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Abstract
Due to the increasing complexity and dimensionality of data sources, it is favorable
that methodological approaches yield robust results so that corrupted observations
do not jeopardize overall conclusions. We propose a modelling approach which is
robust towards outliers in the response variable for generalized additive models for
location, scale and shape (GAMLSS). We extend a recently proposed robustification
of the log-likelihood to gradient boosting for GAMLSS, which is based on trimming
low log-likelihood values via a log-logistic function to a boundary depending on a
robustness constant. We recommend a data-driven choice for the involved robustness
constant based on a quantile of the unconditioned response variable and investigate the
choice in a simulation study for low- and high-dimensional data situations. The versa-
tile application possibilities of robust gradient boosting for GAMLSS are illustrated
via three biomedical examples—including the modelling of thyroid hormone levels,
spatial effects for functionalmagnetic resonance brain imaging and a high-dimensional
application with gene expression levels for cancer cell lines.
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1 Introduction

With the emergence of complex observational data in biomedical research there is also
an increasing need for robust data analyses (see Barrios 2015; Monti and Filzmoser
2022). Robust statistical approaches should ensure that also for analyses purely based
on observational or routine data from clinical practice (and hence less controlled set-
tings than clinical trials), the overall conclusions are not based on small amounts of
corrupted or inconsistent observations such as outliers. On the other hand, many mod-
ern research questions also warrant more complex and flexible analysis tools, which
may go beyond the classical focus on the mean of a distribution (Kneib et al. 2021).
One of these flexible model classes are Generalized Additive Models for Location,
Scale and Shape (GAMLSS, introduced by Rigby and Stasinopoulos 2005).

In contrast to classical regression models, GAMLSS allow for the modelling of
multiple distribution parameters (e.g., also scale and shape parameters) in dependence
of potentially different sets of covariates for each parameter. As a result, GAMLSS
model the complete conditional distribution and not only the mean. Furthermore,
the response variable can follow any distribution (continuous, discrete, mixed, e.g.
zero-inflated continuous distributions with a spike at zero) and is not restricted to the
exponential family as it is the case for regular generalized additive models (Hastie
and Tibshirani 1990; Wood 2006). Recently, a robust fitting approach for GAMLSS
was proposed by Aeberhard et al. (2021), which tackles the problem of outliers in
the response variable. The core idea is to robustify the likelihood via a log-logistic
transformation, which ensures that some extreme observations do not dominate the
model fit. In contrast to more classical robust regression methods based on composite
loss functions (Huber 1981; Amato et al. 2021), the focus on the likelihood facilitates
the transfer of this robustness concept towards distributional regression. While the
approach by Aeberhard et al. (2021) shows a very promising performance for low-
dimensional models, it is not applicable for high-dimensional data with potentially
more explanatory variables than observations (p > n), and does not provide data-
driven variable selection.

To overcome these remaining issues, we incorporate the robustification by Aeber-
hard et al. (2021) in a boosting algorithm forGAMLSS (Mayr et al. 2012; Thomas et al.
2018). Boosting is a concept from machine learning that was later adapted to fit sta-
tistical models (Friedman 2001). An important advantage of these statistical boosting
approaches is that they yield interpretable effect estimates for single predictor vari-
ables while allowing for high-dimensional data with p > n. Furthermore, they can be
adapted to carry-out variable selection by stopping the algorithm before it converges
(Bühlmann 2006). Recently, some approaches for robust fitting of statistical models
via boosting have been proposed (Ju and Salibián-Barrera 2021; Speller et al. 2022),
but they focus only on classical mean regression. We hence propose to incorporate the
robustified likelihood approach into the boosting framework to fill the gap of robust
approaches for fitting GAMLSS in the context of high-dimensional data.

As in classical robust regression approaches (Huber 1981;Maronna et al. 2019), the
robustification of the likelihood in Aeberhard et al. (2021) is controlled by a robust-
ness constant, which has to be specified before fitting the model. While there often
exist reasonable default values which work well in many settings, the specification is

123



Robust gradient boosting for generalized additive...

generally difficult as the amount of required robustness is typically unknown. To facil-
itate the application of our approach in practice, we additionally propose a data-driven
quantile-based way to choose the robustness constant.

We analyse the performance of our approach regarding prediction accuracy and
variable selection for different amounts and types of corrupted outcomes via a simu-
lation study (Sect. 3) for Gaussian and Gamma distributed data, comparing it to the
classical boosting algorithm for GAMLSS (Mayr et al. 2012; Thomas et al. 2018). In
low-dimensional settings, we compare our approach also to the robust penalized max-
imum likelihood approach of Aeberhard et al. (2021). To further illustrate the practical
relevance of our proposed method, we provide three biomedical applications (Sect. 4).
We revisit the low-dimensional data application provided in Aeberhard et al. (2021)
on spatial effects for functional magnetic resonance brain imaging using our robust
boosting approach. Additionally, we present the analysis of a classical medium-sized
epidemiological trial on thyroid hormone levels from the general populationwith data-
driven variable selection. As a last illustrative example, we focus on gene expression
levels with p � n in cancer cell-lines.

2 Methods

2.1 Gradient boosting for GAMLSS

The gamboostLSS algorithm combines variable selection and prediction modeling
while fitting GAMLSS using a component-wise gradient boosting approach (Mayr
et al. 2012). A pre-specified set of regression-type base-learners (typically one for
each covariate) is iteratively fitted to the negative gradient of the likelihood. In each
iteration of the algorithm, the best-performing base-learner is selected and only this
one is updated (Bühlmann 2006). This iteration-based procedure automatically leads
to the selection of informative variables or base-learners, while base-learners that are
never selected to be updated are effectively excluded from the final model. Typically,
model tuning is performed by stopping the algorithm before convergence to avoid
overfitting and to enforce variable selection and shrinkage.

To describe the component-wise gradient boosting algorithm in the GAMLSS
regression framework, we use the following notation: The response observations yi
for i � 1, . . . , n with conditional density functions f (yi | θ i ) are assumed to be inde-
pendent given the parameter vector θ i � (θi , k)k�1, ..., K . Here, each parameter θi , k
of the parameter vector θ i can depend on a different subset of all available covari-
ates, which is taken into account by using potentially varying index sets Jk for the
covariates. In principle, the number of simultaneously modelled parameters K can be
arbitrarily high, but for most distributions there are not more than K � 4 parameters
(originally also denoted by θ � (μ, σ , ν, τ ) for location, scale, skewness and kurtosis
parameters, Rigby and Stasinopoulos 2005).

Every parameter θk is related to its additive predictor ηθk by its specific monotonic
link function gk :
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gk(θk) � ηθk � βθk , 0 +
∑

j∈Jk

hθk , j (xk, j ) for k � 1, . . . , 4, (1)

where βθk , 0 denotes the parameter-specific intercept and hθk , j (xk, j ) is the effect of
the covariates xk, j within the additive predictor for parameter θk . In the context of
component-wise gradient boosting, each hθk , j corresponds to one base-learner. In the
simplest case this is linear but can also be a non-linear spline or other type of effect.
Note that hθk, j may also depend on multiple covariates like for interactions or spatial
effects, where, e.g. coordinates are used for estimating the joint effect via one spatial
base-learner (see brain data example in Sect. 4.1).

Once the model and base-learners in Eq. (1) are specified, the actual optimization
problem θ̂ � argmax

θ
�( y | θ) with the log-likelihood function

�( y | θ) �
n∑

i�1

�(yi | θ i ) �
n∑

i�1

log( f (yi | θi , 1, θi , 2, θi , 3, θi , 4)), (2)

is solved iteratively via gradient boosting.
Prior to the first iteration, an offset value is calculated for each additive predictor

based on the unconditional distribution of the response variable Y (e.g. the mean for
the location parameter of a Gaussian distribution). Then, the partial derivatives with
respect to the additive predictors ηθk are computed in each iteration m ≥ 1 and the
base-learners are fitted separately to the gradient, while only the best fitting base-
learner is chosen to be added to the current additive predictor η

[m]
θk

via a small fixed
step-length (typically chosen to be 0.1):

∂

∂ηθk

�( y | θ )
∣∣∣∣
θ�θ̂

[m]

update best−→
base-learner

η̂
[m+1]
θ

g−1
k−→

k�1, ..., K
θ̂
[m+1]

(3)

This iteration process is executed until the final (optimal) stopping iteration mstop
is reached. The boosting algorithm is usually stopped before convergence to avoid
overfitting and to improve the prediction performance on test data with shrinkage of
effect estimates towards zero. Resampling techniques like cross-validation or boot-
strapping are typically used to tune the stopping iterationmstop based on the predictive
performance, when no additional validation set for tuning mstop is available.

Similar to most other recent methodological works on multi-dimensional boosting
(Strömer et al. 2022, 2023; Hans et al. 2023; Griesbach et al. 2023; Stöcker et al. 2021),
we use the so-called non-cyclic variant (Thomas et al. 2018) for iteratively updating
the previous estimate in the boosting algorithm. Thereby, only the update (base-learner
fit) leading to the best overall improvement over all distribution parameters is actually
executed and all other additive predictors remain without updates for this specific
iteration. This leads to a relatively fast one-dimensional tuning process formstop, as it is
also the case in regular model-based boosting. If there are only updates for the location
parameter this could reduce the GAMLSS model to a GAM. In comparison, the older
cyclic variant (Mayr et al. 2012) applies a grid search and updates all parameters one
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after another within one iteration. Typically, the non-cyclic variant leads basically to
the same results but substantially reduces the computation time for tuning (Thomas
et al. 2018). Both variants are implemented in the R add-on package gamboostLSS
(Hofner et al. 2016), which builds up on themboost (Hofner et al. 2014) package for
model-based boosting.

2.2 Robust boosting for GAMLSS

One way to achieve robust model fitting under potentially contaminated data (particu-
larly for the response values) is to apply somekind of trimming of extreme observations
to control the influence of single observations. This general concept is widely used
in robust statistics, starting with the trimmed mean (Maronna et al. 2019; Lugosi and
Mendelson 2019), but also formore complexmethodologies e.g., for high-dimensional
regression (Alfons et al. 2013; Speller et al. 2022). In the case of continuous distribu-
tions, in Rigby et al. (2019) a pre-specified amount of extreme observations is trimmed
to marginal quantiles towards the center of the outcome distribution. This basically
leads to a mixed distribution (with spikes at the quantiles) before model fitting, which
can be adjusted for by a bias correction to preserve Fisher consistency.

Another robustification approach through different robust evaluation functions
(Eguchi and Kano 2001) on the log-likelihood level to reduce influence of single
response observations was adapted and proposed for the GAMLSS framework by
Aeberhard et al. (2021). It is implemented via the log-logistic function within the R
package GJRM, which can be used as an extension to the classical gamlss pack-
age to fit GAMLSS. However, it is limited to smaller numbers of covariates, also in
comparison to the number of observations.

To apply robust regression also for larger numbers of covariates up to high-
dimensional cases, where the number of covariates p may exceed the sample size n,
we propose a robust gradient boosting approach to fit GAMLSS. Similar to Aeber-
hard et al. (2021), we consider the robustified log-likelihood function �̃c as a direct
penalisation of Eq. (2) by the log-logistic function ρc

�̃c( y | θ) �
n∑

i�1

ρc(�(yi | θ i )), (4)

leading to a similar optimisation problem as before, where the log-likelihood is
replaced by its robustified version:

θ̂ � argmax
θ

�̃c( y | θ ) (5)

The log-logistic function ρc is defined by

ρc(z) :� log

(
1 + exp(z + c)

1 + exp(c)

)
with c > 0 (6)
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with derivative
ρ′
c(z) � ∂

∂z
ρc(z) � exp(z + c)

1 + exp(z + c)
. (7)

The log-logistic function and its derivative are illustrated in Fig. 1 for different values
of the robustness constant c.

For each c > 0, the log-logistic function ρc is twice continuously differentiable on
R, convex and bounded from below, limiting the impact of observations with small
log-likelihood values on the fitting process. Positive log-likelihood values remain
nearly unchanged. Negative log-likelihood values are trimmed towards zero so that the
influence on the overall likelihood is bounded for single observations. A larger value of
c leads to fewer observations whose influence get restricted, while asymptotically, for
c → ∞, it corresponds to the original, non-robust log-likelihood procedure. Smaller
c values have the opposite effect and lead to a sharper cut-off. The slope of ρc is
monotonically increasing as can be seen in Fig. 1, with a slope close to 0 for most
negative values. In z � −c the derivative ρ′

c reaches its point of inflection.
In the context of gradient boosting, the most important part of the fitting procedure

is the computation of the partial derivatives of the (robustified) log-likelihood for each
additive predictor ηθk :

∂

∂ηθk

�̃c(yi | θ i ) � ρ′
c(�(yi | θ i )) · ∂

∂ηθk

�(yi | θ i ), i � 1, . . . , n (8)

The derivative ρ′
c is bounded on the unit interval [0, 1], which means that the gra-

dient from the robustified log-likelihood in Eq. (8) is the log-likelihood gradient (3)
multiplied by weights wi � ρ′

c(�(yi | θ i )) ∈ (0, 1) for i � 1, . . . , n, downweighting

Fig. 1 Log-logistic function ρc (left) and its derivative ρ′
c (right) for c ∈ {2, 6, 10} and for the limiting case

c → ∞. The infimum of ρc is marked with a cross in corresponding colour on the y-axis, showing how
slow ρc decays for smaller log-likelihood values. For the limiting case c → ∞, ρc is the identity function,
resulting in the original log-likelihood function. Compare figure to (Aeberhard et al. 2021, Web Appendix
C, Figure S1)
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observations with extreme (negative) log-likelihood values. Therefore, the choice of
the robustness constant c entails a trade-off between robustness for corrupted data and
efficiency for uncorrupted data.

For positive values of c, there is a natural lower bound of ρc given by the infi-
mum over all log-likelihood values z ∈ R (see Fig. 1), which can be calculated by
considering the following limit:

blow(c) :� inf
z∈R ρc(z) � lim

z→−∞ log

(
1 + exp(z + c)

1 + exp(c)

)
� − log(1 + exp(c)) (9)

The value blow(c) is negative for all c > 0. This means that all log-likelihood values,
which have lower values than this boundary, are at least lifted to blow(c). Since the
scale of the log-likelihood itself is depending on the statistical model and on the data,
this should also be taken into account for the choice of the robustness constant c. As
already discussed before, the value of c determines the robustness of the final model.
We opt for a choice of c, which is simple to interpret: we propose to use an intercept
modelwithmaximum likelihood estimates for all distributional parameters exclusively
based on the full response sample y to generate initial log-likelihood values. Under an
assumed amount τ of corruption of the response data, the quantile qτ gives an upper
bound for corrupted observations. For the general distribution case this quantile is
given by:

qτ :� quantileτ

(
�
(
y | θ (y) � θ̂offset(y) � θ̂

[0]
(y)

))
(10)

If we now equate the τ quantile of the log-likelihood values qτ with the lower bound
blow, we can solve for cτ , which can be used for our model fit – guaranteeing that all
log-likelihood values smaller than qτ are bounded by our method:

qτ � blow(cτ ) � − log(1 + exp(cτ )) ⇔ cτ � log(exp(−qτ ) − 1) (11)

Note that Eq. (11) can only be applied for qτ < 0, which is most likely true in most
practical cases. Exceptions for instance are distributions with very small variances,
and are captured via an appropriate boundary within our implementation.

In cases where no prior information on the amount of corrupted observations is
available (which might be the case in most practical settings), we recommend to use
the default value of τ � 0.05. This means that 5% of the observations have lower
log-likelihood values than blow, irrespective of the particular GAMLSS distribution.
Exemplary, for an assumed amount of corruption τ � 0.05 the intercept model of the
Gaussian distribution leads to the quantile

q0.05 � quantile0.05(�(y | μ � mean(y), σ � sd(y))), (12)

with offset values for (μ � θ̂1 � η̂θ1 , σ � θ̂2 � log(η̂θ2 )) as the sample mean and the
sample variance from the response y. These are the maximum likelihood estimators
for both parameters resulting in a robustness constant c0.05.
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Example code for our approach canbe found in the supplement. The implementation
and the code to reproduce the simulations is available on GitHub: https://github.com/
JSpBonn/RobustGAMLSS.

3 Simulations

The specific goals of our simulation study were to investigate

A: how the robust boosting approach behaves under uncorrupted data situations in
comparison to (non-robust) classical boosting for GAMLSS,
B: in which data situations the robust methods are beneficial, but also limited in its
usage facing corrupted data of different types,
C: how sensitive the results are with respect to the choice of τ corresponding to the
robustness constant cτ ,
D: and how the robust boosting method performs in comparison to the original robust
fitting procedure for GAMLSS of Aeberhard et al. (2021) in low-dimensional settings.

Especially for high-dimensional settings we also investigated the performance of the
boosting approaches regarding variable selection and compared the computational
runtime with the original version for the low-dimensional settings.

3.1 Settings

We considered a low-dimensional setting with p � 5 and a high-dimensional setting
with p � 1000 explanatory variables with the same number of observations n � 1000.
The general structure of a Gaussian distributed outcome yi for i ∈ {1, . . . , 1000} was
given by

yi ∼ N
(
μi � 1 + 2 · xi1 − 1 · xi2, σ 2

i � exp(0.5 − 0.25 · xi1 + 0.5 · xi3)2
)
,

while all other covariates remained uninformative. We considered a Toeplitz correla-
tion structure with ρ � 0.5 for neighbouring covariates, i.e., xi followed amultivariate
Gaussian distributionNp(1, �) with covariance matrix entries σi , j � 0.5|i− j |, result-
ing in diagonal entries σi , i � 1 and, exemplary, correlation σ2, 5 � 0.53 between
covariates x2 and x5.

We simulated different amounts of corrupted response observations π ∈ {0%, 5%,
10%, 15%, 20%} by adding or subtracting 4 · sd(y) to generate a symmetric error (see
Fig. 2 for an illustration). Furthermore, we also simulated a skewed corruption, where
all error entries were added with their absolute values as one-sided bias. We applied
Eqs. (10) and (11) for τ ∈ {0.01, 0.05, 0.10} to specify the corresponding robustness
constants cτ .

The same data generating process was used for a skewed corrupted Gamma dis-
tributed outcome yi with expected value μ � exp(1 + 1.5 · xi1 − 0.75 · xi2) and a
variance of μ2/σ with σ � exp(0.5 − 0.25 · xi1 + 0.5 · xi3)2.
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x3
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Fig. 2 Illustration of the low-dimensional simulation setting with n � 1000 samples and p � 5 covariates.
The response observations yi follow a Gaussian distribution N (μi � 1 + 2 xi1 − 1 xi2, σ 2

i � exp(0.5 −
0.25 xi1 + 0.5 xi3)

2) conditioned on three informative covariates x1, x2, x3. The black dots represent
non-corrupted response observations, while 10% of them were symmetrically corrupted (red triangles) by
randomly substracting or adding 4 · sd( y) from the uncorrupted responses y. The blue line corresponds to a
multiple linear regression model between x1, . . . , x5 and y based on the full sample adjusted on the means
of the remaining 4 covariates, respectively

All individual explanatory variables were considered as component-wise linear
base-learners within the boosting algorithms for each distribution parameter. The stop-
ping iterationmstop as themain tuning parameter of the boostingmodels was optimised
in a resource-efficient way based on a validation data set of size nvalidation � 1000
(which was corrupted in the same way as the training data), by minimising the mean
empirical risk. To compare the different models and address questions A to D, we mea-
sured the predictive performance on an uncorrupted test data set of size ntest � 1000
via the negative log-likelihood values of a Gaussian or Gamma distribution, respec-
tively, at the optimal stopping iteration.

As additional performance measures, we also considered the mean absolute devi-
ation of the estimates of ημ and ησ to their true values, the selected variables in the
final models (true and false positive rate), the final stopping iteration, also in detail
for both parameters separately (due to the usage of the non-cyclic updating method),
the computational runtime and in the specific case of the robustified gradient boosting
approach also the cτ values. All simulations were performed B � 100 times using R
version 4.0.5. Additional results of the simulation study (e.g., for different amounts
of corruption and boundary values for c) can be found in the supplement.

3.2 Results

An overview of the prediction performance is given in Table 1 based on the aver-
age negative log-likelihood (NLL) values over B � 100 simulation runs. The classic
boosting model shows low NLL values in all non-corrupted settings – the lowest
for all three low-dimensional cases, the second lowest behind the robust boosting
approach for τ � 0.01 in both high-dimensional Gaussian cases and lowest for the
high-dimensional Gamma setting. Larger choices of a quantile τ in uncorrupted set-
tings lead to an increasing loss in prediction accuracy. As a summary for question A
we can conclude that there is typically a loss in prediction accuracy for non corrupted
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Table 1 Mean negative log-likelihood (NLL) values and standard deviation based on B � 100 simulation
runs for different amounts of corruption (symmetric and skewed for the Gaussian distribution and skewed
for the Gamma distribution) for the considered methods in a low-dimensional (p � 5 and n � 1000) and a
high-dimensional (p � 1000 and n � 1000) setting. All models are evaluated on an uncorrupted test data
set of size ntest � 1000. For each setting, the lowest NLL value is printed in bold, corresponding to the
method with the best prediction performance

Gaussian:
Amount of symmetric corruption

Method 0% 5% 10% 15% 20%

lo
w
-d

im
.

Classic Boosting:
2176.44 (30.93) 2440.73 (32.75) 2615.32 (32.59) 2765.44 (46.38) 2867.05 (43.59)

Robust Boosting:
τ = 0.01 2178.07 (32.30) 2180.14 (30.27) 2185.85 (29.80) 2192.14 (31.59) 2204.76 (65.93)
τ = 0.05 2212.16 (42.60) 2184.69 (34.95) 2179.22 (32.37) 2180.47 (32.21) 2181.73 (32.03)
τ = 0.10 2262.18 (53.98) 2250.88 (50.46) 2202.20 (39.63) 2187.76 (35.37) 2185.40 (33.96)

Robust ML:
2177.16 (32.66) 2177.29 (32.09) 2181.48 (31.78) 2187.79 (31.73) 2198.73 (32.20)

h
ig
h
-d

im
.

Classic Boosting:
2222.98 (33.91) 2628.86 (26.83) 2754.30 (29.60) 2849.43 (27.55) 2928.72 (28.03)

Robust Boosting:
τ = 0.01 2221.78 (35.39) 2259.44 (56.60) 2401.24 (97.03) 2532.50 (106.82) 2646.16 (98.03)
τ = 0.05 2256.04 (47.98) 2225.49 (38.62) 2215.21 (34.90) 2215.79 (35.15) 2217.35 (39.00)
τ = 0.10 2315.24 (62.62) 2303.61 (59.21) 2243.23 (47.00) 2224.53 (40.03) 2222.29 (38.93)

Gaussian:
Amount of skewed corruption

Method 0% 5% 10% 15% 20%

lo
w
-d

im
.

Classic Boosting:
2176.44 (30.93) 2443.10 (32.67) 2621.84 (28.98) 2757.22 (29.12) 2866.06 (29.47)

Robust Boosting:
τ = 0.01 2178.07 (32.30) 2180.59 (30.38) 2185.69 (30.33) 2188.16 (31.13) 2192.36 (31.78)
τ = 0.05 2212.16 (42.60) 2185.18 (34.93) 2181.22 (33.28) 2183.32 (33.35) 2186.20 (34.13)
τ = 0.10 2262.18 (53.98) 2244.35 (49.95) 2204.66 (40.59) 2194.32 (37.04) 2194.24 (37.15)

Robust ML:
2177.16 (32.66) 2177.26 (32.07) 2181.12 (31.79) 2186.52 (31.84) 2196.65 (31.44)

h
ig
h
-d

im
.

Classic Boosting:
2222.98 (33.91) 2624.11 (39.53) 2758.18 (30.48) 2863.78 (27.82) 2951.13 (28.13)

Robust Boosting:
τ = 0.01 2221.78 (35.39) 2275.30 (44.39) 2348.28 (86.01) 2475.76 (104.90) 2632.52 (110.42)
τ = 0.05 2256.04 (47.98) 2241.66 (39.95) 2237.98 (37.22) 2240.63 (36.53) 2248.76 (39.91)
τ = 0.10 2315.24 (62.62) 2315.00 (60.03) 2261.77 (47.97) 2245.77 (44.00) 2245.74 (41.15)

Gamma:
Amount of skewed corruption

Method 0% 5% 10% 15% 20%

lo
w
-d

im
.

Classic Boosting:
2590.05 (50.36) 3002.72 (53.61) 3154.26 (48.03) 3251.65 (45.37) 3327.47 (44.25)

Robust Boosting:
τ = 0.01 2590.47 (50.91) 2591.19 (50.26) 2592.79 (49.18) 2595.64 (49.31) 2619.67 (120.00)
τ = 0.05 2606.88 (54.34) 2597.05 (52.90) 2596.48 (52.07) 2596.13 (52.15) 2595.86 (52.05)
τ = 0.10 2640.63 (58.32) 2613.19 (55.32) 2599.97 (53.19) 2600.11 (53.19) 2599.69 (53.08)

Robust ML:
3210.59 (47.93) 3278.21 (46.55) 3334.76 (45.24) 3384.58 (44.11) 3430.72 (43.36)

h
ig
h
-d

im
.

Classic Boosting:
2607.30 (49.10) 3050.23 (67.59) 3208.94 (59.98) 3309.64 (57.31) 3389.79 (54.64)

Robust Boosting:
τ = 0.01 2608.34 (49.31) 2610.48 (49.21) 2629.87 (70.15) 2870.85 (250.12) 3318.07 (131.87)
τ = 0.05 2635.44 (56.55) 2623.83 (52.78) 2625.44 (54.33) 2627.88 (55.09) 2632.31 (55.56)
τ = 0.10 2676.26 (66.78) 2646.50 (58.00) 2629.81 (54.73) 2631.92 (56.26) 2636.40 (56.91)
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data when using the robust boosting approach especially for higher τ quantiles, while
for the choice τ � 0.01 the loss in accuracy is negligible.

On the other hand, already for a small amount of corruption of 5% of observations,
classical boosting falls short of all robust models, even in comparison to the NLL
values of robust boosting for 0% corruption, and performs increasingly worse for
larger amounts of corruption. In the low-dimensional case, this is particularly due to
the incorporation of corrupted data points in the fitting process, while in the high-
dimensional case, the classical boosting algorithm tends to stop quite early to avoid
overfitting (cf. supplement Table S8 and S16).

Regarding question B, the compact answer would be that all robust boostingmodels
are beneficial for all considered amounts of corruption > 0%. In detail, there is a
tendency for τ � 0.01 to perform better for smaller amounts, but in more extreme
situations for the high-dimensional case and for amounts of corruption close to 20% it
will not be robust enough anymore and its performance gets closer to classic boosting
(while still being better). In such extreme cases, the quantile with τ � 0.10 has its
greatest advantages. The intermediate choice of τ � 0.05 incorporates both beneficial
behaviours and does not induce a large loss in prediction accuracy for no or smaller
amounts of corruption, but still yields robust results for higher amounts in all simulation
settings.

The robustification via the log-logistic function in combination with the idea of
choosing the robustness constant cτ in a data-riven way (based on reasonably low
quantile values τ ) leads to overall good performances of the robust boosting models.
The comparison of different τ values shows limited differences in their NLL values.
Still, when considering question C concerning the sensitivity regarding the choice of τ ,
it seems better to choose one of the smaller quantiles, for which the results stay robust
until confronted with extreme corruption amounts (τ � 0.01 and 20%, especially
for high-dimensional data), while performing similar to the classical boosting when
confronted with non-corrupted data.

Additional simulation results in the supplement to the paper show that the overall
behaviour of all models had similar tendencies independently of the kind of corruption
(symmetric or skewed), the dimensionality (low- or high-dimensional) and the distri-
bution (Gaussian or Gamma). In particular, results regarding the mean absolute value
of the estimated parameters and the variable selection properties are also in line with
the performance regarding the NLL values (cf. Table S2, S3 and Table S5, S6 for the
Gaussian and S12 and S14 for the Gamma setting of the supplement, respectively).
Especially in the high-dimensional settings, the robust boosting models result in larger
true positive rates than the classical boosting model when the data is corrupted by any
amount.

Regarding question D, the comparison with the robust penalised maximum like-
lihood (robust ML) approach of Aeberhard et al. (2021) was only possible for the
low-dimensional settings. There, however, this approach resulted in a very competi-
tive performance regarding NLL values for the Gaussian setting. The initially chosen
robustness constant c0.05 based on the τ � 0.05 quantile is optimised during their fit-
ting approach, which comes at the cost of longer computation runtimes (cf. Table S7,
S15). Within the simulations for the Gamma distribution the NLL values are increased
in comparison to the boosting approaches. Furthermore, the robust penalised ML
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approach is not applicable to high-dimensional settings and does not incorporate data-
driven variable selection as the proposed robust boosting algorithm.

4 Biomedical applications

To demonstrate the flexibility and adaptability of gradient boosting due to its modular
structure in combination with the benefits of robust model-fitting for GAMLSS, we
present three application examples from three different biomedical research fields.
Additionally to the Gaussian distribution, we also consider the Gamma distribution
for modelling positive right-skewed data. We use the same parameterization as for the
simulations, where the expected value is equal to μ and the shape parameter σ leads
to a variance of μ2/σ (with log-link for both parameters). For all examples, we chose
the robustness constant c in the same way as in the simulations via Eqs. (10) and (11)
with τ � 0.05 for all applications and distributions. Additional information including
runtimes are presented in the supplement Tables S17-S21.

4.1 Functional magnetic resonance brain imaging

When modelling brain activity parameters based on functional magnetic resonance
brain imaging data, the assumption of homoscedasticity can be too restrictive (Landau
et al. 2004). Furthermore, measurements can easily be influenced, e.g. via movement
of the patient during testing, but also through physiological conditions like nearby
veins. In such situations, robust regression methods with the capability of simultane-
ously fitting multiple parameters while accounting for potential heteroscedasticity are
particularly suited.

We focus on the same application as Aeberhard et al. (2021) (based on Landau
et al. 2004), who modelled brain activity via themedian Fundamental Power Quotient
(medFPQ) and reported both a robust and a classical GAMLSS. Given is the measured
resonance of an experimental stimulus of a human brain subject for one 2D slice
through the dorsal cerebral cortex for n � 1567 brain voxels. The dataset is publicly
available via the R package gamair, where three replicates of FPQ for each voxel
are given by their median resulting in a right-skewed, non-negative distribution of
medFPQ. Note that no extreme observations (potential outliers) were excluded, which
stresses the general idea of robust model fitting, for instance in contrast to (Wood
2006, p.228).

InAeberhard et al. (2021) the response variablemedFPQwasmodeled via aGamma
distribution in dependence of the spatial covariates x1 and x2, which represent the
location of each voxel within the 2D brain slice. We fitted similar Gamma regression
models, but using gradient boosting for GAMLSS based on the classical and new
robust versions in combination with a spatial base-learner (for x1 and x2) for best
comparability on the full data set. Therefore, both boosting approaches were tuned
using 25-fold bootstrapping, which resulted in optimal stopping iterations mstop �
1480 for the classical Gamma fit and mstop � 197 for the robust version.
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Fig. 3 Shown are the additive predictors η̂μ and η̂σ for the classical boosting GAMLSS fit (left) and the
new robust boosting approach (right), where the main brain activity (medFPQ) was modelled by a Gamma
distribution depending on the location of voxels x1 and x2. Early stopping with a 25-fold bootstrap approach
leads, for the classical variant, to mstop � 1480 (963 updates μ, 517 for σ ) and, for the robust version, to
mstop � 197 (130 updates μ, 67 for σ ). Note that, in comparison to (Aeberhard et al. 2021, Figure 5), a
different parameterization for σ was used, which inverts and rescales the colour palette for η̂σ

Figure 3 displays the results of the predicted medFPQ values for both boosting
approaches as coloured deviations for different brain activities. It can be observed that
the robust approach led to much smoother spatial effect estimates for both parameters.
The classical boosting approach, in contrast, fitted rougher and more detailed spatial
effects. This may also be due to the fact that the boosting algorithm stopped much later
for the classical approach (a brain image with converged effect estimates can be found
for both approaches in supplement Figure S3). For the location parameter (ημ), the
classical model shows more heterogeneity and a larger effect in the left frontal lobe of
the brain, while the robust model updated more regions for the shape parameter (ησ ),
especially in the frontal lobe (stronger, but similar to the classical one). Overall, for
this example our robust boosting results for GAMLSS are comparable to the ones
presented by Aeberhard et al. (2021) (when taking the different parameterizations
into account). An additional direct comparison between the two robust approaches
(also regarding computation time) was included in the supplement Figure S4 using
Gaussian models.
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4.2 Thyroid hormone levels of a general adult population

Thyroid hormones (TH) play a major role in regulating basal metabolism in humans.
TH synthesis is regulated by feedback mechanisms: decreased thyroid hormone levels
lead to increased synthesis of hypothalamic thyrotropin-releasing hormone which
increases the secretion of thyroid-stimulating hormone (TSH). TSH stimulates the
production of thyroid hormones, thyroxine (T4) and triiodothyronine (T3). In order to
examine the relationship between thyroid function and hematological parameters, we
analyzed the data from the A-Estrada Glycation and Inflammation Study (AEGIS), a
cross-sectional study conducted in the municipality of A-Estrada, in North-western
Spain. An outline of the project can be found at https://www.clinicaltrials.gov (code:
NCT01796184) and details also in Alende-Castro et al. (2019).

Blood samples were taken from n � 1516 participants to describe the relation-
ship between blood cell components and thyroid function. In total, we considered
p � 33 potential explanatory variables for n � 1151 complete observations, which
were not previously diagnosed with any kind of thyroid dysfunction. To model the
thyroid hormone level of T3 as the response variable (see Fig. 4), we boosted a Gaus-
sian GAMLSS with all available candidate variables based on the classical boosting
approach as well as the new robust variant. Besides fitting a model on the full data
set, we performed 10-fold cross-validation to compare the selection frequencies of the
variables in the boosting models and the prediction accuracy via the log-likelihood on
test data. To avoid further reduction of the sample size for tuning via a validation set,
the stopping iteration mstop of boosting was determined by 25-fold bootstrap for all
models (separately on each of the training folds of the 10-fold cross-validation). For
comparison, we also fitted the original robust approach by Aeberhard et al. (2021) for
the full model without variable selection.

While boosting the non-robust Gaussian model selected 5 variables for the location
parameter μ and 6 variables for the dispersion parameter σ , the new robust boosting
version stopped later and selected 15 predictors for the location, but only one variable
(transferrin saturation) for σ , whichwas also included relatively late in the finalmodel
(see supplement Table S11 for a complete overview of selected variables). From a

T3 hormone levels
1 2 3 4 5 6 7 8 9 10 11 12

D
en

si
ty

Fig. 4 Density of triiodothyronine (T3) hormone levels from n � 1151 participants of the AEGIS study,
which were part of our analysis. The blue line is based on a non-parametric kernel density estimator
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biological point of view, these results are consistent with previous studies in which
small differences in thyroid function are associated with significant differences in a
range of clinical parameters. Anemia and other blood abnormalities are common in
thyroid function abnormalities. Iron metabolism (hemoglobin, ferritin, transferrin) is
also very intricately connected to thyroid hormone metabolism (Bremner et al. 2012).

Regarding prediction accuracy the classical boosting fit yielded slightly favorable
results, with median negative log-likelihood values of 55.34 (IQR � 16.93) compared
to 65.49 (IQR � 26.26) for boosting the robust version, which might be also related to
the later stopping (mstop was on average 27.50 (sd � 12.55) for the normal Gaussian
model and 46.10 (sd � 7.25) for the robust one). Similar likelihood results were
also found for the full model by the original robust GAMLSS approach (55.22 with
IQR � 22.96). In general, there seems to be only one unconditioned extreme outlier
(Fig. 4), which can also be handled well by the non-robust boosting approach given the
relatively high sample size. But also the robust boosting variant does not yield a large
loss in prediction accuracy when applied to quasi non-corrupted data (cf. Table 1).
The most frequently selected variables for each approach were also the ones from the
final model fitted on the full data.

4.3 Protein expression data via NCI-60 cancer cell panel

High-dimensional data situations are very common in the field of genetics, where
the number of potential covariates often exceeds the number of observations. We
illustrate the performance of our approach for this situation via the NCI-60 data set,
which includes only n � 59 human cancer cell lines in comparison to p � 14951 gene
expression measurements as potential predictors. The data set is available at https://di
scover.nci.nih.gov/cellminer/.

We followed the same data processing steps as in Speller et al. (2022), Sun et al.
(2020) and considered the positive and highly right-skewed KRT19 protein anti-
body array from the “Protein: Antibody Array DTB” set as response variable (Sun
et al. 2020). The KRT19 protein data is an example with extreme kurtosis and some
(extreme) outliers (the median value is 1.10, while the 75% quantile is 32.14 with val-
ues up to 257), implying a challenging modelling task which is particularly interesting
for robust regression approaches.

We applied classical gradient boosting for GAMLSS using the Gamma distribution
to compare it with our robust boosting approach. The predictor variables are given as
the gene expressionmeasurements,whichwe includedvia separate linear base-learners
for all boosting models. Besides considering both classical and robust boosting on the
full data set, we additionally performed leave-one-out-cross-validation (LOOCV); in
this casewith n � 59, eachmodel was fitted on 58 observations as training data and the
remaining observations were used as test data to evaluate the negative log-likelihood
of the original Gamma distribution. To avoid forming a validation set, all models were
stopped early at their optimal stopping iteration via an inner 25-fold bootstrap on
the respective training observations. To investigate the variable selection behaviour of
boosting, we also computed selection frequencies on the 59 LOOCV training folds
for all potential predictor variables.
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Fig. 5 Coefficient-paths for robust boosting for GAMLSS of the NCI-60 data. One gene was selected for
the parameter μ (dashed red path) and 7 were selected for σ (darkblue paths) before the algorithm stopped
at mstop � 152. Coefficients which are updated the first time after this iteration and are hence not included
in the final model are coloured lightblue

The robust model fit on the full data resulted in an optimal stopping iteration of
mstop � 152, with only one selected predictor—the KRT19 gene—for the location
parameterμ and7 selectedgenes for the shapeparameterσ (seeFig. 5 for an illustration
for the coefficient-paths). The early stopping of the boosting algorithm results in
shrinkage of effect estimates, which is nicely visible for SETD1A. Updated variables
after iteration mstop are not included in the final model (see Fig. 5, lightblue paths
deviate only from zero for iterations m > mstop). The only updated base-learner for
ημ is the one referring to theKRT19 gene, which is included relatively late, suggesting
that the default offset value for μ was a good starting point and that generally more
information may be contained for the shape parameter σ .

The non-robust Gamma regression, in contrast, resulted in an early stopping of the
boosting algorithm at iteration mstop � 1. As a result, only the intercept for σ was
updated once, whileμ stayed at its offset value. This illustrates an interesting property
of gradient boosting: when updates are non-beneficial for the prediction, the tuned
boosting model can stay extremely sparse to avoid overfitting. In case of extreme
p � n situations with highly skewed data and outliers, this behaviour could also
be very reasonable. However, this does not necessarily mean that there are no valid
information in the data, as could be observed for the robust approach.

To further assess the performanceof bothmethods,Table 2 summarizes the results of
LOOCV regarding prediction accuracy and variable selection. The non-robust boost-
ing variant selected no genes at all and due to early stopping resulted in intercept
models. In contrast, the robust approach selected on average two genes for μ, while
especially the gene expression of KRT19 was selected in nearly all cross-validation
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Table 2 Overview of LOOCV for all 59 observations of the NCI-60 data set, where GAMLSS were fitted
via gradient boosting for the response KRT19 protein modelled via a Gamma distribution. The selected
variables, the mean model size and the mean negative log-likelihood values are given for the boosting
models, where the stopping iteration mstop was tuned via 25-fold bootstrapping separately for all splits

Method Selected predictors Model size Neg. log-lik.

Parameter (Frequency out of 59) mean (sd) mean (sd)

Robust boosting
(Gamma τ � 0.05)

8.95 (1.71) 3.53 (2.09)

μ KRT19(58), EPS8L2(2) 1.02 (0.13)

σ RAB7A(59), UBL3(58), MCCC1(56),
SETD1A(55), PARD3(54), OSTF1(47),
CLCF1(36), PIK3R1(21), NRN1(17),
ALDH3B1(17), VGLL4(16),
ADRB2(8), RHOF(8),
ZNF432(4), SNX4(2), ANKRA2(1),
UFL1(1), DUSP5(1), POLR2L(1),
RPS6KA4(1), SAP18(1), PSMB5(1),
TERF2IP(1), HNF1B(1), TASP1(1)

7.93 (1.71)

steps (58). For σ , the results are also in line with the robust model on the full data.
The 7 most frequently selected genes in LOOCV were also selected for σ on the
full data (cf. Figure 5). Taking the high-dimensionality and the small sample size
of n � 59 into account, the selection process for the predictors appears very stable
for the robust approaches and points to the same small subset of genes for further
investigation. Regarding prediction accuracy, the robust GAMLSS fits were also ben-
eficial and yielded lower negative log-likelihood values on the test observations (mean
3.53 (sd � 2.09) in comparison to 4.39 (sd � 1.97)).

5 Discussion

We have proposed a robust boosting approach for generalized additive models for
location, scale and shape (GAMLSS, Rigby and Stasinopoulos 2005). It reduces the
effects of outliers in the response variable while incorporating variable selection for
potentially high-dimensional data. The core of the approach is a robustification of the
likelihood via the log-logistic function as recently proposed byAeberhard et al. (2021).
We incorporated the robustified likelihood as the loss function for a component-wise
gradient boosting algorithm for GAMLSS (Mayr et al. 2012). To the best of our
knowledge, our approach allows for the first time to use a robust boosting approach to
fit distributional regression models via GAMLSS. Additionally, we have proposed a
quantile-based data-drivenmethod on how to specify the necessary robustness constant
in practice.

The results of our simulation study suggest that our approach works well and pro-
vides robustness for reasonable amounts of corrupted observations (up to 15-20%),
both for symmetric and skewed corruption types. At the same time, when applied on
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data without any outliers, the performance only slightly decreases compared to a clas-
sical non-robust boosting algorithm. A similar behaviour could also be observed in the
three biomedical applications: our robust boosting approach was able to replicate sim-
ilar results compared to a previous robust analysis for functional magnetic resonance
brain imaging, showingmore robust effect estimates than classical boosting. However,
in a much larger epidemiological data set on thyroid hormone levels with only one
extreme outlier, the robust boosting version did not outperform the classical algorithm
regarding prediction accuracy. This might be due to the fact that also classical boosting
can lead to a relatively robust model fit by imposing stronger regularisation via early
stopping. This could also be observed in a more extreme way for the high-dimensional
gene expression data from cancer cells: Here, the classical boosting algorithm basi-
cally selects only an intercept model while the robust version allows to identify the
most influential genes, outperforming the classical boosting algorithm with respect to
prediction accuracy.

Our approach also has several limitations: Due to the iterative fitting of the base-
learners to the gradient of the loss, statistical boosting algorithms typically cannot
provide standard errors for effect estimates. This is also true for the proposed robust
variant, making it mostly suitable for exploratory data analysis. There are some
workarounds based on permutation tests (Mayr et al. 2017; Hepp et al. 2019) and
bootstrapping (Hofner et al. 2016), though they tend to become computationally very
demanding for high-dimensional data. Also without these additional resampling mea-
sures, boosting and tuning a robust GAMLSS leads to a longer computation time
than the classical approach by Aeberhard et al. (2021). The use of boosting for model
fitting in low-dimensional settings is hence most favorable only for situations where
the variable selection properties or shrinkage of effect estimates are required. Another
limitation is that we have tested the robust version only on a limited combination
of distributions (Gaussian, Gamma), base-learners (linear, spatial) and focused on the
non-cyclic variant. There is no reason to believe why the approach should not work for
other GAMLSS distributions, the cyclic update variant and/or base-learners available
in the boosting framework (Mayr and Hofner 2018; Hofner et al. 2014) – nevertheless
this should be properly tested. Furthermore, even when the event of almost exclu-
sively positive log-likelihood values is unlikely to occur in practical applications, it
is possible that our proposed quantile-based selection of the tuning constant fails for
extreme data situations. Further research is also warranted on the robustification of
base-learners, as our approach is currently limited to outliers in the response vari-
able. Another line of research could also focus on an automated selection of the most
appropriate (robust) response distribution based on prediction performance.

In this context, quantile regression (Koenker and Hallock 2001) could also be a nat-
ural alternative approach for robust distributional regression. In contrast to GAMLSS,
it does not carry the risk of miss-specifying the distribution. However, in quantile
regression the focus is not really on the complete conditional distribution, as each
quantile is fitted separately, which can lead to crossing of neighboring predicted quan-
tiles. GAMLSS, on the other hand, model the complete distribution and allow for
the interpretation of effects directly on location or scale parameters. If quantiles are
needed, they can still be computed from the predicted distribution – without the risk
of quantile crossing.
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