proposed dissimilarity
while Sect. 5 contains the simulation plan. Section 6 shows the results of applying the
clustering method to the components of the FTSE-MIB by considering the monthly
minimum and maximum prices, ranging from October 2018 to October 2022 while
Sect. 7 contains conclusions and some general remarks.

2 Literature review

Regarding the general approach to time series clustering, we argue that it has been
widely used and applied in various fields including economics, finance, environmental
and social sciences. As stated in Caiado et al. (2015), we can distinguish among the fol-
lowing three main approaches: observation-based, features-based, and model-based.
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Clustering techniques belonging to the first group compute the dissimilarity based
on the observed values of the time series (D’Urso 2005; D’Urso et al. 2018, 2021a)
while those belonging to the second group are based on several features like quan-
tile cross-spectral densities (López-Oriona et al. 2022a, b, c), quantile autocovariance
(Vilar et al. 2018; Lafuente-Rego et al. 2020), autocorrelation function (Alonso and
Maharaj 2006; D’Urso and Maharaj 2009) and generalized cross-correlation (Alonso
et al. 2021), cepstral coefficients (Maharaj and D’Urso 2011), periodogram (Caiado
et al. 2006, 2009), wavelets decomposition (Maharaj et al. 2010; D’Urso and Maharaj
2012; D’Urso et al. 2023). Finally, techniques belonging to the third group com-
pute the dissimilarity among the parameter estimates arising from suitable fitted time
series models like ARIMA models (Piccolo 1990; Xiong and Yeung 2004; D’Urso
et al. 2015a), GARCH and INGARCHmodels (Otranto 2008, 2010; Caiado and Crato
2010; D’Urso et al. 2013, 2016; Otranto and Mucciardi 2019; Cerqueti et al. 2022),
extreme value analysis (D’Urso et al. 2017a), splines coefficients (Garcia-Escudero
and Gordaliza 2005; D’Urso et al. 2021b) and copulas (De Luca and Zuccolotto 2011;
Durante et al. 2014, 2015; De Luca and Zuccolotto 2017; Disegna et al. 2017).

Regarding clustering techniques for interval-valued data, in the literature (see
Noirhomme-Fraiture and Brito 2011 for an extensive review), many works have been
devoted to this scope (De Carvalho et al. 2006a, b; De Carvalho and Tenório 2010;
D’Urso et al. 2015b, 2017b; Montanari and Calò 2013; de Carvalho and Simões 2017;
Kejžar et al. 2021;Umbleja et al. 2021), while clustering techniques for interval-valued
time series are almost unexplored; indeed, few papers deal with imprecise time series
such as Coppi and D’urso (2002) and Coppi and D’Urso (2003) that introduce three
types of dissimilarity: the instantaneous, the velocity and the simultaneous dissimilar-
ity measures, respectively; Maharaj et al. (2019) and D’Urso et al. (2023) that follow
a features-based approach.

In this work, we follow an observation-based approachwithin the fuzzy framework,
exploiting all the advantages of dynamic time-warping, as discussed in the next section.

3 A dissimilarity measure for interval-valued time series

3.1 Interval-valued time series

An interval time-series (ITS) can be seen as an interval variable observed over T times;
formally, we can define a interval data time matrix as follows:

X ≡ {xit = (li t , hit ), i = 1, . . . , N , t = 1, . . . , T }

where i and t denote the units and the times, respectively; then xit = (li t , hit ) is the
interval variable observed on the i-th unit at time t: in particular, li t is the minimum
value observed on the i-th unit, at time t, while hit is the maximum value observed on
the same i-th unit at the same time t.

We can also consider the corresponding following matrices:

L ≡ {li t ; i = 1, . . . , N , t = 1, . . . , T }
H ≡ {hit ; i = 1, . . . , N , t = 1, . . . , T }
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where L is the matrix of time series of minima and H that of the maxima.
In the following section, the Dynamic TimeWarping is presented, being used, then,

to define the new dissimilarity for ITS.

3.2 Dynamic time warping

Let xi and x j be two time series of length T and T ′ respectively, where we do not
restrict T = T ′. The Dynamic Time Warping (DTW, Velichko and Zagoruyko 1970;
Berndt 1994) between these two time series works finding the optimal match between
them under certain restrictions. Therefore, the sequences are warped nonlinearly to
match each other.

The so-called “warping path” that “realigns” the time indices of the multivariate
time series so that each data point in xi is compared to the “closest” data point in x j

is defined as

�l = (ϕl , ψl), l = 1, . . . , L

where ϕl and ψl , for l = 1, . . . , L , are the set of realigned indices of 1, . . . , T and
1, . . . , T ′ respectively, subject to the following constraints:

1. boundary condition: �1 = (1, 1),�L = (T , T ′);
2. monotonicity condition: ϕ1 ≤ · · · ≤ ϕl ≤ · · · ≤ ϕL andψ1 ≤ · · · ≤ ψl ≤ · · · ≤

ψL .

Among the possible wrapping curves, the DTW is the one that minimizes the total
dissimilarity between xi and x j computed as:

dDTW(xi , x j ) =
L∑

l=1

d(xi,ϕl , x j,ψl )ml,� (1)

whereml,� is a localweighting coefficient andd(·, ·) is, usually, theEuclidean distance
for multivariate time series.

Even if the DTW algorithm could be problematic with long time series, when
used in the Partitioning around Medoids (PAM) method, its computational burden is
reduced since the distance matrix is computed only once in the iterative process.

Based on DTW, we define a new dissimilarity measure suitable when dealing with
interval-valued time series, as follows.

3.3 A dissimilarity measure for ITS

Given two interval-valued time-series xi and x j of length T and T ′ (with T ≥ T ′ or
T ≤ T ′), respectively, we define a new dissimilarity measure based on the Dynamic
Time Warping. Therefore, we propose:

ITSd(xi , x j ) = d∗
DTW(l i , l j ) + d∗

DTW(hi , h j ) + |d∗
DTW(l i , hi ) − d∗

DTW(l j , h j )| (2)
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where l i = (li1, . . . , li t , . . . , liT )′, l j = (l j1, . . . , l j t , . . . , l jT ′)′, hi =
(hi1, . . . , hit , . . . , hiT )′ and h j = (h j1, . . . , h jt , . . . , h jT ′)′ are the vectors of the
minima and maxima pertaining to the time series of the i-th and j-th unit, respectively.
d∗
DTW(· ; ·) denotes the normalized dDTW(· ; ·), i.e. the latter is divided by its maximum
so that it varies in [0, 1]. Specifically:

• d∗
DTW(l i , l j ) is the normalized DTW among the time series of the minima of units
i and j;

• d∗
DTW(hi , h j ) is the normalized DTW among the time series of the maxima of units
i and j;

• d∗
DTW(l i , hi ) is the normalized DTW among the time series of the minima and the
maxima of the unit i;

• d∗
DTW(l j , h j ) is the normalized DTW among the time series of the minima and the
maxima of the unit j;

We finally remark that I T Sdi j thus can take values in the interval [0, 3].
In the next Section, we introduce the Entropy-based fuzzy clustering method

(FcmdIT S) for interval-valued time series based on the above dissimilarity measure.

4 Entropy-based fuzzy clustering of interval-valued time series

AfuzzyC-medoids clusteringmethodwith entropy regularization is defined to groupN
interval-valued time series intoC homogeneous clusters based on the newdissimilarity
measure (2), henceforth named FcmdIT S . The aim is to identify the matrix of fuzzy
membership degrees UN×C whose generic element uic is the membership degree
of the i-th time series to the c-th cluster, with i = 1, . . . N , c = 1, . . . ,C and the
corresponding C prototypes, i.e. the C time series medoids; both are the solutions of
the following constraint optimization problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : Jp,C
(
U, X̃

)
=

N∑

i=1

C∑

c=1

uic ITSd(xi , x̃c) + p
N∑

i=1

C∑

c=1

uicln(uic)

=
N∑

i=1

C∑

c=1

uic

[
d∗
DTW(l i , l̃c) + d∗

DTW(hi , h̃c)

+ |d∗
DTW(l i , hi ) − d∗

DTW(l̃c, h̃c)|
]

+ p
N∑

i=1

C∑

c=1

uicln(uic)

s.t .
C∑

c=1

uic = 1, uic ≥ 0.

(3)

where I T Sd(xi , x̃c) is the dissimilarity (2) between the i-th ITS and the ITS medoid
of the c-th cluster.

In this objective function, the fuzziness is due to the entropy regularization term;
its extent is controlled through the weight factor p > 0, which is called degree of
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fuzzy entropy since the higher p the higher the degree of fuzziness. In particular, the
second term is −p × the Shannon entropy, so that the optimization problem aims at
maximizing both the entropy measure and the internal cohesion.

The iterative solutions of (3) are:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp
(
1

p

[
d∗
DTW(l i , l̃c) + d∗

DTW(hi , h̃c) + |d∗
DTW(l i , hi ) − d∗

DTW(l̃c, h̃c)|
])

exp
(
1

p

[
d∗
DTW(l i , l̃c′ ) + d∗

DTW(hi , h̃c′ ) + |d∗
DTW(l i , hi ) − d∗

DTW(l̃c′ , h̃c′ )|
])

⎤

⎥⎥⎦

(4)

The proof of the iterative solutions (4) is given below, while the computational steps
of the proposed clustering method are given in Algorithm 1.

Starting from the vector of the degrees of membership ui and using the Lagrangian
mutiplier, we get:

L p(ui , λ) =
N∑

i=1

C∑

c=1

uic
[
d∗
DTW(l i , l̃c) + d∗

DTW(hi , h̃c)

+ |d∗
DTW(l i , hi ) − d∗

DTW(l̃c, h̃c)|
]

+ p
n∑

i=1

C∑

c=1

uicln(uic) − λ

(
C∑

c=1

uic − 1

)
, (5)

where ui = (ui1, . . . , uic, . . . , uiC )′ and λ is the Lagrange multiplier. Therefore, we
set the first derivatives of (5) with respect to uic and λ equal to zero, yielding:

∂L p(ui , λ)

∂uic
= 0 ⇔ [

d∗
DTW(l i , l̃c) + d∗

DTW(hi , h̃c)

+ |d∗
DTW(l i , hi ) − d∗

DTW(l̃c, h̃c)|
]

+ p[ln(uic) + 1] − λ = 0, (6)

∂L p(ui , λ)

∂λ
= 0 ⇔

C∑

c=1

uic − 1 = 0. (7)

From (6) we obtain:

ln(uic) = 1

p

(
λ −

[
d∗
DTW(l i , l̃c) + d∗

DTW(hi , h̃c) + |d∗
DTW(l i , hi ) − d∗

DTW(l̃c, h̃c)|
])

− 1 (8)

and, then:

uic = exp
{

λ

p
− 1

p

([
d∗
DTW(l i , l̃c) + d∗

DTW(hi , h̃c) + |d∗
DTW(l i , hi ) − d∗

DTW(l̃c, h̃c)|
])

− 1

}
(9)

By considering (7):
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exp
(

λ

p
− 1

)
= 1

∑C
c′=1

1

exp
(
1

p

[
d∗
DTW(l i , l̃c′ ) + d∗

DTW(hi , h̃c′ ) + |d∗
DTW(l i , hi ) − d∗

DTW(l̃c′ , h̃c′ )|
])

. (10)

and by replacing Eq. (10) in (9), we have the solution as in (4).

Algorithm 1 FcmdITS algorithm

5 A simulation study

Asimulationplanhas been considered to assess the proposed fuzzy clusteringmethod’s
performance. Three different scenarios have been simulated as described in the next
section.

5.1 Simulated scenarios

First scenario The first scenario considered 45 simulated interval-valued time series
clustered in 3 equally sized groups with length T = 100; they are shown in Fig. 1a
while in (b) a sample of three ITS, one per group, is represented.

In detail, the time series of minima belonging to the first group (C1) have been
simulated by a random walk with drift so that:

lt = δ0 + lt−1 + wt ,

with δ0 = −1 and wt ∼ N (0, 4); then, we shifted it by 50 so that lt = lt + 50.
The time series of minima belonging to the second group (C2) have been simulated

by a random walk with drift so that:
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for t ∈ [1, T /2],

lt = δ0 + lt−1 + wt ,

with δ0 = 1.5 and wt ∼ N (0, 4);
for t ∈ [(T /2) + 1, T ],

lt = δ0 + lt−1 + wt ,

with δ0 = 2 and wt ∼ N (0, 4).

The time series of minima belonging to the third group (C3) have been simulated by
a Moving Average (MA) model so that:

for t ∈ [1, (T /2) + 10],

lt = μ + wt + φwt−1,

with μ = 0 φ = −0.5 and wt ∼ N (0, 0.25);
for t ∈ [(T /2) + 11, T ],

lt = μ + wt + φwt−1,

with μ = −5 φ = −0.5 and wt ∼ N (0, 0.25).

The time series of maxima have been simulated as follows:

ht = lt +U (1, 10) + 10

Second scenario The second scenario, plotted in Fig. 2, considered 45 simulated
interval-valued time series clustered in 3 equally sized groups with length T = 100
too. The time series of minima have been simulated as in the first scenario while the
time series of maxima as follows:

ht = lt +U (1, 10) + 70, for ht ∈ C1,
ht = lt +U (1, 10) + 20, for ht ∈ C2,
ht = lt +U (1, 10) + 80, for ht ∈ C3.

Third scenario In the third scenario, plotted in Fig. 3, we considered 30 time series
clustered in 3 equally sized groups, with length T = 200. The time series of minima
belonging to the first group (C1) have been simulated by an Autoregressive (AR)
model so that:

lt = α + ψlt−1 + wt ,

with ψ = 0.7, α = 10(1 − ψ) and wt ∼ N (0, 1).
The time series of minima belonging to the second group (C2) have been simulated

by an ARMA model so that:

lt = μ + ψlt−1 + wt + φwt−1,
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Fig. 1 First scenario: a all simulated time series b a sample of three simulated ITS, one per group
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Fig. 2 Second scenario: a all simulated time series b a sample of three simulated ITS, one per group
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with μ = 20, ψ = −0.3, φ = 0.5 and wt ∼ N (0, 1).
The time series of minima belonging to the third group (C3) have been simulated

by an MA model so that:

for t ∈ [1, (T /2)],

lt = μ + wt + φwt−1,

with μ = 40 φ = −0.5 and wt ∼ N (0, 1);
for t ∈ [(T /2) + 1, T ],

lt = μ + wt + φwt−1,

with μ = 50, φ = −0.5 and wt ∼ N (0, 1).

The time series of maxima have been simulated as follows:

ht = lt +U (1, 6) + 10, for ht ∈ C1,
ht = lt +U (1, 6) + 20, for ht ∈ C2,
ht = lt +U (1, 6) + 30, for ht ∈ C3.

Remark 1 A suitable pre-processing of the data may be required, such as normaliza-
tion/standardization. Here, we propose the following normalization procedure:

l ′i t = li t − min(li1, . . . , liT )

max(hi1, . . . , hiT ) − min(li1, . . . , liT )
,

and

h′
i t = hit − min(li1, . . . , liT )

max(hi1, . . . , hiT ) − min(li1, . . . , liT )
,

∀ t = 1, . . . , T and i = 1, . . . , N .
This normalization implies that the values are in the interval [0, 1] also ensuring

that the order among minima and maxima of each time series is always preserved. It
has been used for all clustering methods in the simulation.

5.2 Benchmarkmethods

To compare our clustering method with some possible competitors, we consider the
following dissimilarity measures:

1. d2(xi , x̃c) =
T∑

t=1

(
‖li t − lct‖2 + ‖hit − hct‖2

)
. (11)

The above dissimilarity (11) between the i-th time series and the c-th medoid can
be obtained from the dissimilarity measure (4.1) proposed in Coppi and D’Urso
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Fig. 3 Third scenario: a all simulated time series b a sample of three simulated ITS, one per group

123



Entropy-based fuzzy clustering of interval-valued time series

(2003) for LR fuzzy time trajectories by simply setting the centres cit = 0 and
by considering the left and right spreads, li t and rit , as the minimum (li t ) and
maximum (hit ) of the interval time series at time t, ∀ t = 1, . . . , T and i =
1, . . . , N .
The iterative solutions uic, for i = 1, . . . , N and c = 1, . . . ,C , of the entropic
Fcmd based on (11) are:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp

(
1

p

[∑T
t=1

(
‖li t − l̃ct‖2 + ‖hit − h̃ct‖2

)])

exp

(
1

p

[∑T
t=1

(
‖li t − l̃c′t‖2 + ‖hit − h̃c′t‖2

)])

⎤

⎥⎥⎦

. (12)

We name, henceforth, in the simulation study, this clustering method as FcmdEU .
2. We extend the unweighted generalizedMinkowski distance of order q (Billard and

Diday 2006) to the case of time series as:

d(xi , x̃c) =
(

T∑

t=1

φ(xit , x̃ct )
q

)1/q

, (13)

where φ(xit , x̃ct ) is the Ichino and Yaguchi dissimilarity1 (Ichino and Yaguchi
1994) between the i-th time series and the c-th medoid at time t.
The iterative solutions uic, for i = 1, . . . , N and c = 1, . . . ,C , of the entropic
Fcmd based on the square of (13) and q = 2 are:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp

(
1

p

[∑T
t=1 φ(xit , x̃ct )2

])

exp

(
1

p

[∑T
t=1 φ(xit , x̃c′t )2

])

⎤

⎥⎥⎦

. (14)

We name, henceforth, in the simulation study, this clustering method as FcmdIY2.
The iterative solutions uic, for i = 1, . . . , N and c = 1, . . . ,C , of the entropic
Fcmd based on (13) and q = 1 are:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp

(
1

p

[∑T
t=1 φ(xit , x̃ct )

])

exp

(
1

p

[∑T
t=1 φ(xit , x̃c′t )

])

⎤

⎥⎥⎦

. (15)

We name, henceforth, in the simulation study, this clustering method as FcmdIY1.

1 With γ = 0.5.
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3. We extend the Euclidean Hausdorff distance (Billard and Diday 2006) to the case
of time series as:

d(xi , x̃c) =
(

T∑

t=1

υ(xit , x̃ct )
2

)1/2

, (16)

where υ(xi t , x̃ct ) is the Hausdorff distance between the i-th time series and the
c-th medoid at time t.
The iterative solutions uic, for i = 1, . . . , N and c = 1, . . . ,C , of the entropic
Fcmd based on the square of (16) are:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp

(
1

p

[∑T
t=1 υ(xit , x̃ct )2

])

exp

(
1

p

[∑T
t=1 υ(xit , x̃c′t )2

])

⎤

⎥⎥⎦

. (17)

We name, henceforth, in the simulation study, this clustering method as FcmdH2.
Then, we also consider:

d(xi , x̃c) =
T∑

t=1

υ(xit , x̃ct ). (18)

The iterative solutions uic, for i = 1, . . . , N and c = 1, . . . ,C , of the entropic
Fcmd based on (18) are:

uic = 1

∑C
c′=1

⎡

⎢⎢⎣

exp

(
1

p

[∑T
t=1 υ(xit , x̃ct )

])

exp

(
1

p

[∑T
t=1 υ(xit , x̃c′t )

])

⎤

⎥⎥⎦

. (19)

We name, henceforth, in the simulation study, this clustering method as FcmdH1.

We argue that, to the best of our knowledge, these benchmark methods are, however,
a novelty in the state of the art of fuzzy clustering.

5.3 Simulation results

All the clustering methods, i.e. FcmdIT S , FcmdIY2, FcmdIY1, FcmdI H2, FcmdI H1
and FcmdEU respectively, for each scenario, have been applied to 100 simulated
datasets by setting C ∈ {2, 3} choosing the best C∗ according to the Fuzzy silhouette
Index (FS, Campello and Hruschka 2006), a well-known internal validity criterion
that lies in [−1, 1], so that the higher is the value of the Fuzzy Silhouette index, the
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Table 1 Ratio between the mean
distance of benchmark method
and that of FcmdIT S over 100
simulations

Method Scenario 1 Scenario 2 Scenario 3

FcmdIY2 7.5 4.89 1.7

FcmdIY1 18.83 15.59 13.82

FcmdH2 10.96 10.37 3.24

FcmdH1 23.73 22.69 19.33

FcmdEU 16.22 12.35 4.05

better is the assignment of the units to the C clusters. For each setting, we considered
100 random restarts and set the maximum number of iterations to 1000.

To assess the impact of the fuzziness parameter, we ran FcmdIT S by varying
p ∈ {0.05, 0.10, 0.15, 0.40}. It is worth noting that the effect of p in terms of degree
of fuzziness of the partition also depends on the scaling of the dissimilarity matrix. In
these simulations, the benchmark methods are somewhat favoured because they have
a larger scale thus leading to a less blurred partition while keeping the same value of
p.

To take this into account and to provide comparable results as far as possible,we con-
sider p ∈ {0.10, 0.20, 0.30, 0.80} for all the benchmark methods whose ratio between
its mean distance and that of the proposed clustering method, over 100 simulations,
was above 10 (see Table 1 for the details).

To evaluate the performance, we compared the 100 obtained partitions with the
true one by means of the Fuzzy Adjusted Rand Index (ARI, Campello 2007), an
external validation criterion that lies in [−1, 1]: the higher is its value, the higher is
the agreement between the compared partitions.

The simulation results for all clustering methods are summarised in Table 2: for
each scenario and for increasing values of p, the table reports the mean and standard
error of the Fuzzy ARI index as well as the number of times, based on the FS value, the
method leads to choose C∗ = 3 over 100 simulated data set (the column named Rate).
Then, in Figs. 4, 5 and 6 the Fuzzy ARI distribution associated with each clustering
method and setting is also shown by means of the violin plots.

Notice that FcmdIT S performs very well in all scenarios, including the second and
the third, where the minima and maxima time series have different widths, sometimes
overlapping. This positive evidence comes from considering that it shows a very good
performance both in terms of ARI and the choice of the right C. In fact, a correct
assessment of the quality of performance has to be based on the combination of both
measures.

Moreover, in the third scenario, the role of p is more evident: the higher its value,
the lower the performance, since we have compared a crisp partition with a fuzzy one
(the low value of the Fuzzy ARI in the third scenario is only due to the huge effect
that p = 0.40 has on the membership degree).

The comparison with the other benchmarks leads to the following considerations.
For the first scenario, based on the results in Table 2 and also looking at the distribution
of the fuzzy ARI in Fig. 4, FcmdH1 can be considered as a valid competitor, although
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Table 2 Simulation results: mean, standard error of the Fuzzy ARI index and the number of times, based
on the FS value, the method leads to choose C∗ = 3 over 100 simulations for all clustering methods and
all scenarios

p Scenario I Scenario II Scenario III

Mean s.e. Rate Mean s.e. Rate Mean s.e. Rate

FcmdIT S p1 0.999 0.001 100 0.997 0.001 100 0.998 0.000 100

p2 0.999 0.001 100 0.996 0.001 100 0.985 0.001 100

p3 0.998 0.001 100 0.995 0.001 100 0.952 0.002 100

p4 0.915 0.001 100 0.913 0.007 100 0.640 0.006 100

FcmdIY2 p1 0.640 0.033 40 0.997 0.001 100 0.564 0.007 6

p2 0.535 0.038 39 0.991 0.006 99 0.551 0.004 14

p3 0.443 0.042 35 0.991 0.006 99 0.521 0.005 47

p4 0.219 0.034 20 0.954 0.014 95 0.436 0.004 99

FcmdIY1 p1 0.974 0.011 96 0.997 0.001 100 0.763 0.021 56

p2 0.969 0.012 96 0.997 0.001 100 0.720 0.021 47

p3 0.947 0.016 95 0.997 0.001 100 0.673 0.019 40

p4 0.855 0.024 93 0.996 0.002 100 0.532 0.011 77

FcmdH2 p1 0.985 0.011 98 0.997 0.001 100 0.781 0.023 69

p2 0.980 0.012 98 0.992 0.005 99 0.713 0.023 60

p3 0.994 0.004 99 0.987 0.007 99 0.644 0.022 56

p4 0.964 0.017 97 0.952 0.018 96 0.530 0.018 68

FcmdH1 p1 0.999 0.001 100 0.997 0.001 100 0.938 0.011 97

p2 0.999 0.001 100 0.997 0.001 100 0.914 0.015 92

p3 0.999 0.001 100 0.997 0.001 100 0.870 0.019 84

p4 0.999 0.001 100 0.996 0.001 100 0.635 0.023 56

FcmdEU p1 0.956 0.013 90 0.937 0.019 91 0.716 0.020 50

p2 0.933 0.019 87 0.943 0.018 92 0.650 0.018 39

p3 0.932 0.019 87 0.941 0.019 92 0.613 0.016 38

p4 0.927 0.020 90 0.855 0.029 84 0.505 0.010 79

it is favoured by the scaling of its dissimilarity matrix (see Table 1), which reduces
the influence of p with respect to FcmdIT S .

For the second scenario, looking at the Table 2 and Fig. 5, the performance of
FcmdIT S is fairly comparable in particular with that of FcmdY1 and FcmdH1 respec-
tively, although both favoured again by the scaling of the dissimilarity.

The third scenario is the one for which the best performance of our proposal is
evident (see Table 2 and Fig. 6). The only slightly comparable clustering method is
again the one based on the Hausdorff distance , i.e. FcmdH1, because it is the only
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one that achieves good results both in terms of Fuzzy ARI and identification of the
true number of clusters.2

Furthermore, we point out that, unlike point-to-point dissimilarity measures, our
clustering method is the only one able to deal with time series of different lengths,
thus broadening its applicability. Based on these very good results, in the next section,
we apply the proposed clustering method to a real data set and we highlight that the
choice of the best value of the fuzziness parameter p strictly depends on the scaling
of the dissimilarity used and the degree of separation among groups; thus in practical
applications, we recommend taking into account all these issues and selecting the best
combinations of C and p based on some internal validity criterion.

6 An application to FTSE-MIB components

The proposed clustering approach has been applied to study the performance over
time of the stocks that currently compose the FTSE-MIB index, which is listed on the
Italian Stock Exchange owned by the London Stock Exchange.

The stocks composing the index can vary over time, based on their market capital-
ization and liquidity; moreover any stock may never account for more than 15% of
the index.

We argue that, in the case of financial time series, the analysis of point-valued
prices does not allow capturing the dynamics of prices’ volatility, which is proxied by
price range (Parkinson 1980; Chou et al. 2010). In this study, hence, we considered
the monthly minimum and maximum prices of the FTSE-MIB components, spanning
from October 2018 to October 2022, shown in Fig. 7.

In this regard, we can highlight that almost all the stocks experimented large reduc-
tion in the prices around the first pandemic period. However, not all the stocks’
prices reverted to their pre-shock values, with some that incremented their values
(e.g. AMP.MI) and others that observed huge losses (e.g. BPE.MI). Some heterogene-
ity can be also observed considering the magnitude of the prices’ changes due to the
COVID-19 shock. Therefore, we use cluster analysis to deeply insight about common
patterns in these stocks.

The ITS have been normalized using the proposed procedure in the remark 2. The
best solution, i.e. the optimal number of clusters C∗, has been chosen based on the
combination of C and the p that maximizes the Fuzzy Silhouette index. Considering
C ∈ {2, . . . , 10} and p ∈ {0.05, 0.08, 0.10, 0.12}, we computed the Fuzzy Silhouette
index accordingly.

As can be seen from Fig. 8, regardless of the value of p, the best partition is for
C∗ = 2. Moreover, both the partition and the medoid units are stable as the value of
p increases. Therefore, we focus only on the first “less fuzzy” partition, i.e. that based
on p = 0.05, reported in Table 3.

The last column shows the corresponding crisp partition obtained by fixing a cut-off
value for the uic equal to 0.7. The medoid units are those with the uic in bold, therefore

2 In this respect, in the same scenario, the value of Rate equal to 0.99 for FcmdY2 leads to a misleading
conclusion if it is not comparedwith the corresponding value of FuzzyARI, which is very low, thusmeaning
that the partition in 3 groups is not well identified.
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Fig. 4 First scenario: violin plots of the Fuzzy ARI for all the clustering methods according to the different
values of the p parameter
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Fig. 5 Second scenario: violin plots of the FuzzyARI for all the clusteringmethods according to the different
values of the p parameter
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Fig. 6 Third scenario: violin plots of the Fuzzy ARI for all the clustering methods according to the different
values of the p parameter
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Fig. 7 Monthlyminimum andmaximum prices of the FTSE-MIB components, spanning fromOctober 2018
to October 2022. Each plot header is the stock’s acronym whose corresponding name can be found in Table
3—second column

Snam (SRG.MI) and Generali (GI.MI) whose corresponding time series are plotted in
Fig. 9.

Snam is Europe’s leading operator in natural gas transport and storage, with an
infrastructure enabling the energy transition. It ranks among the top ten Italian listed
companies by market capitalization and has been a public company, since 2001, while
Generali is one of the largest global insurance and asset management providers, active
in 50 countries in the world.

The medoid of the first group is characterized by a rapid increase in both minimum
and maximum prices after the slump in March 2020, thus quickly reverted to the
pre-shock values. Conversely, the medoid of the second group took many months to
recover pre-shock values. This suggests that this medoid is characterized by a stronger
persistency than the one of the first group for the months after the shock. Another
interesting difference between the two cluster medoids is the magnitude of the price
changes in March 2020, as the price reduction is larger for the second cluster medoid
than for the first one.

The same differences between the two medoids can be retrieved in the two groups
as we can see by looking at Fig. 10 that shows the crisp partition of all ITS with cut-off
value 0.7, C = 2 and p = 0.05.

Overall, we find in the Cluster 2 stocks characterized by a slower prices’ recovery
rate after the shock and stocks that did not recover completely. In the Cluster 1,
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Fig. 8 Fuzzy silhouette index according to C ∈ {2, . . . , 10} and p ∈ {0.05, 0.08, 0.10, 0.12}

differently, we find stocks whose shock impact has been lower than those placed in
Cluster 2 and/or with very quick recovery rates. Moreover, in terms of trend, Cluster
1 includes stocks with positive trends pre-shock that were not affected negatively by
the COVID-19 pandemic (e.g. PRY.MI, REC.MI ot TRN.MI). Another interesting
features of clusters’ composition, is that stocks in Cluster 1 show larger average price
range compared with those in Cluster 2. In particular, the former have an average price
range equal to 4.81 while the latter to 1.08. This means that, on average, Cluster 1
groups together more volatile stocks.

7 Concluding remarks

The interest in clustering complex data, such as Interval-valued time series, is today a
need rather than only an opportunity.

The increasing availability of this type of data must be seen as a resource that may
lead research towards more advanced statistical challenges. The use of summaries as
themeanormedian canproduce a loss of information in termsof intra-series variability.
The evolution of the range of variation of a variable over time is particularly relevant
and could not be assumed to be ignored unless in some specific cases. Handling such
symbolic data in the clustering process has not yet been thoroughly studied, indeed
few works deal with it.
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Table 3 Fuzzy partition with C = 2 and p = 0.05

Stock acronym Stock name p=0.05 Crisp partition

Cluster 1 Cluster 2

A2A.MI A2A 0.12 0.88 2

AMP.MI Amplifon 1.00 0.00 1

ATL.MI Atlantia 0.57 0.43 Fuzzy

AZM.MI Azimut 0.89 0.11 1

BAMI.MI Banco BPM 0.50 0.50 Fuzzy

BGN.MI Banca Generali 0.97 0.03 1

BMED.MI Banca Mediolanum 0.84 0.16 1

BPE.MI BPER Banca 0.67 0.33 Fuzzy

CNHI.MI CNH Industrials N.V. 0.93 0.07 1

CPR.MI Campari 0.95 0.05 1

DIA.MI Diasorin 1.00 0.00 1

ENEL.MI Enel 0.94 0.06 1

ENI.MI Eni 0.05 0.95 2

FBK.MI FinecoBank 0.68 0.32 Fuzzy

G.MI Generali 0.00 1.00 2

HER.MI Hera 0.34 0.66 Fuzzy

IG.MI Italgas 0.59 0.41 Fuzzy

INW.MI INWIT 0.90 0.10 1

IP.MI Interpump Group 1.00 0.00 1

ISP.MI Intesa Sanpaolo 0.02 0.98 2

LDO.MI Leonardo 0.03 0.97 2

MB.MI Mediobanca 0.18 0.82 2

MONC.MI Moncler 1.00 0.00 1

PIRC.MI Pirelli 0.17 0.83 2

PRY.MI Prysmian 1.00 0.00 1

PST.MI Poste italiane 0.85 0.15 1

RACE.MI Ferrari 1.00 0.00 1

REC.MI Recordati 1.00 0.00 1

SPM.MI Saipem 0.60 0.40 Fuzzy

SRG.MI Snam 1.00 0.00 1

STLA.MI Stellantis 0.16 0.84 2

STM.MI STMicroelectronics 1.00 0.00 1

TEN.MI Tenaris 0.63 0.37 Fuzzy

TIT.MI Telecom Italia 0.02 0.98 2

TRN.MI Terna 0.99 0.01 1

UCG.MI UniCredit 0.02 0.98 2

UNI.MI Unipol 0.39 0.61 Fuzzy

Last column reports the crisp partition when using the cut-off 0.7
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Fig. 9 The medoids units

Fig. 10 Crisp partition with cut-off value 0.7, C = 2 and p = 0.05

We propose a new fuzzy clustering method suitable for ITS that not only fills a
gap in the literature but also, as shown by simulations, overcomes some well-known
dissimilarity measures for interval-valued data. Furthermore, unlike point-to-point
dissimilarity measures, our clustering method can be used for time series of different
lengths, broadening its applicability. Therefore, we propose a new fuzzy clustering
method suitable for ITS to enrich the existing literature. Simulation results have been
very promising and the application has revealed the goodness of our proposed clus-
tering technique even with real data.

As a further development of this work, we will extend our methodological proposal
by considering new dissimilarity measures as well as the possibility to define a metric
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robust against outliers or noisy data. Another interesting research perspective to be
explored is the extension of the proposed fuzzy methods to other types of complex
structures of data such as count (deNailly et al. 2023; Roick et al. 2021) and categorical
(López-Oriona et al. 2023) time series.
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