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Abstract
A key point to assess statistical forecasts is the evaluation of their predictive accuracy.
Recently, a new measure, called Rank Graduation Accuracy (RGA), based on the
concordance between the ranks of the predicted values and the ranks of the actual
values of a series of observations to be forecast, was proposed for the assessment of
the quality of the predictions. In this paper, we demonstrate that, in a classification
perspective, when the response to be predicted is binary, the RGA coincides both
with the AUROC and the Wilcoxon-Mann–Whitney statistic, and can be employed to
evaluate the accuracy of probability forecasts. When the response to be predicted is
real valued, the RGAcan still be applied, differently from theAUROC, and similarly to
measures such as the RMSE. Differently from the RMSE, the RGAmeasure evaluates
point predictions in terms of their ranks, rather than in terms of their values, improving
robustness.

Keywords Concordance curve · Receiver Operating Characteristic Curve · Predictive
accuracy · Ordinal classification

Mathematics Subject Classification 68T01 · 68T20 · 68T37

1 Background andmotivation

One of the most important challenges for statistical learning methods is the construc-
tion of predictive accuracy tools that can evaluate and monitor the quality of the
forecasts. For a review, see for example Hand and Till (2011), Gneiting (2011), Kang
et al. (2021), Petropoulos et al. (2022) and the references therein. In this context, we
aim to generalise the AUROC measure, in line with recent extensions provided by
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Hand and Till (2011) and Hand and Anagnostopoulos (2023), who proposed and dis-
cussed the H measure; and by Vivo et al. (2018), who proposed a partial area under
the ROC curve (pAUC), to deal with the case of crossing ROC curves. In parallel to
these developments, the increasing availability of computational power has allowed
the implementation of predictive accuracy measures in several contexts and to com-
pare, on the same data, different types of machine learning models. The traditional
paradigm compares machine learning models within a model selection procedure, in
which a model is chosen through a sequence of pairwise comparisons, based on the
comparison of the likelihoods (or of the posterior probabilities) of the models being
compared. These criteria are not generally applicable, when an underlying probabilis-
tic model is not specified, as in neural networks and random forest models.

These considerations suggest that classical model comparison is not sufficient to
compare the models that can be learned from the data. Indeed, the last few years
have witnessed the growing importance of model comparison methods based on the
comparison between the predicted and the actually observed cases, typically within
cross-validation methods. In cross-validation, the data is split in two datasets, with a
“training” dataset used to fit a model and a “validation” dataset used to compare the
predictions made by the fitted model with the actual observed values.

The predictive accuracy of a model can be assessed through some specific met-
rics, of which use depends on the nature of the target variable to be predicted. When
the response variable is continuous, the root mean square error (RMSE) is the most
employed measure. The RMSE, related to the Pearson’s correlation coefficient, is
based on the Euclidean distance between the predictions and the actual values. In the
case of an ordinal response variable, the predicted and actual values can be replaced
with their ranks, leading to the Spearman’s correlation coefficient and to Kendall’s
τ . When the target variable is binary, predictive accuracy can be evaluated through
the Brier score (BS) which, similarly to the RMSE and the Spearman’s correlation
coefficient, employs an Euclidean distance, calculated between the estimated proba-
bility for an event, and the observed outcomes (see Brier 1950). Alternatively to the
BS, predictive accuracy can be evaluated in terms of distance between predicted and
actual probability forecasts of both 0 and 1 values, giving rise, when different cut-off
thresholds are considered, to the AUROC as a main summary measure. While RMSE
and BS generate metrics which allow to reach the condition of scale precision, Spear-
man’s coefficient and AUROC provide metrics which depend on the ranks and on the
percentages of true and false predictions, missing the condition of scale precision.

Note that all previous accuracy measures depend on the type of response variable,
and none of them can be universally applied. This can be a problem in automated Arti-
ficial Intelligence (AI) applications, where statistics is becoming a valuable asset for
their theoretical and practical understanding, as discussed in the most recent contribu-
tions by Friedrich et al. (2022) and Vojíř and Kliegr (2020). In Friedrich et al. (2022),
statistics is presented as an interdisciplinary scientific field which plays a pivotal role
for the evaluation of the predictive accuracy of AImethods. In Vojíř and Kliegr (2020),
the focus is on the quantification of the explainability of highly complex machine
learning models through the proposal of a new framework for the interpretability of
rule-based models. These works witness that statistics can play an important role in
assessing the “Trustworthiness” of Artificial Intelligence, defined in recently proposed
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regulations, such as the EUAI Act (artificialintelligenceact.eu). In particular, statistics
can be very helpful to assess four key S.A.F.E. principles: “Sustainability” (in terms
of resilience to extreme events and cyber attacks), “Accuracy” (in terms of accurate
predictions), “Fairness” (in terms of no-discrimination with respect to sub-groups of
the population) and “Explainability” (in terms of human oversight of the results).

In this paper we will focus on the accuracy principle, to further deepening and
extending the RGA measure introduced by Raffinetti (2023) as a “universal” metric,
independent on the nature of the response variable. In linewith the accuracy assessment
perspective, we aim at showing the RGA capability not only to detect the best set of
predictors to be selected, but also to detect the type of response variable which is more
predictable and, therefore, more reliable. To better clarify our purpose, suppose we
would like to build an Artificial Intelligence tool which, on the basis of all available
data, suggests daily whether a local government should impose mobility restrictions
in a region, due to the outburst of a pandemic (such as Covid-19). A natural response
variable is the count of new daily infected cases. To decide what to do tomorrow
the government could rely on the prediction of tomorrow’s count, and evaluate the
reliability of the tool monitoring the RMSE of the predictions over time. But the
government can also decide to rely on the prediction of whether tomorrow the count
is above a certain threshold of incidence, and evaluate the reliability of the tool using
the AUROC measure. How can a government decide which response to predict? It
would be desirable if the AI itself solves this problem. Comparing the p-values is not
a solution, as they depend on two different models. It is then necessary to consider a
more general predictive accuracy measure that is model agnostic not only with respect
to the type of model - function of the explanatory variables - to employ, but also with
respect to the type of response variable to be predicted.

More formally, let Y be a response variable to be predicted through a (supervised)
statistical learning model f (X), where X is a vector of h explanatory variables:
X1, X2, . . . , Xh . The prurpose is to compare different models, in terms of predic-
tive accuracy. To this aim we now introduce a framework, based on the notion of
concordance, that generalises the predictive accuracy problem to all ordered variable
scales: continuous, ordinal and binary.

Let D be the available data, a matrix with h + 1 columns, corresponding to h
explanatory variables and a response variable; and N � n∗ + n rows, corresponding
to all the joint observations of Y and X1, X2, . . . , Xh , partitioned into a training set
Dtrain , of dimension n∗ × (h + 1), from which the unknown parameters of a machine
learning model can be estimated; and a test set Dtest , of dimension n × (h + 1), which
can be used to obtain the n-dimensional vector ŷ of the predicted valueswhose distance
from the n observed values y will measure the predictive accuracy of the model.

When the Y variable is at least ordinal (continuous, ordered categorical or binary),
the Y values can be used to build the Lorenz curve (see e.g. Lorenz 1905), LY , arrang-
ing the Y values in a non-decreasing sense. More formally, for i � 1, . . . , n, the
Lorenz curve is defined by the pair: (i/n,

∑i
j�1 yr j /(n ȳ)), where r j indicates the

non-decreasing ranks of Y and ȳ indicates the mean of Y .
The same Y values can also be used to build the dual Lorenz curve, L

′
Y , ordering

the Y values in a non-increasing sense. More formally, for i � 1, . . . , n, the dual
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Fig. 1 The LY and L
′
Y Lorenz curves and the C concordance curve, where p (on the x-axis) and f (p) (on

the y-axis) are the cumulative values of the x and y coordinates of the LY , L
′
Y and C curves

Lorenz curve is defined by the pair: (i/n,
∑i

j�1 yrn+1− j /(n ȳ)), where rn+1− j indicates
the non-increasing ranks of Y .

A similar reasoning can be employed to order the predicted values Ŷ . Let r̂i , for
i � 1, . . . , n, indicate the non-decreasing ranks of Ŷ . Giudici and Raffinetti (2011)
suggested to build a concordance curve C by ordering the Y values not in terms of
their ranks, but with respect to r̂i , the ranks of the predicted Ŷ values. Formally, for
i � 1, . . . , n, the concordance curve is defined by the pairs: (i/n,

∑i
j�1 yr̂ j /(n ȳ)),

where r̂i indicates the non-decreasing ranks of Ŷ .
To visually describe the concordance curve, Fig. 1 reports, for a given test set Dtest ,

the Lorenz curve, the dual Lorenz curve and the C concordance curve, together with
the 45-degree line.

From Fig. 1, note that the Lorenz curve and its dual are symmetric around the 45-
degree line, and that the concordance curve lies between them (as shown in Raffinetti
and Giudici 2012). When r̂i � ri , for all i � 1, . . . , n, we have a perfect concordance:
the concordance curve is equal to the Lorenz curve. When r̂i � rn+1−i , for all i �
1, . . . , n, we have perfect discordance: the concordance curve is equal to the dual
Lorenz curve. In general, for any given point, the distance between the concordance
curve and the Lorenz curve reveals how the rank of the predicted value differs from
that of the best case, which is equal to the rank of the observed value. And, for any
given point, the distance between the concordance curve and the dual Lorenz curve
reveals how rank of the predicted value differs from that of the worst case, which is
equal to the rank of the inversely ordered value.

The number of points on which the C curve in Fig. 1 is constructed is equal to the
number of observations n. When the response variable is continuous, the observed
and predicted values can take all possible real values. When the response variable is
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ordinal Y and Ŷ can be replaced by the corresponding ranks R and R̂, as illustrated in
Giudici and Raffinetti (2022).

When the response variable is binary, taking one of two possible outcomes, corre-
sponding to the presence (Y � 1) or the absence (Y � 0) of an attribute of interest,
the predicted values take all possible real values in the interval [0, 1] which estimate
the probability that Y � 1. Indeed, in the binary case, the concordance C curve has a
stepwise behavior, similar to the Receiver Operating Characteristic (ROC) curve (see
e.g. Hand and Till 2011; DeLong et al. 1988).

In this paper we will show that, in the binary case, the ROC and the C curve are
closely related. However, while the ROC curve can be used only for binary response
variables, theC curve applies to all ordered response variables and, therefore, it can be
applied to evaluate not only probability forecasts of categorical variables, but also point
forecasts of continuous variables and ranks of ordinal variables. This generalisation
led in Raffinetti (2023) to the construction of a Rank Graduation Accuracy measure
(RGA), a summary measure of the C curve which can be applied to evaluate, in a
similar fashion, the rank accuracy of probability forecasts, ordinal ranks and point
predictions.

We will also show that, in the binary case, the RGA measure is equivalent to
the AUROC measure, and can be employed to evaluate the accuracy of probability
forecasts; whereas, in the real valued case, the RGA can be employed to evaluate
the accuracy of rank and point forecasts, similarly to measures such as the RMSE.
Differently from the latter, the RGA measure evaluates point predictions in terms of
their ranks, rather than in terms of their values: losing scale precision but gaining
robustness.

We remark that this work is related to the strand of literature that concerns the
evaluation of point predictions, originated from the work in Gneiting (2011). Gneiting
(2011) has introduced a very general framework to evaluate point forecasts bymeans of
consistent scoring rules, specialized for the binary case inGneiting andRaftery (2007);
for the categorical case in Gneiting et al. (2008); for probability density forecasts in
Gneiting and Ranjan (2011); for interval forecasts in Bracher and Gneiting (2021)
and Bracher at al. (2021). While Gneiting (2011) and the related papers evaluate the
accuracy of point predictions with respect to their actual values, as done by the RMSE
in the continuous case, we evaluate the accuracy of the ranks of the point predictions,
similarly to what is done by the AUROC in the binary case.

We also remark that this work is related to the papers that have studied the rela-
tionship between the Area Under the ROC Curve and the Gini coefficient (see e.g.
Lee 1997; Hand and Till 2011; Gajowniczek et al. 2014). However, as highlighted by
Schechtman and Schechtman (2019), the Gini coefficient is not an appropriate com-
parison benchmark, as it is based on only one variable, rather than on the comparison
between two (conditional) variables, as the ROC Curve. A more appropriate compar-
ison can be provided by the RGA, which is also based on one variable (the response),
but ordered according to two different ranks (the observed and the predicted).

The remainder of the paper is organized as follows. Sections 2 and 3 present our
proposal. Specifically, Sect. 2 shows the correspondence between the C concordance
curve and the ROC curve in the binary case; Sect. 3 provides an overview of the RGA
measure proposed by Raffinetti (2023) and introduces additional properties; Sect. 4
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validates the RGA on simulated data; Sect. 5 illustrates a real application to the well
known “Employee” data set; Sect. 6 concludes with a final discussion.

2 Correspondence between the C curve and the ROC curve

When the response variable is binary, the correspondence between the ROC curve and
the C curve can be explained comparing their coordinates.

The ROC curve is a graphical plot of the predictive accuracy of the probability
forecasts ŷi ∈ [0, 1] for a binary response yi ∈ {0, 1}, for i � 1, . . . , n, conditional on
a set of thresholds t ∈ [0, 1]. The ROC curve is obtained joining T ≤ n points which
correspond to the chosen thresholds ordered by non-decreasing magnitude, plus the
origin, for a total of T + 1 points.

More formally, for i � 1, . . . , n and t ∈ [0, 1] define

I 1t (yi ) � yi I (pi > t) (1)

and

I 0t (yi ) � (1 − yi )I (pi ≤ t), (2)

where pi is the predicted probability for i and I (·) is the indicator function.
The y coordinates of the ROC curve (the True Positive Rates), for t � 1, . . . , T ,

are then equal to:

yROC
t �

∑n
i�1 I

1
t (yi )∑n

i�1 yi
�

∑n
i�1 I

1
t (yi )

n1
, (3)

whereas the x coordinates of the ROC Curve (the False Positive Rates) are equal to:

x ROC
t � 1 −

∑n
i�1 I

0
t (yi )∑n

i�1(1 − yi )
� n0 − ∑n

i�1 I
0
t (yi )

n0
, (4)

with n1 and n0 indicating the number of Y values in the test set, respectively equal to
1 and to 0.

The C curve is a graphical plot of the predictive accuracy of the model forecasts
ŷi ∈ R for an ordered response yi ∈ R, for i � 1, . . . , n. The C curve is obtained
joining n points which correspond to the observed values ordered by non-decreasing
magnitude of the predictions, plus the origin, for a total of n + 1 points.

More formally, for i � 1, . . . , n, let yr̂i indicate the observed response values
corresponding to the rank r̂i of the predicted values, under the model being evaluated.
The y coordinates are then equal to:

yCi �
∑i

j�1 yr̂ j∑n
i�1 yi

, (5)
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whereas the x coordinate of the C curve can be expressed, for each observation i, as:

xCi � i

n
. (6)

In the binary case, Eqs. (5) and (6) can be shown equal to:

yCi �
∑i

j�1 yr̂ j∑n
i�1 yi

�
∑i

j�1 yr̂ j
n1

(7)

and

xCi � i

n
�

∑i
j�1 y j +

∑i
j�1(1 − y j )

∑n
i�1 yi +

∑n
i�1(1 − yi )

�
∑i

j�1 y j +
∑i

j�1(1 − y j )

n1 + n0
, (8)

respectively.
Wenowderive the relationship between the y-coordinates of the two curves.Assume

that the threshold cut-off points are defined by t � i
n , for i � 1, . . . , n, so that T � n.

This implies that, for j � 1, . . . , n:

I 1t (yi ) � I 1(
i
n

)(y j ) � y j I

(

p j >
i

n

)

(9)

which leads to:

yROC
i �

∑n
j�1 I

1(
i
n

)(y j )

∑n
j�1 y j

�
∑n

j�1 y j I

(

p j > i
n

)

∑n
j�1 y j

�
∑n

j�1 y j I

(

p j > i
n

)

n1
(10)

and

yCi �
∑n

j�1 y j I

(

rank(p j ) ≤ i

)

∑n
j�1 y j

�
∑n

j�1 y j I

(

rank(p j ) ≤ i

)

n1
, (11)

where rank(p j ) refers to the ordered probabilities.
Comparing (10) with (11) note that the denominators are the same. The numerators

are instead different: theC curve considers the ranks of the probability forecasts, rather
than their values. This difference implies that the two curves are not straightforward
transformation of one another although, as we show later, they can be used to derive
two summary measures, the RGA and the AUROC, that coincide.

Before moving to the summary measures, it is useful to compare the C and ROC
curves for some reference scenarios that occur in model comparison: the best case: a
perfectly concordant model; the worst case: a perfectly discordant model; the random
case, inwhichpredictions are generated randomly and, finally, a generic “intermediate”
case.
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For the C curve:

i-c) the best case occurswhen the ordering of theY response variable values cor-
responds to the ordering of the predicted values, with the C curve perfectly
overlapping the Lorenz curve LY ;

ii-c) the worst case occurs when the ordering of the Y response variable values
is in inverse correspondence with the ordering of the predicted values, with
the C curve perfectly overlapping the dual Lorenz curve L

′
Y ;

iii-c) in the random case, the C curve overlaps the 45-degree line;
iv-c) in the generic case, the C curve lies in the area between the Y response

variable Lorenz curve, LY and its dual, L
′
Y . The distance betweenC and the

45-degree line measures how a model improves over random predictions.

For the ROC curve:

(i-r) the best case occurs when the ROC curve overlaps the y-axis, implying that
both Y � 1 and Y � 0 are perfectly predicted by the model;

(ii-r) the worst case occurs when the ROC curve overlaps the x-axis, implying
that all the Y � 1 are predicted as 0 and all the Y � 0 are predicted as 1;

(iii-r) in the random case, the ROC curve overlaps the 45-degree line;
(iv-r) in the generic case, the ROC curve lies in the area between the x-axis and

the y-axis. The distance between the ROC curve and the 45-degree line
measures how a model improves over random predictions.

The stylised situations (i-c) and (i-r); (ii-c) and (ii-r); (iii-c) and (iii-r); (iv-c) and
(iv-r) are illustrated from a graphical view point in Fig. 2.
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Fig. 2 the C concordance curve and the ROC curve for the best, worst, random and generic possible cases.
In this example Y � {1, 0, 1, 1, 0, 0, 0, 1, 0}. As in the best case, the 0 values preceed the 1 values, the
cumulative percentage of the observations p (displayed on the x-axis) associated with the last 0 value, is
approximately equal to the 55.6% (i.e., 5/9). Whereas, in the worst case the cumulative percentage of the
observations p associated with the last 1 value is approximately equal to the 44.4% (i.e., 4/9)
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3 The rank graduation accuracymeasure

The AUROCmeasure (see e.g. Hand et al. 2001) is defined as the area under the ROC
curve and, therefore, can assume any real value in the interval [0, 1], with AUROC�1
in the best case, AUROC�0.5 in the random case, and AUROC�0 in the worst case.

Note that the AUROC can be equivalently expressed as the ratio between the area
under the model’s ROC and the area under the ROC of the best case, which is equal
to 1.

Drawing on property iv-c) of the last section, a summary measure for theC curve of
a model could be obtained considering the area between the dual Lorenz curve and the
concordance curve, and dividing it by its maximum possible value: the area between
the dual Lorenz curve and the Lorenz curve. This measure corresponds to the Rank
Graduation Accuracy (RGA) proposed by Raffinetti (2023).

More formally, the Rank Graduation Accuracy (RGA) measure takes the following
expression:

RGA �
∑n

i�1

{
1
n ȳ (

∑i
j�1 yrn+1− j − ∑i

j�1 yr̂ j )

}

∑n
i�1

{
1
n ȳ (

∑i
j�1 yrn+1− j − ∑i

j�1 yr j )

} . (12)

It is worth noting that the RGA formula can be simplified as follows (see e.g., Raffinetti
2023):

RGA �
∑n

i�1 iyr̂i − ∑n
i�1 iyrn+1−i∑n

i�1 iyri − ∑n
i�1 iyrn+1−i

. (13)

As mentioned in Raffinetti (2023), the RGA is defined in the close range [0, 1],
fulfilling the normalisation property. In this paper, we further investigate the RGA
features, introducing new additional properties. Before we do so, note that, when tied
predictions occur, it may be unclear how to order the observed values in the expression
of RGA. In this case, as highlighted by Raffinetti (2023), the suggestion provided by
Ferrari and Raffinetti (2015), who proposed to replace the observed response values
corresponding to the same predictions with their mean values, is considered.

Property 1 Normalisation. In general, 0 ≤ RGA ≤ 1, with RGA� 1 in the best case
of a perfectly concordant model; RGA� 0 in the worst case of a perfectly discordant
model; RGA� 0.5 in the case of random predictions.

Note that the case of a response variable taking negative values was not present in
the original definition of the Lorenz curves (see e.g. Lorenz 1905). However, Property
1 can be maintained. To see this, consider the following cases: (a) all the Y values
are negative and, consequently, ȳ < 0; (b) some Y values are positive and some are
negative, with ȳ > 0; (c) same as in (b) but ȳ < 0. The three cases are displayed in
Fig. 3a, b and c, respectively.

From Fig. 3 note that, in case a), the Lorenz and dual Lorenz curves are reversed,
but the Lorenz curves remain inside the unit square, satisfying Property 1. Differently,
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Fig. 3 Behaviour of the Lorenz curves for response variables taking negative values

in cases b) and c), the Lorenz curve extends below y � 0 and the dual Lorenz curve
extends above y � 1. In these cases, to fulfill Property 1, we can subtract from the Y
variable its minimum negative value (see Ferrari and Raffinetti 2015). This translation
leaves themeasure invariant (see Property 2 below) and can thus be exploited to satisfy
Property 1.

Property 2 Invariance. The RGA is invariant under all positive affine transformations
of the form Y � −→ aY + k, where a ∈ R+ and k ∈ R are constants. It follows that
RGA is invariant under transformations of the form Y � −→ Y + k, meaning that
RGA�RGAk , where RGAk denotes the RGA measure computed on the transformed
variable Y k � Y + k.

From Property 2, it follows in particular that adding a constant to a prediction does
not affect the value of the RGAmeasure at all, a weakness that is shared by theAUROC
measure (see e.g. Wilks 2011).

Property 3 Equivalence between RGA and AUROC. In the binary case,
RGA�AUROC.

Property 4 Equivalence between the RGA and the Wilcoxon-Mann–Whitney statistic
W1. In the binary case, RGA� W1, theWilcoxon-Mann–Whitney statistic (seeMason
and Graham 2002).

The proofs of the aforementioned Properties are reported in Appendix.
Before validating our proposal on simulated and real data, a premise for the RGA

results’ extension to the inferential perspective is reported in the following remark.

Remark 1 Following Raffinetti (2023) , a statistical test for the RGA measure can be
derived by expressing it in terms of the covariance operator, as follows:

RGA � 1

2

cov(Yr (Ŷ ), F(Y ))

cov(Y , F(Y ))
+
1

2
, (14)

where Yr (Ŷ ) represents the Y variable re-ordered according to the ranks of the corre-

sponding predictions Ŷ and F is the cumulative continuous distribution function of
Y .
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It follows that the RGA is a linear function of the ratio:

ψ(Y , Ŷ ) � cov(Yr (Ŷ ), F(Y ))/cov(Y , F(Y )). (15)

Given two alternative models (Mod1 and Mod2), the statistics in (15) can be used to
test the following hypotheses:

H0 : ψ(Y , ŶMod1 ) � ψ(Y , ŶMod2 ) vs H1 : ψ(Y , ŶMod1 ) 	� ψ(Y , ŶMod2 ), (16)

where ψ(Y , ŶMod1 ) � cov(Yr (ŶMod1 )
, F(Y ))/cov(Y , F(Y )) and ψ(Y , ŶMod2 ) �

cov(Yr (ŶMod2 )
, F(Y ))/cov(Y , F(Y )) are functions that derive from the application of

(15), respectively to RGAMod1 and RGAMod2 .
One can prove that the estimators ψ̂(Y , ŶMod1 ) and ψ̂(Y , ŶMod2 ) of ψ(Y , ŶMod1 )

and ψ(Y , ŶMod2 ) can be expressed in terms of U-statistics. Thus, the difference
between the predictive accuracy associated with Mod1 and Mod2, corresponding
to δ̂ � ψ̂(Y , ŶMod1 )− ψ̂(Y , ŶMod2 ), results as a function of independent U-statistics.
According to Hoeffding (1948), a function of several dependent U-statistics has an
asymptotic normal distribution. By applying the Jackknife method (see e.g., Efron and
Stein 1981) for the δ̂ variance estimation, it derives that the test statistic for testing
the null hypothesis H0 : ψ(Y , ŶMod1 ) � ψ(Y , ŶMod2 ) is distributed according to a
standard Normal distribution.

The proposed test can be extended, without loss of generality, to all types of ordinal
variables. The continuity constraint of the joint distribution can be preserved replacing
tied observations with their mean value. This adjustment gives rise to a continuous
variable which, together with Ŷ , provides a continuous joint distribution.

4 Validation on simulated data

To illustrate the features of the proposed RGA, we set a simulation study generating a
vector of seven random variables from a seven dimensional Gaussian distribution. One
of the seven random variables is chosen to be the target variable, while the remaining
six are assigned the role of predictors.

More precisely, we generate 1,000 observations from a seven-dimensional normal
distribution with different degrees of correlation between the response variable Y and
the six predictors X1, X2, X3, X4, X5, X6:

• Strong correlation between Y and X1 (ρ � 0.8);
• Quite strong correlation between Y and X2 (ρ � 0.6);
• Moderate correlation between Y and X3 (ρ � 0.4);
• Quite low correlation between Y and X4 (ρ � 0.2);
• No correlation between Y and the variables X5 and X6 (ρ � 0).

In addition, we remark that variables X5 and X6 are not correlated with the other four
predictors X1, X2, X3 and X4.
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For completeness, we also consider the case in which the response variable Y is
binarised, and compare the behavior of RGA for both a balanced and an unbalanced
response. A balanced response is obtained binarising Y around its mean value (or
median value) giving rise to a proportion of 1s approximately equal to 50%. An
unbalanced response is obtained binarising Y around the first quartile, providing a
proportion of 1s approximately equal to 75%.

While the continuous target variable Y is modeled through a linear regression, the
binarised target variable Y is modeled through a logistic regression. For both classes of
models, stepwise model selection are then applied to the simulated data. The available
predictors are six and, for each possible model size, ranging from 1 to 6, we can
compare all possible models by means of the Akaike Information Criterion (AIC),
thereby identifying six candidate best models. We then split the dataset into a training
dataset (including the 80% of all the observations) and a test dataset (including the
remaining 20% of the observations), to calculate the RMSE and the RGA of the best
linear regression models for each of the six dimensions, and subsequently, the BS
and the RGA for the best logistic regression models. For both linear and logistic
regressions, the models are ranked from the lowest RMSE and BS values, onwards;
and from the highest RGA value, downwards.

The six explanatory variables appearing in the six best linear regression models are
specified in Table 1 together with the values of the RMSE and RGA, computed on the
test dataset. For completeness, the last column reports the AIC criterion, computed
on the training dataset, for the same models. The behaviour of the predictive accuracy
measures, referred to the different model sizes andmeasures, are graphically displayed
in Fig. 4.

Figure 4 shows that the lowest AIC andRMSE and the highest RGA are obtained by
Model 3, in which the significant predictors are X1, X2 and X3. The result is coherent
with the data structure as the three explanatory variables X1, X2 and X3 are those
which present the highest correlation with the target variable Y .

As the values of the RGA and RMSE associated with Model 3 are quite close
to those referred to Model 2, with the aim of meeting the parsimony principle, we
can try to further simplify the model assessing whether the predictive accuracies of
Model 2 and Model 3 are significantly different. To this aim, the test illustrated in
Remark 1, for the RGA, and the Diebold-Mariano test, for the RMSE, are employed.

Table 1 Results from the linear regression models

Model Variables RMSE RGA AIC

Model 1 X1 0.604 0.908 807.539

Model 2 X1, X2 0.415 0.958 990.130

Model 3 X1, X2, X3 0.380 0.965 797.143

Model 4 X1, X2, X3, X4 0.380 0.965 798.558

Model 5 X1, X2, X3, X4, X5 0.381 0.965 800.506

Model 6 X1, X2, X3, X4, X5, X6 0.381 0.965 802.490
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Fig. 4 The AIC, RMSE and RGA behavior in the best 6 linear regression models

The application of the Diebold-Mariano test is appropriate as it is based on a function
of the predicted errors (see Diebold and Mariano 1995). More precisely, given the
predicted errors eiMod1

and eiMod2
associated with two alternative models Mod1 and

Mod2, the null hypotheses to be tested is E(d) � 0, where d is the test statistic
d � g(eiMod1

) − g(eiMod2
), which is asymptotically N(0, 1).

The results of the tests lead to select Model 3, as the p-values associated with the
Diebold-Mariano and RGA tests are smaller than 0.01 and 0.02, respectively. This
implies that Model 3 provides a predictive accuracy which is significantly better from
that provided by Model 2.

In the case of logistic regression with both balanced and unbalanced data, the eval-
uation of the six best model configurations in terms of predictive accuracy involves
the BS and RGA measures, together with the AIC criterion. The reason behind con-
sidering only the BS and not the AUROC, as a competitor of the RGA in the binary
scenario, is motivated by the perfect equivalence between the RGA and the AUROC.
Model comparison results are displayed in Tables 2 (for balanced data) and 3 (for
unbalanced data).

Table 2 Results from the logistic regression models (balanced data)

Model Variables BS RGA AIC

Model 1 X1 0.125 0.905 840.998

Model 2 X1, X2 0.078 0.965 585.008

Model 3 X1, X2, X3 0.071 0.970 548.015

Model 4 X1, X2, X3, X5 0.072 0.969 549.742

Model 5 X1, X2, X3, X5, X4 0.072 0.969 551.711

Model 6 X1, X2, X3, X5, X4, X6 0.072 0.969 553.699
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Fig. 5 The AIC, BS and RGA behavior in the best 6 logistic regression models (balanced data)

Table 3 Results from the logistic regression models (unbalanced data)

Model Variables BS RGA AIC

Model 1 X1 0.097 0.916 637.412

Model 2 X1, X2 0.064 0.964 463.125

Model 3 X1, X2, X3 0.066 0.964 417.312

Model 4 X1, X2, X3, X4 0.066 0.963 417.872

Model 5 X1, X2, X3, X4, X6 0.066 0.963 419.470

Model 6 X1, X2, X3, X4, X6, X5 0.066 0.963 421.491

From Table 2, it arises that variables X1, X2 and X3 are the most relevant variables
as they appear in all the six model configurations. Moreover, by looking at both Table
2 and Fig. 5, all the three measures led to selectModel 3 as the best one. Indeed,Model
3 is associated with the lowest BS and AIC values and the the highest RGA value. The
inclusion of the additional variable X5 slightly worsens the model perfomance. This
finding is coherent with what we obtained from the linear regression model.

For the unbalanced response case, Table 3 and Fig. 6 show that Model 2 is better
than Model 3, having a lower value of BS and the same RGA asModel 3. On the other
hand, the AIC (which is calculated on all data, and not only on the test set), continues
to prefer Model 3. This is in line with the intuition that, with an unbalanced response,
a simpler model is preferred, especially when working out of sample.

5 Application: employee data

In this section the publicly available “Employee” dataset, uploaded in the “stima” R
package, is considered as an illustrative example of real data on which performing
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Fig. 6 The AIC, BS and RGA behavior in the best 6 logistic regression models (unbalanced data)

model selection with the RGA measure, in comparison with other measures, such as
the RMSE (in the continuous case) and the AUROC and BS (in the binary case).

The data concerns a 1987 discrimination study carried out on 473 employees of a
bank, and reports information on: gender, age, educational degree (in terms of years of
education), employment category (custodial, clerical or manager), job time in months
since hire, total work experience (total job time inmonths, since hire and fromprevious
experiences), minority classification (that is, whether ethnic minority), starting salary
(in dollars), current salary (in dollars). For a better description see e.g. Dusseldorp
et al. (2010) and Ferrari and Raffinetti (2015).

Data is collected to understand, in particular, whether salary growth is affected by
personal characteristics. To this aim, salary growth can be considered as a response
variable,which can bemeasured either on a continuous scale, as the difference between
the current salary and the starting salary, or on a binary scale, with level 1 achieved
above a set increase from the starting to the current salary, and a level 0 otherwise.
While the first scale is more informative and precise, the second is more interpretable
and actionable.

In correspondence with the alternative specifications of the response variable, we
consider two alternative classes of statistical models: linear and logistic regression. In
the former case we select as a response variable the salary growth. In the latter case we
fix as a reference threshold the “doubling" of the starting salary (which approximately
corresponds to the ratio between current and starting salaries) and, consequently, set
Y � 1when the ratio between the current and the starting salary is greater or equal than
2, and Y � 0 otherwise. We then follow the same procedure considered in Sect. 4: for
both classes of models, stepwise model selection is applied to the data. The candidate
predictors are eight: the previously described variables (excluding the current and
starting salary), with the employment category transformed in two binary variables:
“custodial" and “manager" (with “clerical" kept as baseline).

All possible models, characterised by different size (from 1 to 8 predictors), are
evaluated in terms of the AIC criterion in order to detect the eight candidate best
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Table 4 Results from the linear regression models

Model Variables RMSE RGA AIC

Model
1

Manager 6426.728 0.798 9815.657

Model
2

Manager, ed. degree 6379.797 0.851 9779.493

Model
3

Manager, ed. degree, job time 6340.604 0.866 9763.017

Model
4

Manager, job time, age, male 6080.111 0.885 9750.053

Model
5

Manager, ed. degree, job time, age, custodial 6304.019 0.892 9732.383

Model
6

Manager, ed. degree, job time, male, custodial, tot. job
time

6055.528 0.907 9722.994

Model
7

Manager, ed. degree, job time, male, custodial, tot. job
time, no minority

6018.835 0.910 9722.324

Model
8

Manager, ed. degree, job time, male, custodial, tot. job
time, no minority, age

6057.536 0.907 9723.128

models. We then apply cross-validation by splitting the whole dataset into training
and test datasets with the same percentage of observations we specified for the case of
simulated data. Finally, the RMSE and the RGA of the best linear regression models
together with the BS and the RGA of the best logistic regression models (for each
of the eight dimensions), are computed. The models are then ranked, as described in
Sect. 4, from the lowest RMSE and BS values, onwards; and from the highest RGA
value, downwards.

Starting from linear regression, Table 4 reports the variables included in the best
eightmodels and the relatedRMSE,RGA, andAICmeasures. Asmentioned in Sect. 4,
RMSE and RGA are computed on the test dataset, while AIC is calculated on the
training dataset.

From Table 4 note that the most important variables, present in most selected
models, are: employment category (manager), job time and educational degree. To
better visualize the behavior of the predictive accuracy metrics, Fig. 7 displays their
values as model size increases.

From Fig. 7 note that the lowest AIC and RMSE and the highest RGA are obtained
in correspondence with Model 7, for which the variables mostly impacting on the
salary growth are: employment category (manager, custodial), education degree, job
time and tot. job time, gender (male) and minority (no-minority).

Note that, when including in the model also the age explanatory variable, the pre-
dictive accuracy of the model worsens, as both the RMSE and AIC values increase,
while the RGA value decreases.

We can confirm the model selection results testing the null hypothesis that Model
7 and Model 8 have the same predictive accuracy, applying the RGA-based test and
the Diebold-Mariano test for the RMSE. The results show that the p-values associated
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Fig. 7 The AIC, RMSE and RGA behavior in the best 8 linear regression models

with the Diebold-Mariano and RGA tests are equal to 0.3917 and 0.3478, respectively,
implying that Model 7 provides a predictive accuracy which is not significantly dif-
ferent from that provided by Model 8. According to the parsimony principle, Model
7 is to be preferred.

The results from logistic regression model selection are provided in Table 5, which
contains the BS and RGA measures computed on the test set along with the corre-
sponding AIC criterion computed on the training dataset.

Table 5 Results from the logistic regression models

Model Variables BS RGA AIC

Model
1

Age 0.224 0.690 597.853

Model
2

Age, job time 0.209 0.736 554.320

Model
3

Age, job time, custodial, manager 0.194 0.773 535.267

Model
4

Age, job time, custodial, manager 0.194 0.776 531.037

Model
5

Age, job time, custodial, manager, male 0.191 0.785 427.186

Model
6

Age, job time, custodial, manager, male, tot. job time 0.192 0,783 531.047

Model
7

Age, job time, custodial, manager, male, tot. job time, no
minority

0.192 0.782 532.616

Model
8

Age, job time, custodial, manager, male, tot. job time, no
minority, ed. degree

0.198 0.770 534.615
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Fig. 8 The AIC, BS and RGA behavior in the best 8 logistic regression models

From Table 5, note that the most important variables, present in most selected mod-
els, are: age, job time and the employment category (custodial, manager). Figure 8
displays the behaviour of the predictive accuracy metrics, in correspondence to dif-
ferent model dimensions.

Figure 8 shows, as for the linear regression model, that AIC, BS and RGA select
the same model: Model 5, which includes the variables age, job time, employment
category (manager, custodial) and gender (male).

Note that, as the RGA is an agnostic approach for evaluating the predictive accuracy
of models characterised by different type of outcome variables, we can also directly
compare the logistic with the linear models. It turns out that ethnicity minority, total
jobtime and educational degree do not affect the probability of doubling the salary,
but only the salary growth. Similarly, age does not impact the salary growth. Based
on the RGA, the best performance is achieved by the model built on the salary growth
rather than on doubling the salary, as it provides a gain in terms of predictive accuracy
of almost 14%. In other words, for the available data, the given predictors are more
accurate for a continuous response than for a binary response.

6 Conclusive comments

This paper exemplifies the importance of statistics for Artificial Intelligence, in line
withwhat discussed inFriedrich et al. (2022). Specifically,wehave further analysed the
RGAmeasure, proposed as a new tool to evaluate the predictive accuracy of a machine
learning model. In this paper we have shown that the RGA can extend the application
of the well known AUROC measure from the case of a binary response variable to
a more general setting, that includes also continuous and ordered response variables.
To achieve this aim we have considered the concordance curve, and demonstrated its
correspondence with the ROC curve, along with the statistical properties that allow the
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extension of the ROC and the AUROC beyond the binary case. Doing so, we extend
the application of the AUROC measure, and overcome its limitations, as underlined
by Hand and Anagnostopoulos (2023) and Vivo et al. (2018).

From a methodological viewpoint, the RGA measure provides a rather general
accuracy statistic, applicable in the same manner to all ordered response variables. It
is preferable to other measures when the purpose is to predict the correct ordering of a
point response, regardless of whether such response is binary, ordinal or continuous.
In all cases, the predictions enter into the concordance curve calculation (from which
the RGA is derived) only via their ranks. This means that two forecasts with the same
prediction ranks get assigned the same RGA, regardless of the actual predictions. If
the aim of the research is to predict the rank of the predicted values, the RGA is
perfectly appropriate and, indeed, more appropriate than measures such as the RMSE.
If, instead, the aim is to predict the actual values of a point response, the RMSE and
similar measures may be more suitable.

It is however worth noting that an important benefit related to the employment of the
RGA is its capability of being robust to the presence of outlying observations which
may affect the predictors and, consequently, the derived predictions. This advantage
is especially evident when the response to be predicted is continuous (as the salary
growth in the “Employee” dataset example). The RGA is indeed more robust than
alternative standard predictive accuracy measures, such as the RMSE and the Huber
loss, which may strongly depend on anomalous observations.

In the paper, theRGAhas been applied and validated to both simulated and real data.
For the simulated data case, we have considered both a continuous and a binary target
variable, balanced and unbalanced. In line with the analysis presented by Chaabane
et al. (2020), the unbalanced case leads to simpler models. The real data analysis has
allowed to directly compare, in terms of predictive accuracy, linear regression with
logistic regression.

Given the generality of the RGA, the paper shows that the evaluation of the predic-
tive accuracy of a model can be extended to the evaluation of the accuracy of a model
under alternative representations of the response variable (binary, ordinal, continu-
ous). In this way, researchers may investigate the measurement scale for the response
variable which appears the best one to obtain good predictions.

Future research may involve the application of the RGAmeasure to the assessment
of further trustworthy AI principles, besides Accuracy, such as Sustainability, Fairness
and Explainability, extending the recent works of Vojíř and Kliegr (2020), Giudici and
Raffinetti (2021) and Giudici et al. (2023).
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Appendix

In this appendices the proofs of Properties 1, 2, 3 and 4 are reported.

Appendix A proof of property 1

Let us suppose that Y takes non-negative values, Y ∈ R+. When this is not so, a
transformation can be applied (as in Ferrari and Raffinetti 2015), leading to a new
variable Y + � Y − y−, taking values inR+, where y− � min(0, ymin) is the minimum
of Y .

i) The first condition to be proved is RGA≤ 1, meaning that

RGA �
∑n

i�1 iyr̂i − ∑n
i�1 iyrn+1−i∑n

i�1 iyri − ∑n
i�1 iyrn+1−i

≤ 1 ⇐⇒
∑n

i�1 iyr̂i − ∑n
i�1 iyri∑n

i�1 iyri − ∑n
i�1 iyrn+1−i

≤ 0.

(A.1)

As −∑n
i�1 iyrn+1−i � ∑n

i�1 iyr̂i − n(n + 1)ȳ (see e.g. Marshall et al. 2011), it
follows that inequality in (A.1) becomes

∑n
i�1 iyr̂i − ∑n

i�1 iyri
2

∑n
i�1 iyri − n(n + 1)ȳ

≤ 0. (A.2)

As the denominator 2
∑n

i�1 iyri − n(n + 1)ȳ > 0 (see e.g. Ferrari and Raffinetti
2015), to demonstrate that equation (A.2) is smaller or equal than zero, we have
to prove that

∑n
i�1 iyr̂i − ∑n

i�1 iyri ≤ 0 and, consequently:

n∑

i�1

iyr̂i ≤
n∑

i�1

iyri . (A.3)

As stated by Marshall et al. (2011), it results that
∑i

j�1 yr̂ j ≥ ∑i
j�1 yr j ,

meaning that
∑n

i�1
∑i

j�1 yr̂ j ≥ ∑n
i�1

∑i
j�1 yr j . Because of the relationships

∑n
i�1

∑i
j�1 yr̂ j � n(n + 1)ȳ − ∑n

i�1 iyr̂i and
∑n

i�1
∑i

j�1 yr j � n(n + 1)ȳ −
∑n

i�1 iyri , it follows that n(n+1)ȳ−∑n
i�1 iyr̂i ≥ n(n+1)ȳ−∑n

i�1 iyri , implying
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that
∑n

i�1 iyr̂i ≤ ∑n
i�1 iyri which is equivalent to the inequality in (A.3). The

second condition to be proved is RGA≥ 0, meaning that

RGA �
∑n

i�1 iyr̂i − ∑n
i�1 iyrn+1−i∑n

i�1 iyri − ∑n
i�1 iyrn+1−i

≥ 0. (A.4)

As previously remarked, the denominator in (A.4) can be equivalently expressed
as 2

∑n
i�1 iyri − n(n + 1)ȳ, always greater than zero. Thus, to show that equa-

tion (A.4) is greater or equal than zero, we have to prove that
∑n

i�1 iyr̂i −∑n
i�1 iyrn+1−i ≥ 0 and consequently

n∑

i�1

iyr̂i ≥
n∑

i�1

iyrn+1−i . (A.5)

From Marshall et al. (2011), it derives that

i∑

j�1

yr̂ j ≤
i∑

j�1

yrn+1− j . (A.6)

As the inequality in (A.6) is true for any i, we also have that
∑n

i�1
∑i

j�1 yr̂ j ≤
∑n

i�1
∑i

j�1 yrn+1− j , where
∑n

i�1
∑i

j�1 yr̂ j � n(n + 1)ȳ − ∑n
i�1 iyr̂i and

∑n
i�1

∑i
j�1 yrn+1− j � n(n + 1)ȳ − ∑n

i�1 iyrn+1−i . Thus,
∑n

i�1 iyr̂i ≥
∑n

i�1 iyrn+1−i .
ii) The scenario RGA�1 is achieved if, from Eq. (13), the relation

∑n
i�1 iyr̂i �∑n

i�1 iyri is fulfilled, meaning that r̂i � ri , for all i � 1, . . . , n.
iii) The scenario RGA�0 is achieved if, from Eq. (13), it results that

∑n
i�1 iyr̂i �∑n

i�1 iyrn+1−i , meaning that r̂i � rn+1−i , for all i � 1, . . . , n.
iv) Note that, as

∑n
i�1 iyri � n(n + 1)ȳ − ∑n

i�1 iyrn+1−i , we replace, in Eq. (13), the
term −∑n

i�1 iyrn+1−i with
∑n

i�1 iyri − n(n + 1)ȳ, leading to

(A.7)

RGA �
∑n

i�1 iyr̂i +
∑n

i�1 iyri − n(n + 1)ȳ
∑n

i�1 iyri +
∑n

i�1 iyri − n(n + 1)ȳ

�
∑n

i�1 iyr̂i +
∑n

i�1 iyri − n(n + 1)ȳ

2
∑n

i�1 iyri − n(n + 1)ȳ
.

Thus, the random case is reached if the model generates predicted values all equal
to each other, so that the observed target variable values can be replaced by the
mean value ȳ. In this case, it results that yr̂i � ȳ (for all i � 1, . . . , n) and
equation (A.7) becomes

RGA � ȳ
∑n

i�1 i +
∑n

i�1 iyri − n(n + 1)ȳ

2
∑n

i�1 iyri − n(n + 1)ȳ
. (A.8)
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Given that
∑n

i�1 i � n(n+1)
2 , equation in (A.8) can then be re-written as

RGA � ȳ n(n+1)
2 +

∑n
i�1 iyri − n(n + 1)ȳ

2
∑n

i�1 iyri − n(n + 1)ȳ
� 1

2

[
∑n

i�1 iyri − n(n+1)
2 ȳ]

[
∑n

i�1 iyri − n(n+1)
2 ȳ]

� 0.5.

Appendix B Proof of property 2

We have to prove that RGA=RGAk , where Y k � Y + k, with k ∈ R.
As

∑n
i�1 i � n(n+1)

2 , RGAk can be computed as

RGAk �
∑n

i�1 i(yr̂i + k) − ∑n
i�1 i(yrn+1−i + k)

∑n
i�1 i(yri + k) − ∑n

i�1 i(yrn+1−i + k)

�
∑n

i�1 iyr̂i + k n(n+1)
2 − ∑n

i�1 iyrn+1−i − k n(n+1)
2

∑n
i�1 iyri + k n(n+1)

2 − ∑n
i�1 yrn+1−i − k n(n+1)

2

�
∑n

i�1 iyr̂i − ∑n
i�1 iyrn+1−i∑n

i�1 iyri − ∑n
i�1 iyrn+1−i

,

which corresponds to the RGA formula in equation (13).

Appendix C Proof of property 3

The equivalence RGA�AUROC implies that the area under the ROC curve equals the
area lying between the dual Lorenz curve and the C curve.

If on the one hand, the area under the ROC curve can be intended as the distance
between the ROC curve corresponding to the worst case (coinciding with the x-axis)
and the ROC curve associatedwith the generic case, on the other hand the area between
the dual Lorenz curve and the C curve depends on the distance between the C curve
associated with the worst case and the C curve associated with the generic case.

For the sake of clarity, in Fig. 9, a graphical illustration of all the areas involved for
the calculation of RGA is reported.

From Fig. 9 note that the distance between the dual Lorenz curve (L
′
Y ) and the C

curve, denoted with�DC , is equal to the sum of AREA 1with AREA 2. Let S indicate
the area under L

′
Y , corresponding to the area of a trapezoid. From Fig. 9 we have that

AREA 1+AREA 2� S-(AREA 3+AREA 4), where AREA 3+AREA 4 represents the
area under the C curve which can also be computed by applying the trapezoid rule.

Before proceeding, let us recall the general trapezoid rule. Let {xk} be a partition
of [a, b], such that a � x0 < x1 < . . . < xn−1 < xn � b, and �x be the length of
the k-th subinterval (where �x � xk − xk−1). The area under a curve referred to a

partition [a, b] is determined as �x

[
f (x0)+ f (xn )

2 +
∑n−1

k�1 f (xk)

]

, where f is a generic
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Fig. 9 Areas involved for the RGA computation

function and f (xk) is the y-axis value of the points included in the consider partition,
with k � 1, . . . , n.

By applying the trapezoid rule to Fig. 9, it follows that

�DC � 1

n

[

n0 +
n1
2

]

− 1

n

[
1

2
+

n−1∑

i�1

i∑

j�1

yr̂ j
n1

]

� 1

n

[

n0 +
n1
2

− 1

2
−

n−1∑

i�1

i∑

j�1

yr̂ j
n1

]

.

To normalise the area between the dual Lorenz curve and the C curve, �DC has to
be divided by the distance between the dual Lorenz curve (L

′
Y ) and the Lorenz curve

(LY ), which we denote with �DL . The latter is equivalent to the difference between
the area of the trapezoid S and AREA 4:

�DL � 1

n

[

n0 +
n1
2

]

− 1

n

n1
2

� n0
n

� p0,

where p0 � n0/n is the prevalence ratio of negatives (0’s) in the dataset. As by
definition RGA compares the distance between the generic case and the worst case
(at the numerator) with the distance between the best case and the worst case (at the
denominator), it follows that:

(A.9)RGA � �DC

�DL
�

1
n

[

n0 +
n1
2

]

− 1
n

[

1
2 +

∑n−1
i�1

∑i
j�1

yr̂ j
n1

]

p0
.
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Note that the denominator of equation (A.9) specifies the maximum possible distance
between two C curves: that between the worst and the best case. Thus, the area lying
between the dual Lorenz curve and the Lorenz curve measures the maximum space
within which the C curve moves and, for this reason, it takes the role of a normalising
factor.

On the other hand, the AUROC can be derived through the trapezoid rule as follows:

AU ROC � 1

n

[
1

2
+

n−1∑

i�1

n∑

j�1

y j I (p j > i
n )

n1

]

. (A.10)

To interpret the AUROC in analogy with the RGAmeasure, we can write it in terms of
a ratio of the distance between the ROC curves associated with the worst case (corre-
sponding to the line y � 0) and the model under evaluation with the distance between
the ROC curves associated with the best case and the worst case (corresponding to the
distance between the lines y � 1 and y � 0), as follows:

AU ROC

�
0 − 1

n

[

1
2 +

∑n−1
i�1

∑n
j�1

y j I
(
p j>

i
n

)

n1

]

0 − 1
�

1
n

[

1
2 +

∑n−1
i�1

∑n
j�1

y j I
(
p j>

i
n

)

n1

]

n
n

.

(A.11)

From equation (A.11), note that n/n represents the area lying between the ROC curve
associated with the best case and that of the the worst case, and identifies themaximum
space within which the ROC curve of a model moves. Thus, as for the RGA in formula
(A.9), it takes the role of a normalising factor. As the ROC curve is located above the
45-degree line, contrary to theC curvewhich is located below, to reach the equivalence
between RGA and AUROC, equation (A.11) has to be multiplied by -1, that is:

AU ROC � −
1
n

[

1
2 +

∑n−1
i�1

∑n
j�1

y j I
(
p j>

i
n

)

n1

]

n
n

. (A.12)

Comparing (A.9) with (A.12) it follows that AUROC�RGA.

Appendix D Proof of Property 4

We have to prove that, when dealing with a binary target variable, RGA� W1, the
Wilcoxon-Mann–Whitney statistic.

The Wilcoxon-Mann–Whitney statistic W1 is defined as

W1 � R1 − n1(n1+1)
2

n0n1
, (A.13)
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where n1 is the frequency of the y � 1 (positive cases); n0 is the frequency of the
y � 0 (negative cases); n � n0 +n1; R1 is the sum of the ranks of the predicted values
for all positive cases (y � 1).

We start by proving the equivalence between the W1 and RGA denominators, that
is

n∑

i�1

iyri −
n∑

i�1

iyrn+1−i � n0n1. (A.14)

Let us consider the second term of the RGA denominator,
∑n

i�1 iyrn+1−i , which can be
simplified as

∑n1
i�1 i � n1(n1+1)

2 , being the values re-ordered in a non-increasing sense
and implying that the first n1 values of Y are equal to 1. By resorting to an arithmetic
progression, the first term of the RGA denominator,

∑n
i�1 iyri , can be simplified as[

n0+1+n
2

]

[n − n0]. This implies that

n∑

i�1

iyri −
n∑

i�1

iyrn+1−i � n0 + 1 + n

2
[n − n0] − n1(n1 + 1)

2

� n0 + 1 + n

2
n1 − n1(n1 + 1)

2

� n1
2
[n0 + 1 + n − n1 − 1] � n1

2
[2n0] � n0n1.

We have now to show the equivalence between the two numerators, i.e.
∑n

i�1 iyr̂i −
∑n

i�1 iyrn+1−i � R1 − n1(n1+1)
2 , implying that R1 � ∑n

i�1 iyr̂i , as we already proved

that
∑n

i�1 iyrn+1−i � n1(n1+1)
2 .

To achieve this, consider the scenario of tied predictions. In this case, both the
RGA and the W1 statistic involve a specific adjustment. For the RGA computation,
the average of the observed values, associated with the same predicted scores, is
computed; for the W1 statistic computation, the average rank of the tied predicted
scores is calculated.

Let us suppose that the sequence of the n predicted scores presents m tied values,
so that m < n. Based on the adjustment for tied values, it results that the RGA
computation involves the term

m∑

l�1

yl
m
r (ŷl ), (A.15)

where r (ŷl ) is the rank assigned (according to the predicted scores) to the l-th obser-
vation, in the case of non-tied values, and yl is the observed value taken by the binary
response variable (yl ∈ {0; 1}). Formula (A.15) can be re-expressed as

m∑

l�1

yl
r (ŷl )

m
�

m∑

l�1

yl r̄ (ŷl ), (A.16)
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where r̄ (ŷl ) is the average rank of the l-th y value.
Although the term R1 in equation (A.13) represents the sum of the ranks of the

positive cases (with respect to the predicted scores), we can re-express it including
also the negative cases. Indeed, R1 preserves its value if we extend the summation
to the ranks of the negative cases. Specifically, without tied values, this is equivalent
to multiply the y values equal to 1 and 0 by the ranks of the corresponding predicted
scores, respectively.

Clearly, multiplying the values of 0’s by the ranks of the corresponding predicted
scores gives that R1 reduces to the summation involving only the ranks associated
with the positive cases, leading to R1 � ∑n

l�1 yir (ŷi ).
As i � r (ŷi ), for any i � 1, . . . , n, it follows that

∑n
i�1 iyr̂i � ∑n

i�1 yir (ŷi ).
In the case of tied values, it results that R1 involves the term

m∑

l�1

yl r̄ (ŷl ) �
m∑

l�1

yl
r (ŷl )

m
�

m∑

l�1

yl
m
r (ŷl ), (A.17)

which corresponds to the term reported in equation (A.15), providing the equivalence
between the RGA and the W1 statistic.
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