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Abstract
We consider the problem of diversity enhancing clustering, i.e, developing clustering
methods which produce clusters that favour diversity with respect to a set of pro-
tected attributes such as race, sex, age, etc. In the context of fair clustering, diversity
plays a major role when fairness is understood as demographic parity. To promote
diversity, we introduce perturbations to the distance in the unprotected attributes that
account for protected attributes in a way that resembles attraction-repulsion of charged
particles in Physics. These perturbations are defined through dissimilarities with a
tractable interpretation. Cluster analysis based on attraction-repulsion dissimilarities
penalizes homogeneity of the clusters with respect to the protected attributes and leads
to an improvement in diversity. An advantage of our approach, which falls into a pre-
processing set-up, is its compatibility with a wide variety of clustering methods and
whit non-Euclidean data. We illustrate the use of our procedures with both synthetic
and real data and provide discussion about the relation between diversity, fairness, and
cluster structure.
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1 Introduction

Artificial Intelligence (AI) in its different branches is pervasive in today’s world.
It is almost impossible to ignore its effects on individuals, groups, and even entire
populations. Although the AI revolution has brought a variety of major positive break-
throughs, as it is common in any revolution, time has evidenced some of the limitations
and harms involved in heavily relying on algorithms and data. An account of the his-
tory of AI development and some of the causes of its limitations are given in Cristianini
(2019). The author argues that the negative effects of AI that we are facing are due
to an ‘ethical debt’, a kind of externality of our technological infrastructure. This
‘ethical debt’ is formed by, among others, the cost of fixing the lack of fairness and
transparency of machine decisions, the cost of regulating AI and the cost of making
services secure against surveillance and manipulation.

An entire research field, known as fair learning, is currently dedicated to ‘repaying’
part of the ‘ethical debt’ by studying causes and mitigating or eliminating effects
of bias and unfairness in machine learning. It is widely agreed that supervised and
unsupervised classification procedures are increasingly more influential in people’s
life since they are used in credit scoring, article recommendation, risk assessment,
spam filtering or sentencing recommendations in courts of law, among others. Hence,
controlling the outcome of such procedures, in particular ensuring that some variables
which should not be considered due tomoral or legal issues are not playing a role in the
classification of the observations, has become an important field of research. The main
concern is to detect whether decision rules, learnt from variables X, are biased with
respect to a subcategory of the population driven by some variables called protected or
sensitive. Such variables induce a bias in the observations and are correlated to other
observations. Hence avoiding this effect cannot be achieved by the naive solution of
ignoring such protected attributes. Indeed, if the data at hand reflects a real-world bias,
machine learning algorithms can pick on this behaviour and emulate it. An extensive
overview on types of biases and discrimination and on fair machine learning strategies
can be found in Mehrabi et al. (2019). Additional overviews of such legal issues and
mathematical solutions to address them can be found in (Lum and Johndrow 2016;
Chouldechova 2017; Besse et al. 2018) or Friedler et al. (2018).

Any fair machine learning procedure starts with a particular definition of fairness,
i.e., with a statement of an abstract mathematical proxy for some fairness notion that
must be considered. A non-exhaustive list of definitions can be found in Mehrabi et al.
(2019). It is worth mentioning that some popular definitions of mathematical fairness
are incompatible between each other, and that different situationsmay require different
definitions of fairness. Once a definition for fairness is provided, a way of imposing
or promoting it can be established, for example, by transforming the data to avoid
correlation between the set of sensitive attributes and the rest of the data (Feldman
et al. 2015; del Barrio et al. 2018) or by modifying the objective functions of the
algorithms in a way that favours fairness (Zafar et al. 2017; Kehrenberg et al. 2018).
Notice that this scheme has sources of bias, one is the subjective choice of a definition
of fairness, and another one is the choice of a mathematical proxy for that definition.
Therefore, a problem specific approach may be a good way of avoiding pitfalls.
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The problem we will be interested in is intimately related to the problem of fair
clustering. Classical (or standard) cluster analysis or clustering is the task of dividing a
set of objects in such a way that elements in the same group or cluster are more similar,
according to some dissimilarity measure, than elements in different groups. Such
methods have been extensively investigated in the literature. We refer to Hennig et al.
(2015) and references therein for an in-depth overview.However, classical clustering is
insensitive to notions of mathematical fairness. Suppose we observe data that includes
information about attributes that we know, or suspect are biased with respect to the
protected class. If the biased variables are dominant enough, a standard clustering on
the unprotected data will result in some biased clusters, that is, clusters with possibly
large differences in distribution of the protected attributes. Therefore, if we classify
new instances based on this partition, we will incur in biased decisions. In essence,
this will be a violation of the notion of demographic parity (Feldman et al. (2015)), a
popular proxy for fairness, adapted to the clustering setting.

A natural mathematical definition for fairness in the setting of clustering, and the
one that we adopt, is based on the notion of demographic parity, namely, on looking
for balanced clusters, as introduced in Chierichetti et al. (2017). Quoting from Abbasi
et al. (2021) ‘What does it mean for a clustering to be fair? One popular approach
seeks to ensure that each cluster contains groups in (roughly) the same proportion in
which they exist in the population. The normative principle at play is balance: any
cluster might act as a representative of the data, and thus should reflect its diversity’.
Hence, a fair clustering would be the situation in which, in the partition of the data, the
proportions of the protected attributes are the same in each cluster (hence, the same
as the proportions in the whole dataset). We might argue that balance (demographic
parity) is not necessarily equivalent to fairness, and proper considerationmust be given
to the problem of when it is appropriate and useful to identify fairness with balance.
Nonetheless, diversity in itself may be a desirable property. Even more, diversity may
be easier to formalize and impose, since it is less charged with ethical connotations.
Hence, we will focus on clustering procedures that favour diversity in the protected
attributes, in what we call diversity enhancing clustering.

In our setting, diversity enhancing clustering is a relaxation of diversity preserving
clustering (which is usually considered as a fair clustering method). The latter can
be described as follows. Let us have a dataset DS = {(X1, S1), . . . , (Xn, Sn)}, with
Si ∈ S, and for simplicity assume that the protected attributes S are discrete. Notice
that the unprotected attributes Xi and the protected ones Si should be correlated for
diversity preserving clustering to be relevant. A diversity preserving clustering or a
diversity preserving partition, C f = {Ci }k

i=1, where Ci ⊂ DS, fulfils that

|{(x, s) ∈ Ci : s = j}|
|Ci | = |{(x, s) ∈ DS : s = j}|

|DS|
for every j ∈ S and i = 1, . . . , k. (1)

In this case the proportion of individuals in any cluster for any protected class is the
same as the respective proportion in the total data, hence we could say that proportions
are independent of the cluster. This means that any decision taken with respect to a
particular cluster will affect individuals in the same proportion as if it were taken for
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the entire population. Therefore, disparate impact for some sub-population would be
avoided. Diversity enhancing clustering seeks to improve diversity with respect to
a classical clustering procedure, without imposing the diversity preserving condition
(1). Here, improving diversity means that clusters have more diverse composition with
respect to the protected attributes compared with the clusters obtained by a classical
clustering procedure.

Our approach to diversity enhancing clustering falls into the category of pre-
processing. This means that we want to transform the unprotected data to obtain more
diverse partitions. Since we are in an unsupervised setting, which means that there
is no ground truth, looking for an adequate transformation of the data becomes very
challenging. To address this problem, we propose a transformation based on a heuris-
tic that incorporates some perturbations in the original dissimilarities of the data to
favour heterogeneity with respect to the protected variable. For this, we present a new
methodology inspired by electromagnetism and based on attraction-repulsion dissim-
ilarities. These new dissimilarities aim at increasing the separation between points
with the same values of the protected class and/or decreasing the separation between
points with different values of the protected class. Hence they favour the formation of
clusters that are more heterogeneous, leading to a possible gain in diversity. The lack
of ground truth also leads us to consider a trade-off between diversity and some other
quality measures of the clusterings on the data at hand, in the spirit of Empirical Risk
Minimization.

The main contributions of our work are the following:

– The introduction of novel dissimilarities that perturb the distance in the unprotected
attributes considering the protected ones.

– A new methodology based on a heuristic that promotes diversity and is applicable
to almost any clustering algorithmwith no or minimal modifications to the original
objective functions.

– A call for diversity and,more broadly, fairness in clustering to be considered jointly
with other relevant aspects that make a partition sensible.

– A methodology that is easily adaptable to non-Euclidean data and clusters with
non-convex boundaries.

– An R package to perform Attraction-repulsion clustering freely available at
https://github.com/HristoInouzhe/AttractionRepulsionClustering

The structure of this work is the following. Section 2 presents a brief overview of
related works. In Sect. 3 we introduce attraction-repulsion dissimilarities. Clustering
methods are developed in Sect. 4 while Sect. 5 is devoted to their extension to non-
Euclidean spaces through a kernel transformation.We study the tuning of our methods
in Sect. 6. Experiments for our technique are given in Sect. 7. We provide a discussion
on synthetic datasets in 7.1. In Sect. 7.2, we provide comparison between our methods
and the ones proposed in Chierichetti et al. (2017), on synthetic and real data, showing
the different behaviour of both procedures. In Sect. 7.3 we give a full example of
attraction-repulsion clustering on a real dataset. Section 8 is devoted to some final
remarks and some future work proposals.
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2 Related work

Related works belong to the field of fair clustering. One of the first and most pop-
ular approaches to fair clustering is to impose constraints on the objective functions
of classical clustering procedures, and corresponds to what we have called diversity
preserving clustering. In Chierichetti et al. (2017) constrained k-center and k-median
clustering was introduced. The authors proposed a model where data are partitioned
into two groups, codified by red and blue, where disparate impact is avoided by main-
taining balance between the proportion of points in the two categories. Their goal is
to achieve a partition of the data where the respective objective function is minimized
while balance in each cluster is maintained over a given threshold. Their approach
initially designed for data with two different protected classes (two-state) has led to
various extensions (multi-state). Contributions to the k-center problem can be found in
(Rösner and Schmidt 2018; Bercea et al. 2018), to the k-median problem in Backurs
et al. (2019) and to the k-means problem in (Bercea et al. 2018; Bera et al. 2019;
Schmidt et al. 2018). These works discuss a broader range of clustering problems
while imposing constraints related to some minimum and/or maximum value for the
proportions of the protected classes in each cluster. A multi-state deep learning fair
clustering procedure was developed inWang and Davidson (2019). A multi-state non-
disjoint extension was presented in Huang et al. (2019). In Mazud Ziko et al. (2019)
a variational framework of fair clustering compatible with several popular clustering
objective functions was proposed.

Somewhat different approaches, that do not fall into diversity preserving clustering,
can be found in the followingworks. In Ahmadian et al. (2019) the goal is to cluster the
points to minimize the k-center cost but with the additional constraint that no colour is
over-represented in any cluster. Chen et al. (2019) cluster n points with k centers, with
fairness meaning that any n/k points are entitled to form their own cluster if there is a
center that is closer in distance for all n/k points. In (Abbasi et al. 2021; Ghadiri et al.
2021) fair center based clustering is understood to be fair if the centers ‘represent’
different groups equally well and they provide algorithms for this purpose.

Fair clustering is a vibrant field with a growing number of new contributions, so we
do not claim this to be an exhaustive overview of relevant works. For more information
we refer to the previously mentioned works and sources therein.

3 Charged clustering via multidimensional scaling

Clustering relies on the choice of dissimilarities that control the part of information
conveyed by the data that will be used to gather points into the same cluster, expressing
how such points share some similar features. To obtain a diversity enhancing clustering
we aim at obtaining clusters which are not governed by the protected variables but
are rather mixed with respect to these variables. For this, we introduce interpretable
dissimilarities in the space (X , S) ∈ R

d ×R
p that separate points with the same value

of the protected classes. Using an analogy with electromagnetism, the labels S play
the role of an electric charge and similar charges tend to have a repulsive effect while
dissimilar charges tend to attract themselves. We stress that S ∈ R

p, hence it can take
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non-integer values, and all our procedures are well suited for such values. However,
our examples concentrate on integer values for interpretability and simplicity.

Our guidelines for choosing these dissimilarities are that we would like the dissim-
ilarities to

i) induce diversity into subsequent clustering techniques (decrease, or, at best, elim-
inate, identifiability between clusters and protected attributes),

ii) keep the essential geometry of the data (with respect to non-protected attributes)
and

iii) be easy to use and interpret.

To fulfil i), we introduce new dissimilarities that consider the geometry of the
unprotected attributes while penalizing homogeneity with respect to the protected
ones. For i i), we will combine these dissimilarities with multidimensional scaling, to
retain most of the original geometry. With respect to i i i), we refer to the discussion
below. Hence, we propose the following dissimilarities.

Definition 1 (Attraction-Repulsion Dissimilarities)

δ1 ((X1, S1) , (X2, S2)) = 1′U1 + S′
1V S2 + ‖X1 − X2‖2 (2)

with U , V symmetric matrices in Rp×p;

δ2 ((X1, S1) , (X2, S2)) =
(
1 + ue−v‖S1−S2‖2

)
‖X1 − X2‖2 (3)

with u, v ≥ 0;

δ3 ((X1, S1) , (X2, S2)) = ‖X1 − X2‖2 − u‖S1 − S2‖2 (4)

with u ≥ 0.
Let 0 ≤ u ≤ 1 and v,w ≥ 0,

δ4 ((X1, S1) , (X2, S2)) =
(
1 + sign(S′

1V S2)u
(
1 − e−v(S′

1V S2)2
)

e−w‖X1−X2‖
)

‖X1 − X2‖. (5)

Remark 1 δ1((X , S), (X , S)) �= 0 and therefore it is not strictly a dissimilarity in usual
sense, see, for example, Chapter 3 in Everitt et al. (2011). Yet, for all practical purposes
discussed in this work this does not affect the proposed procedures.

Remark 2 Both δ1 and δ3 could produce negative values. For this reason, we add a step
that ensures positiveness in the algorithms at the end of this and the next sections.

Remark 3 All our dissimilarities can handle categorical variables as protected
attributes S, once they are appropriately codified in numerical values. Furthermore, δ2
and δ3 are applicable to more general situations where the protected class is not dis-
crete, as, for example, age or income. This is due to the treatment of S as a quantitative
variable in these dissimilarities.
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To the best of our knowledge this is the first time that such dissimilarities have
been proposed and used in the context of clustering (in Ferraro and Giordani (2013)
repulsion was introducedmodifying the objective function, considering only distances
between points, to maintain centers of clusters separated). Dissimilarities (2) to (5)
are natural in the context of diversity enhancing clustering because they penalize the
Euclidean distance considering the protected class of the points involved. Hence, some
gains in diversity could be obtained.

The dissimilarities we consider are interpretable, providing the practitioner with the
ability to understand and control the degree of perturbation introduced. Dissimilarity
(2) is an additive perturbation of the squared Euclidean distance where the intensity of
the penalization is controlled by matricesU and V , with V controlling the interactions
between elements of the same and of different classes S. Dissimilarity (4) presents
another additive perturbation but the penalization is proportional to the difference
between the classes S1 and S2, and the intensity is controlled by the parameter u.

Dissimilarity (3) is a multiplicative perturbation of the squared Euclidean distance.
With u we control the amount of maximum perturbation achievable, while with v we
modulate how fast we diverge from this maximum perturbation when S1 is different
to S2.

Dissimilarity (5) is also a multiplicative perturbation of the Euclidean distance.
However, it has a very different behaviour with respect to (2)-(4). It is local, i.e., it
affects less points that are further apart. Through w we control locality. With bigger w

the perturbation is meaningful only for points that are closer together. With matrix V
we control interactions between classes as in (2), while with u we control the amount
of maximum perturbation as in (3). Again, v is a parameter controlling how fast we
diverge from the maximum perturbation.

Next, we present a simple example for the case of a single binary protected attribute,
coded as −1 or 1. This is an archetypal situation in which there is a population with
an (often disadvantaged) minority, that we code as S = −1, and the new clustering
has to be independent (or not too dependent) on S.

Example 1 Let us take S1, S2 ∈ {−1, 1}. For dissimilarity (2) we fix U = V = c ≥ 0,
therefore

δ1 ((X1, S1) , (X2, S2)) = c(1 + S1S2) + ‖X1 − X2‖2.

If S1 �= S2, we have the usual squared distance ‖X1 − X2‖2, while when S1 = S2 we
have 2c + ‖X1 − X2‖2, effectively we have introduced a repulsion between elements
with the same class. For dissimilarity (3) let us fix u = 0.1 and v = 100,

δ2 ((X1, S1) , (X2, S2)) =
(
1 + 0.1e−100‖S1−S2‖2

)
‖X1 − X2‖2.

When S1 �= S2, δ2 ((X1, S1) , (X2, S2)) ≈ ‖X1 − X2‖2, while when S1 =
S2, δ2 ((X1, S1) , (X2, S2)) ≈ 1.1‖X1 − X2‖2, again introducing a repulsion
between elements of the same class. For dissimilarity (4), when S1 = S2,
δ3 ((X1, S1) , (X2, S2)) = ‖X1−X2‖2 andwhen S1 �= S2 weget δ3 ((X1, S1) , (X2, S2))
= ‖X1 − X2‖2 − 2u, therefore we have introduced an attraction between different

123



866 E. del Barrio et al.

members of the sensitive class. When using dissimilarity (5), fixing V = c > 0,
u = 0.1, v = 100, w = 1, we get

δ4 ((X1, S1) , (X2, S2)) =
(
1 + 0.1sign(cS′

1S2)
(
1 − e−100(cS′

1S2)2
)

e−‖X1−X2‖
)

‖X1 − X2‖.

If S1 = S2, δ4 ((X1, S1) , (X2, S2)) ≈ (
1 + 0.1e−‖X1−X2‖) ‖X1 − X2‖, therefore we

have a repulsion. If S1 �= S2, δ4 ((X1, S1) , (X2, S2)) ≈ (
1 − 0.1e−‖X1−X2‖) ‖X1 −

X2‖, which can be seen as an attraction. 
�
Our proposals are flexible thanks to the freedom in choosing the class labels. If

we encode S as {−1, 1}, as in the previous example, we can only produce attraction
between different classes and repulsion between the same classes (or exactly the oppo-
site if V < 0) in (2) and (5). On the other hand, if we encode S as {(1, 0), (0, 1)},
we have a wider range of possible interactions induced by V . For example, taking
V = ((1,−1)′|(−1, 0)′) we produce attraction between different classes, no interac-
tion between elements labelled as (0, 1) and repulsion between elements labelled as
(1, 0). If we had three classes we could use {(1, 0, 0), (0, 1, 0), (0, 0, 1)} as labels and
induce a tailor-made interaction between the different elements via a 3 × 3 matrix
V . For example, V = ((0,−1,−1)′|(−1, 0,−1)′|(−1,−1, 0)′) provides attraction
between different classes and no interaction between elements of the same class.
Extensions to more than three classes are straightforward. More details on parameter
and class codification selection will be given in Sects. 6 and 7.

These dissimilarities can be used directly in some agglomerative hierarchical clus-
tering methods, as described in Sect. 4. However, there is a way to extend our
methodology to a broader set of clustering methods. This is done using our dissimi-
larities to produce some embedding of the data into a suitable Euclidean space which
allows the use of optimization clustering techniques (in the sense described in Chapter
5 in Everitt et al. (2011)) on the embedded data. For example, the dissimilarities δl

can be combined with a common optimization clustering technique, such as k-means,
via some embedding of the data. We note that our dissimilarities aim at increasing
the separation of points with equal values in the protected attributes while respecting
otherwise the geometry of the data. Using multidimensional scaling (MDS) we can
embed the original points in the space Rd ′

with d ′ ≤ d and use any clustering tech-
nique on the embedded data. The approach of using MDS to embed dissimilarities
in an Euclidean space and then perform clustering has been pursued in Hausdorf and
Hennig (2003) and Oh and Raftery (2007). Quoting Cox and Cox (2000), multidi-
mensional scaling ‘is the search for a low dimensional space, usually Euclidean, in
which points in the space represent the objects, one point representing one object, and
such that the distances between the points in the space, match, as well as possible,
the original dissimilarities’. Thus, applied to dissimilarities δl , MDS will lead to a
representation of the original data that approximates the original geometry of the data
in the unprotected attributes and, at the same time, favours clusters with diverse values
in the protected attributes. We stress that we are using MDS as a tool for embedding
our dissimilarity relations in a Euclidean space, not necessarily as a dimension reduc-
tion technique. However, it is worth mentioning that MDS embeddings produce some
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loss of the original dissimilarity structure. Therefore, we advise to use embeddings in
a space with similar dimension as the original data to minimize this adverse effect.
In fact, in our experiments, we use the same dimension as that of the original data’s
unprotected attributes.

Here is an outline of how to use the dissimilarities δl coupled with MDS for a
sample (X1, S1), . . . , (Xn, Sn).
Attraction-Repulsion MDS For any l ∈ {1, 2, 3, 4}
– Compute the dissimilarity matrix [Δi, j ] = [δl((Xi , Si ), (X j , S j ))] with a partic-

ular choice of the free parameters.
– If minΔi, j ≤ 0, transform the original dissimilarity to have positive entries:

Δi, j = Δi, j + |minΔ| + ε, where ε is small.
– For δ1, δ2, δ3: Δi, j = √

Δi, j .

– Use MDS to transform (X1, S1), . . . , (Xn, Sn) into X ′
1, . . . , X ′

n ∈ R
d ′
, where

Di, j = ‖X ′
i − X ′

j‖ is similar to Δi, j .
– Apply a clustering procedure on the transformed data X ′

1, . . . , X ′
n .

This procedure will be studied in Sect. 7 for some synthetic and real datasets.

4 Charged hierarchical clustering

Agglomerative hierarchical clustering methods (bottom-top clustering) encompass
many of the most widely used methods in unsupervised learning. Rather than a fixed
number of clusters, these methods produce a hierarchy of clusterings starting from the
bottom level, at which each sample point constitutes a group, to the top of the hierarchy,
where all the sample points are grouped into a single unit. We refer to Murtagh and
Contreras (2011) for an overview. The main idea is simple. At each level, the two
groups with the lowest dissimilarity are merged to form a single group. The starting
point is typically a matrix of dissimilarities between pairs of data points. Hence,
the core of a particular agglomerative hierarchical clustering lies at the way in which
dissimilarities between groups are measured. Classical choices include single linkage,
complete linkage, average linkage orMcQuitt’smethod. Additionally, some other very
popular methods are readily available for using dissimilarities, as, for example, PAM
(Partitioning Around Medoids, also known as k-medoids) introduced in Kaufman and
Rousseeuw (1987) and DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) introduced in Ester et al. (1996).

When a full data matrix (rather than a dissimilarity matrix) is available it is possi-
ble to use a kind of agglomerative hierarchical clustering in which every cluster has
an associated prototype (a center or centroid) and dissimilarity between clusters is
measured through dissimilarity between the prototypes. A popular choice (see Everitt
et al. (2011)) is Ward’s minimum variance clustering: dissimilarities between clusters
are measured through a weighted squared Euclidean distance between mean vectors
within each cluster. More precisely, if clusters i and j have ni and n j elements and
mean vectors gi and g j then Ward’s dissimilarity between clusters i and j is

δW (i, j) = ni n j
ni +n j

‖gi − g j‖2,
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where ‖ · ‖ denotes the usual Euclidean norm. Other methods based on prototypes
are the centroid method or Gower’s median method (see Murtagh and Contreras
(2011)). However, these last two methods may present some undesirable features
(the related dendrograms may present reversals that make the interpretation harder,
see, e.g., Everitt et al. (2011)) and Ward’s method is the most frequently used within
this prototype-based class of agglomerative hierarchical clustering methods.

Hence, in our approach to diversity enhancing clustering we will focus on
Ward’s method. Given two clusters i and j consisting of points {(Xi ′ , Si ′)}ni

i ′=1 and

{(Y j ′, Tj ′)}n j

j ′=1, respectively, we define the charged dissimilarity between them as

δW ,l(i, j) = ni n j

ni + n j
δl((X̄i , S̄i ), (Ȳ j , T̄ j )) (6)

where δl , l = 1, . . . , 4 is any of the point dissimilarities defined by (2) to (5) and
the bar notation refers to the standard sample mean over the points in the respective
cluster.

The practical implementation of agglomerative hierarchical methods depends on
the availability of efficient methods for the computation of dissimilarities between
merged clusters. This is the case of the family of Lance-Williams methods (see Lance
andWilliams (1967), Murtagh and Contreras (2011) or Everitt et al. (2011)) for which
a recursive formula allows to update the dissimilarities when clusters i and j are
merged into cluster i ∪ j in terms of the dissimilarities of the initial clusters. This
allows to implement the related methods using computer time of order O(n2 log n).
We show next that a recursive formula like the Lance-Williams class holds for the
dissimilarities δW ,l and, consequently, the related agglomerative hierarchical method
can be efficiently implemented. The fact that we are dealing differently with genuine
and protected attributes results in the need for some additional notation (and stor-
age). Given clusters i and j consisting of points {(Xi ′ , Si ′)}ni

i ′=1 and {(Y j ′ , Tj ′)}n j

j ′=1,
respectively, we denote

dx (i, j) = ∥∥X̄i − Ȳ j‖. (7)

Note that dx (i, j) is simply the Euclidean distance between the means of the X -
attributes in clusters i and j . Similarly, we set

ds(i, j) = ∥∥S̄i − T̄ j‖. (8)

Proposition 1 For δW ,l as in (6), dx (i, j) as in (7) and ds(i, j) as in (8) and assuming
that clusters i, j and k have sizes ni , n j and nk, respectively, we have the following
recursive formulas:

i) δW ,1(i ∪ j, k) = ni +nk
ni +n j +nk

δW ,1(i, k)+ n j +nk
ni +n j +nk

δW ,1( j, k)− nk
ni +n j +nk

d2
W ,x (i, j);

ii)

δW ,2(i ∪ j, k)
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=
(
1 + ue

−v(
ni

ni +n j
d2

s (i,k)+ n j
ni +n j

d2
s ( j,k)− ni n j

(ni +n j )
2 d2

s (i, j)))

×
(

ni +nk
ni +n j +nk

d2
W ,x (i, k) + n j +nk

ni +n j +nk
d2

W ,x ( j, k) − nk
ni +n j +nk

d2
W ,x (i, j)

)
;

iii) δW ,3(i ∪ j, k) = ni +nk
ni +n j +nk

δW ,3(i, k)+ n j +nk
ni +n j +nk

δW ,3( j, k)− nk
ni +n j +nk

δW ,3(i, j),

where d2
W ,x (i, j) = ni n j

ni +n j
d2

x (i, j).

Proof For i) we just denote by Rs , St and Tr the protected attributes in clusters i, j
and k, respectively and note that

δW ,1(i ∪ j, k) = (ni +n j )nk
ni +n j +nk

(
1′U1 + 1

ni +n j

( ∑ni
s=1 Rs + ∑n j

t=1 St
)′

V T̄k + d2
x (i ∪ j, k)

)

= (ni +n j )nk
ni +n j +nk

ni
ni +n j

(
1′U1 + R̄′

i V T̄k

)

+ (ni +n j )nk
ni +n j +nk

n j
ni +n j

(
1′U1 + S̄′

j V T̄k

)
+ d2

W ,x (i ∪ j, k)

= ni +nk
ni +n j +nk

ni nk
ni +nk

(
1′U1 + R̄′

i V T̄k + d2
x (i, k)

)

+ n j +nk
ni +n j +nk

n j nk
n j +nk

(
1′U1 + S̄′

j V T̄k + d2
x ( j, k)

)

− nk
ni +n j +nk

d2
W ,x (i, j)

= ni +nk
ni +n j +nk

δW ,1(i, k) + n j +nk
ni +n j +nk

δW ,1( j, k) − nk
ni +n j +nk

d2
W ,x (i, j).

Observe that we have used the well-known recursion for Ward’s dissimilarities,
namely,

d2
W ,x (i ∪ j, k) = ni +nk

ni +n j +nk
d2

W ,x (i, k) + n j +nk
ni +n j +nk

d2
W ,x ( j, k) − nk

ni +n j +nk
d2

W ,x (i, j)

(9)

(see, e.g., Everitt et al. (2011)). The update formulas ii) and iii) are obtained similarly.
We omit details. 
�

From Proposition 1 we see that a practical implementation of agglomerative hierar-
chical clustering based on δW ,l , l = 1, 2 would require the computation of d2

W ,x (i, j),
which can be done using the Lance-Williams formula (9). In the case of δW ,2 we also
need d2

s (i, j), which again can be obtained through a Lance-Williams recursion. This
implies that agglomerative hierarchical clustering based on δW ,l , l = 1, 2 or 3 can be
implemented using computer time of order O(n2 log n) (at most twice the required
time for the implementation of a ‘standard’ Lance-Williams method).

We end this section with an outline of the implementation details for our proposal
for diversity enhancing agglomerative hierarchical clustering based on dissimilarities
δW ,l .
Iterative Attraction-Repulsion Clustering For l ∈ {1, 2, 3}
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– Compute the dissimilarity matrix [Δi, j ] = [δl((Xi , Si ), (X j , S j ))] with a partic-
ular choice of the free parameters.

– If minΔi, j ≤ 0, transform the original dissimilarity to have positive entries:
Δi, j = Δi, j + |minΔ| + ε, where ε is arbitrarily small.

– Use the Lance-Williams type recursion to determine the clusters i and j to be
merged; iterate until there is a single cluster

5 Diversity enhancing clustering with kernels

Clustering techniques based on theminimization of a criterion function typically result
in clusterswith a particular geometrical shape. For instance, given a collection of points
x1, . . . xn ∈ R

d , the classical k-means algorithm looks for a grouping of the data into
K ≤ n clusters C = {C1, . . . , CK } with corresponding means {μ1, . . . , μK } such
that the objective function

K∑
k=1

∑
x∈Ci

‖x − μi‖2

isminimized. The clusters are then defined by assigning each point to the closest center
(one of the minimizing Ci ’s). This results in convex clusters with linear boundaries. It
is often the case that this kind of shape constraint does not adapt well to the geometry
of the data. A non-linear transformation of the data couldmap some clustered structure
to make it more adapted to convex linear boundaries (or some other pattern). In some
cases, this transformation can be implicitly handled via kernel methods. This approach
is commonly called the ‘kernel trick’. The use of kernels in statistical learning is
well documented, see, for instance, Cristianini (2004) and Chapter 16 in Shalev-
Shwartz and Ben-David (2014). For completeness, let us state that in this work a
kernel is a symmetric and non-negative function κ : Rd × R

d → R. Additionally, a
Mercer (positive semidefinite) kernel, is a kernel for which there is a transformation
φ : Rd → Ω , with Ω a Hilbert space, such that κ(x, y) =< φ(x), φ(y) >Ω . In this
sectionwe explore how the attraction-repulsion dissimilarities that we have introduced
can be adapted to the kernel clustering setup, focusing on the particular choice of kernel
k-means.

Kernel k-means is a non-linear extension of k-means that allows to find arbitrary
shaped clusters introducing a suitable kernel similarity function, where the role of the
squared Euclidean distance between two points x, y in the classical k-means is taken
by

d2
κ (x, y) = κ(x, x) + κ(y, y) − 2κ(x, y). (10)

Details of this algorithm can be found in Schölkopf et al. (1998).
In a first approach, we could try to introduce a kernel function for vectors

(X1, S1), (X2, S2) ∈ R
d+p such that d2

κ takes into account the squared Euclidean
distance between X1 and X2 but also tries to separate points of the same class and/or
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tries to bring closer points of different classes, i.e., makes use of S1, S2. Some simple
calculations show that this is not an easy task, if possible at all in general. If we try,
for instance, a joint kernel of type κ((X1, S1), (X2, S2)) = τ(S1, S2) + k(X1, X2),
S1, S2 ∈ {−1, 1}with τ, k Mercer (positive semi-definite) kernels (this covers the case
k(X1, X2) = X1 · X2, the usual scalar product in Rd ), our goal can be written as

d2
κ ((X1, S1), (X2, S1)) > d2

κ ((X1, S1), (X2, S2)), (11)

for any X1, X2, with S1 �= S2. However, (11) implies that

2τ(S1, S2) > τ(S1, S1) + τ(S2, S2)

which contradicts that τ is positive-semi-definite. Therefore, there is no kernel on the
sensitive variables that we can add to the usual scalar product. Another possibility
is to consider a multiplicative kernel, κ((X1, S1), (X2, S2)) = τ(S1, S2)k(X1, X2),
S1, S2 ∈ {−1, 1} with τ, k Mercer kernels. From (11) we get

2 (τ (S1, S1) − τ(S1, S2)) k(X1, X2) < (τ(S1, S1) − τ(S2, S2)) k(X2, X2)

which depends on k(X1, X2) and makes it challenging to eliminate the dependence
of the combinations X1, X2.

The previous observations show that it is difficult to think of a simple and inter-
pretable kernel κ that can be a simple combination of a kernel in the space of
unprotected attributes and a kernel in the space of sensitive attributes. This seems
to be caused by our desire to separate vectors that are similar in the sensitive space,
which goes against our aim to use norms induced by scalar products. In other words,
a naive extension of the kernel trick to our approach to diversity enhancing clustering
seems to be inappropriate.

Nonetheless, the difficulty comes from a naive desire to carry out the (implicit)
transformation of the attributes and the penalization of homogeneity in the protected
attributes in the clusters in a single step. We still may obtain gains in diversity, while
improving the separation of the clusters in the unprotected attributes if we embed the
X data into a more suitable space by virtue of some sensible kernel κ and consider
the corresponding kernel version of δl , with δl as in (2) to (5). Instead of using the
Euclidean norm ‖X1 − X2‖ we should use dκ(X1, X2). In the case of δ1, for instance,
this would amount to consider the dissimilarity

δκ,1 ((X1, S1) , (X2, S2)) = 1′U1 + S′
1V S2 + d2

κ (X1, X2), (12)

with similar changes for the other dissimilarities. Thenwe can use an embedding (MDS
the simplest choice) as in Sect. 3 and apply a clustering procedure to the embedded
data. This would keep the improvement in cluster separation induced (hopefully) by
the kernel trick and apply, at the same time, a diversity correction. An example of
this adaptation of the kernel trick to our setting is given in Sect. 7.1.2. We recall that
our procedure inherits the possible benefits of the kernel trick, but also the difficulties
related to it, for example the appropriate selection of kernels.
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6 Parameter selection and tunning

There are two main steps required for tuning our methods. First, the user must select
some criteria for diversity and some criteria for the quality of a clustering which are
suitable to the problem at hand. Second, the practitioner should choose values in an
informed way or just define a set of possible values. Then, an optimal selection of
parameters and clustering methods can be done. A complete example of how to select
the best parameters, the best dissimilarity, and the best clusteringmethod (among some
reasonable selection of methods) is provided in Sect. 7.3. We do not advise trying to
select the best method among all available clustering methods, since this seems rather
infeasible.

6.1 Diversity and quality of a clustering

There are different measures for diversity, which, in a context where diversity is a
good proxy for fairness, can also measure fairness. We will be mainly interested in
two of them. As introduced in (Chierichetti et al. 2017), the balance of a set of points
X with protected attributes S = {red, black} is defined as

balance(X) = min

(
#Black

#Red
,

#Red

#Black

)

and the balance of C, a clustering of the data in X , is given by

balance(C) = min
C∈C

balance(C). (13)

Let C be a clustering of a dataset into K clusters. For each cluster k, 1 ≤ k ≤ K , there
is an associated proportions vector pk , where pk is formed by the proportion of each
value of the protected attributes in the cluster k. A simple measure for the diversity of
a partition is

imbalance(C) = 1

K

K∑
k=1

‖pk − pt‖, (14)

where ‖ · ‖ denotes the usual Euclidean norm and pt the vector of proportions of each
value of the protected attributes in the whole dataset. Notice that imbalance(C) = 0
means that the partition fulfils the diversity preserving criteria (1).

Due to the lack of ground truth in unsupervised learning and due to the character-
istics of clustering, many notions of what a good clustering is and how to compare
different partitions exist (see SectionVI inHennig et al. (2015)). One popular approach
is the Silhouette Index which measures how similar objects are in the same cluster
with respect to objects in different clusters. Hence, a good partition has clusters that
are cohesive and well separated. We recall that the silhouette index of an observation
Xi is given by
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s(i) = b(i) − a(i)

max(a(i), b(i))
(15)

where a(i) is the average distance to Xi of the observations in the same group as Xi ,
and b(i) is the average distance to Xi of the observations in the closest group different
from the one of Xi (see Rousseeuw (1987)). The average silhouette index of a group
is the average of the silhouette indexes of the members of the group and the average
silhouette index is the average of the silhouette indexes of all points.

On the other hand, in diversity enhancing clustering, a good benchmark for com-
parisons could be the partition obtained by a ‘standard’ clustering procedure. A
well-established measure for comparing partitions is the Adjusted Rand Index (ARI)
(see Hubert and Arabie (1985)). Hence, there is a simple quantity that measures the
difference between a diversity enhancing clustering and a standard one that we can
interpret as the effect that a diversity correction has on the clustering structure.

6.2 Parameter proposal

The attraction-repulsion dissimilarities (2) - (5) introduced in Sect. 3 depend on two
main sets of parameters. The first set consist of free parameters used to balance the
influence of the variables X and the protected variable S. The second set is formed by
the labels for the different classes, where different encoding of the labels allows for
different interactions between the groups. Below, we propose some guidelines on the
choice of these parameters focusing on how to understand them and what their effect
on diversity is.

The dissimilarities we consider can be divided into two groups: (3) and (4) do not
depend on the codification of the class variable, while (2) and (5) do depend on such a
choice. In our method, the level of perturbation, which influences the level of diversity,
is imposed through the choice of the parameters in the dissimilarities. Choosing the
parameters enables us to balance diversity and the original structure of the data which
may convey information that should not be erased by diversity constraints.

Consider first dissimilarities (3) and (4). They rely on two parameters u and v. In
the multiplicative dissimilarity (3), v is a parameter that measures how sudden the
change in the distance is when switching from elements with a different protected
class to elements with the same protected class. For v large enough, e−v‖S1−S2‖2 is
small when S1 �= S2, which implies that the diversity dissimilarity only modifies the
distance between points inside the same protected class, increasing heterogeneity of
the clusters.

Oncev has beenfixed, themain parameteru controls the intensity of the perturbation
in a similar way for both dissimilarities (3) and (4). To illustrate the effect of this
parameter, we focus on (3) and perform a diversity enhancing clustering, with MDS
or hierarchically, for different values of the intensity parameter u and measure the
diversity of the clusters obtained. Such an example is depicted in the left middle row
of Fig. 1. We can see that, as expected, increasing the values for u puts more weight
on the part of the dissimilarity that enforces heterogeneity of the clusters. u = 0 leads
to the usual clustering. Indeed, varying u from 0 to 4.5 in steps of 0.5 increases the
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diversity achieved for both clusters, with a saturation effect from 4.5 to 5 where we do
not appreciate an improvement in diversity. Hence, maximum diversity is achieved for
u = 4.5 and gives the lowest perturbation that achieves the highest level of diversity. If
one aims at preserving more of the structure of the original information at the expense
of a lower level of diversity, some smaller value of u can be selected. For example,
in the right middle row of Fig. 1 we provide the result of choosing u = 1. Hence
u balances both effects of closeness to the usual dissimilarities and the amount of
heterogeneity reached in the clustering.

Next, dissimilarities (2) and (5), as described in Sect. 3, depend on the values
chosen for the protected variable S, and a matrix V , which plays the role of the matrix
of interactions for different classes. When dealing with a two-class discrimination
problemwhere the protected class has only two values, labelling the classes as {−1, 1}
or {(1, 0), (0, 1)} can lead to the same results for appropriate choices ofV .However, for
more than two protected classes we will use only the following vectorial codification:
for q different values of the protected class, we will codify the values as the q unitary
vectors {a1, . . . , aq} where ai, j = 1 if i = j and ai, j = 0 if i �= j for 1 ≤ i, j ≤ q.

To build the interaction matrix we proceed as follows. First, consider a matrix Ṽi, j

with 1 ≤ i, j ≤ q. We fix Ṽi, j = 0 if we want no interaction between classes i and j ,
in particular, if i = j this means that there is no interaction between elements with the
same class. We take Ṽi, j = 1 if we want repulsion (relative increase in the distance)
between classes i and j . We fix Ṽi, j = −1 if we want attraction (relative decrease in
distance) between classes i and j . Hence, if the practitioner wants to promote diversity
for a class represented by ai∗ , it is recommendable to set values of Ṽi∗, j = −1
for j �= i∗. As an example, in Sect. 7.1.2, we have chosen the interaction matrix
V = ((1,−1)′|(−1, 0)′), tomodel repulsion between elements of the sameclass (1, 0),
attraction between elements of the classes (1, 0) and (0, 1), and no interaction between
the elements of the same class (0, 1). Then intensity of the interaction is modelled
using a constant v0 > 0, and we set V = v0Ṽ . In the previous example v0 = 1. The
parameter v for dissimilarity (5) has the samemeaning as the corresponding parameter
for (3) and can be selected in the same way.

Finally, matrix U for dissimilarity (2) represents an extra additive shift. In many
cases it can be set to U = 0 (the zero matrix).

We provide an example to explain how to select the intensity v0 for dissimilarity
(2) in the top left image of Fig. 1. Notice that using V > 0 and S ∈ {−1, 1} is
the same as using V = v0Ṽ with Ṽ = ((1,−1)′|(−1, 1)′) and S ∈ {(1, 0), (0, 1)}.
We plot the variation of diversity in each cluster when we vary the intensity of the
interaction between 0 and 4.4 with steps of size 0.44. There is a steady improvement
in diversity in both clusters until the intensity reaches v0 = 3.52, but from this level,
as previously, there is no more improvement in diversity. Therefore, if a practitioner
wants to achieve the highest level of diversity, v0 = 3.52 should be the proper intensity,
since it corresponds to the smallest perturbation to the geometry that achieves the best
observed diversity. However, a smaller correction in diversity may be of interest, we
have a representation of that top right in Fig. 1 for v0 = 1.32.

For dissimilarity (5), after choosing the interaction matrix Ṽ , we can try to find a
maximum in diversity, fixing a grid formed by different combinations for the vec-
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tor of parameters (v0, u, w). In the second and third column of Table 2 we see
the diversity of the respective clusters when we look at the grid (1, u, 0.05) with
u ∈ {0, 0.098, . . . , 0.98}. What we notice is an improvement in diversity for all val-
ues of u, therefore a practitioner would be advised to select u = 0.98 where we obtain
the best diversity values.

7 Experiments

In this section we provide examples of attraction-repulsion clustering and some
insights into the complex relation between diversity and other properties of clustering.

In thefirst two subsectionswedealwith simulated examples sincewemainlywant to
describe how attraction-repulsion clustering works, how it compares to some diversity
preserving clustering procedures and how diversity relates to cluster structure. To the
best of our knowledge, this last point seems to be overlooked in the fair clustering
literature, whenever diversity is the proxy used for fairness, in favour of obtaining
high fairness with respect to some fairness measure.

The last subsection is a full example on a non-trivial real data set where full tuning
of our methods is provided and where preservation of the geometrical structure is of
crucial importance. We use a range of different clustering procedures to illustrate that
our methods are, as claimed, easily adaptable to a wide range of clustering algorithms.
We do not advocate for any particular clustering method, but we do try to use some of
the extensions we have developed in Sect. 4.

7.1 Synthetic data

7.1.1 Diversity and cluster structure

Our first example shows how our procedures behave and gives an intuition of how
diversity can affect cluster structure. We generate 50 points from four distributions,

μ1 ∼ N ((−1, 0.5), diag(0.25, 0.25)), μ2 ∼ N ((−1,−0.5), diag(0.25, 0.25));
μ3 ∼ N ((1, 0.5), diag(0.25, 0.25)), μ4 ∼ N ((1,−0.5), diag(0.25, 0.25)),

and label the samples fromμ1 andμ2 as S = 1 (squares) and the samples fromμ3 and
μ4 as S = −1 (circles). A representation of the data in the original space is given in the
third column of Fig. 1. We can think of the x direction of the data as a source of a lack
of diversity, therefore any sensible clustering procedure is going to have clusters that
are highly homogeneous in the class S when the original coordinates are used. This is
exemplified in Table 1, as we look for different number of clusters: with k-means we
are detecting almost pure groups (1st row); the same happens with a complete linkage
hierarchical clustering with the Euclidean distance (5th row) and with Ward’s method
with the Euclidean distance (9th row).

Therefore, it may be useful to apply our procedures to the data to gain diversity
in S. In the first column of Fig. 1 we study the gain in diversity from the increase
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in intensity of the corrections we apply, the relation between the gains in diversity
and the disruption of the cluster structure of the original classes after MDS, and the
relation between stronger correction and the change with respect to the original k-
means partition measured by ARI. In the first row we use dissimilarity (2), where
we fix U = 0, and we vary V = 0, 0.44, 0.88, . . . , 4.4. In the second row we work
with dissimilarity (3), where we fix v = 20 and set u = 0, 0.5, 1, . . . , 5. In the last
row we work with dissimilarity (5) fixing V = 1, v = 20, w = 1 and we vary
u = 0, 0.099, 0.198, . . . , 0.99. We do not show results for dissimilarity (4), since
in this example it gives results very similar to dissimilarity (2). With some abuse of
notation, throughout Sect. 7 we will use S as the name of the protected variable. Solid
and dashed black lines represent, respectively, the proportion of class S = 1 in the two
clusters found by k-means after the MDS transformation. Solid and dashed red lines
represent, respectively, the average silhouette index of class S = 1 and class S = −1.
The green line is the Adjusted Rand Index between the k-means partition obtained in
the original data and the different corrected partitions.

What we see top-left and middle-left in Fig. 1 is that higher intensity (higher V
an u, respectively) relates to greater diversity and to significantly different partitions
compared to the original k-means clustering, but also relates to lower silhouette index.
This can be interpreted as the fact that greater intensity in dissimilarities (2) and (3)
has a greater impact in the geometry of the original problem. In essence, the greater
the intensity, the more indistinguishable S = 1 and S = −1 become after MDS,
therefore, any partition with k-means will result in very diverse clusters in S. This is
equivalent to saying that diversity is essentially destroying the original cluster structure
of the data, since it is mainly due to the variable x . Hence, here a diversity enhancing
partition and a good partition are competing against each other. By construction this is
not what happens with dissimilarity (5). The strong locality penalty (w = 1) allows to
conserve the geometry, shown by the little reduction in silhouette index (row 3 column
1), but results in smaller corrections in the proportions and in small differences with
the original k-means clustering.

In the rest of Fig. 1, we show the actual clusters in the MDS embedding obtained
with k-means (column 2) and the same clusters in the original space (column 3), for
some moderate intensities. For dissimilarity (2) we take V = 1.32, for (3) u = 1 and
for (5) we use u = 0.99. A short remark is that a rotation of a MDS is a MDS, and that
is the cause of the rotations that we see in column 2. Indeed, after MDS the geometry
of the groups is not heavily modified, but at the same time some corrections to the
proportions are achieved when clustering. These corrections appear very natural once
we return to the original space.

For the same values as the previous paragraph, we present Table 1, where we look
for 2, 3 and 4 clusters with MDS and k-means, but also using the approximation-free
complete linkage hierarchical clustering and our Ward’s-like method. Since we are
applying a small perturbation, we see some, but not a drastic, improvement in the
heterogeneity of the groups. We also see that the more clusters we want the smaller
the improvement.We stress that we can produce some improvements in diversitywhile
modifying slightly the geometry of the data. This is a desirable situation when a lot
of relevant information is codified in the geometry of the data. We also notice that we
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Fig. 1 Top row: dissimilarity (2). Middle row: dissimilarity (3). Bottom row: dissimilarity (5). Left column:
proportions of S = 1 in each cluster (black lines), average silhouette indexes for S = 1 and S = −1 in the
transformed space (red lines) and ARI with respect to the k-means in the original space (green line), for
input parameters that vary. Middle column: two clusters in the transformed space for a particular choice of
parameters. Right column: same two clusters in the original space (colour figure online)

produce a partition that is almost diversity preserving with a stronger perturbation as
shown in the last row of Table 3.

In Fig. 2 we study the behaviour of the same set-up as in Fig. 1 but with pertur-
bation on the sensitive attribute labels. We attempt to empirically estimate a kind of
break point behaviour with respect to the sensitive class, i.e., the maximal amount of
perturbation in the original labels that our methods can sustain before returning no
gains in diversity. The results can be interpreted as a measure of robustness against
perturbations in the sensitive class, but also as a further study of the behaviour of
attraction-repulsion clustering. Specifically, we select uniformly without replacement
the same number of points belonging originally to class S = 1 and S = −1 and we
switch their labels.We take 20 samples of this kind, perform our methods, and average
the resulting proportions, silhouette indexes and ARIs. The amount of perturbation
goes from changing labels of 1, 2, . . . , 10, 15 to 20 points in each sensitive class.
Red represents the smallest perturbation in the labels and the perturbation increases
as we get closer to magenta, following the rainbow colour convention. We observe
that diversity gains diminish as we increase the number of swapped labels, becoming
almost non-existent whenwe change 20 percent of the labels in each sensitive class. At
that level, essentially all dissimilarities return a clustering very similar to the k-means
partition in the original space represented in Fig. 3. This clustering does not fulfil the
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Fig. 2 Top row: dissimilarity (2). Middle row: dissimilarity (3). Bottom row: dissimilarity (5). Left column:
proportions of S = 1 in the clusters.Middle column: average silhouette indexes for S = 1 in the transformed
space.Right column:ARI indexwith respect to the unperturbed k-means partition.Curves represent averages
over 20 samples. Colours correspond to an increase in perturbation on the label space, ranging from red
(lowest amount) to magenta (highest amount) (colour figure online)

Fig. 3 A partition obtained with k-means when randomly swapping the sensitive labels of 20 points in each
original class

diversity preserving condition (1), however it can be easily argued that clusters capture
spatial information well and are diverse.

These observations about diversity are similar to the familiar notion that fairness
definitions can differ sharply, together with the fact that adequate cluster structure can
depend on the particular goals of the analysis.
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7.1.2 Diversity in a non-linear setting

We explore the methods introduced in Sect. 5. With this example we want to stress
that our methodology is also well-suited for non-linear clustering structure. Addition-
ally, we want to emphasize that good partition properties and diversity may not be
enough to capture some other relevant information in the data, which in this example
is represented by the geometric structure.

We consider the data in the top-left image of Fig. 4. These data have a particular
geometrical shape and are split into two groups. There is an inside ring of squares, a
middle ring of circles, and then an outer ring of squares. There are 981 observations,
and the proportions of the classes are approximately 3 to 1 (circles are 0.246 of the
total data).

It is natural to apply to the original data some clustering procedure as k-means or
a robust extension as tclust (deals with groups with different proportions and shapes
and with outliers (García-Escudero et al. 2008)). Looking for two clusters, we are
far from capturing the geometry of the groups, but the clusters have proportions of
the classes that are like the total proportion, hence, the diversity preserving condition
(1) is satisfied, and there is a nice cluster structure as measured by average silhouette
index. Indeed, this is what we see in Fig. 4 middle-left when we apply k-means to the
original data.

On the other hand, the kernel trick is convenient in this situation. In this toy example
it is easy to select an appropriate kernel function, for instance, κ(x, y) = x21 y21 +x22 y22 ,
which corresponds to a transformation φ((x1, x2)) = (x21 , x22 ). Indeed, this kernel
produces linear separation between the groups. The data in the transformed space is
depicted in the top-right of Fig. 4. Our adaptation to the kernel trick uses dκ as defined
in (10) and dissimilarity (5) in the form

δκ,4((X1, S1), (X2, S2)) = (
1 + sign(S′

1V S2)u(1 − e−v(S′
1V S2)2)e−wdκ (X1,X2)

)

dκ(X1, X2), (16)

for X1, X2 in the original two-dimensional space, as described in Sect. 5.
Considering the discussion at the end of Sect. 3 and Sect. 6 we use dissimilarity (16)

with S1, S2 ∈ {(1, 0), (0, 1)}. In our setting circles are labelled as (1, 0) and squares
as (0, 1). Now if we fix u = 0, use (16) to calculate the dissimilarity matrix Δ and
use MDS, essentially, we will be in the space depicted top-right on Fig. 4. Looking
for two clusters with tclust, allowing groups with different sizes, we get the result
depicted middle-right in Fig. 4. We have captured the geometry of the clusters but the
proportions of the class S are not the best, as seen in row 1 columns 2 and 3 of Table
2 (ideally they should be close to 0.754).

To gain diversity in what is referred to as cluster 2 in Table 2 (in red in the plots),
we vary the intensity u of our local dissimilarity, with the other parameters set as
indicated in Table 2. We see that as we increase the intensity of the interactions we
gain heterogeneity in cluster 2, and both proportions come closer to the total proportion
0.754 (columns 2-3). Again, this is achieved without destroying the geometry of the
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Fig. 4 Top row: data in the original space (left) and after transformation φ (right). Middle row: k-means in
the original space (left) and tclust applied in the transformed space and plotted in the original one (right).
Bottom row: tclust after diversity enhancing corrections, corresponding to the case shown in the last row
of Table 2, applied in the transformed space (left) and represented in the original space (right)

original classes after the MDS, as seen in the small variation of the average silhouette
index in columns 4-5.

We plot the best performance, given by u = 0.98, after MDS in bottom-left and in
the original space in bottom-right of Fig. 4. Clearly, we have been able to capture the
geometry of the groups and to produce relatively divers clusters.

7.2 Comparison with fair clustering through fairlets

In this sectionwe present a comparison of the results of our diversity enhancing cluster-
ingmethodswith results obtained by implementing, in Python andR, the fair clustering
procedure introduced in Chierichetti et al. (2017) based on fairlets decomposition. We
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Table 2 Effect of varying the intensity u of the local dissimilarity (16), for fixed V = ((1, −1)′|(−1, 0)′),
v = 20 and w = 0.05. First two columns contain the proportion of points with S = (0, 1) in the clusters
found with tclust in the transformed space. Last two columns show the silhouette of the original classes in
the MDS

u Prop. in cluster 1 Prop. in cluster 2 Silhouette for (0, 1) Silhouette for (1,0)

0.000 0.629 0.950 −0.247 0.502

0.098 0.629 0.950 −0.245 0.502

0.196 0.629 0.950 −0.243 0.499

0.294 0.630 0.948 −0.241 0.495

0.392 0.631 0.945 −0.239 0.491

0.490 0.631 0.943 −0.237 0.486

0.588 0.631 0.943 −0.235 0.481

0.686 0.631 0.943 −0.234 0.476

0.784 0.630 0.946 −0.232 0.471

0.882 0.672 0.863 −0.231 0.467

0.980 0.681 0.849 −0.229 0.465

recall that this clustering method is an example of what we call diversity preserving
clustering. Since our examples are concerned with two values for the protected class it
is justified to use Chierichetti et al. (2017) for comparison since it is well suited for this
situation. Our implementation of the case when the size of both protected classes is
the same, which reduces to an assignment problem, is implemented using the function
max_bipartite_matching of the package igraph in R. In the case of different sizes, we
must solve a min cost flow problem as stated in Chierichetti et al. (2017), which can
be done in Python with the function min_cost_flow of the package networkx (also it
can be solved with a min_cost_flow solver in ortools).

When implemented as a min cost flow problem, Chierichietti’s et al. methodology
has two free parameters, t ′ and τ . First, for a partition C of data X , we have that
1/t ′ ≤ balance(C) ≤ balance(X) and hence t ′ controls the lower bound of the diversity
of the partition. Recall the definition of balance in (13). Second, τ is a free parameter
related to the distance between points, and has a defined lower limit given by the
maximum distance taken from the set formed by the distance between each point in
one class and its respective closest point in the other class. For more information we
refer to Chierichetti et al. (2017).

We start with the data used for the example studied in Fig. 1. We will address k-
median clustering, for which Chierichetti et al. (2017) has a fair implementation. Since
the data has two groups of the same size, we can solve an assignment problem or use a
min cost flow problem. For the min cost flow problem, we have the set of parameters
{(t ′, τ )} with t ′ = 2, 3, 4 and τ = ∞, 2.42. Values for τ represent no locality and
maximum locality. As comparison we will use k-median clustering after perturbing
the data with δ1 with parameters (U = 0, V = 4.4) and doing a MDS embedding.
Results are shown in Table 3. Since the data is in one-to-one correspondence between
the two classes, both the alignment solution and the different min cost flow solutions
give balance = 1, hence the diversity preserving condition (1) is fulfilled. Our method
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Table 3 Rows 1-7 are implementations of fair clustering with fairlets while the last row is k-median
clustering after using δ1, with (U = 0, V = 4.4), and MDS embedding

Balance Average Silhouette k-median Objective

Assignment Problem 1 −0.004 463

(2, ∞) 1 −0.006 469

(2, 2.42) 1 −0.001 471

(3, ∞) 1 −0.002 466

(3, 2.42) 1 −0.004 468

(4,∞) 1 −0.005 466

(4, 2.42) 1 −0.001 464

Attraction−repulsion 0.89 0.2 440

Fig. 5 Left: clusters obtained by fair k-median as an assignment problem (Chierichetti et al. (2017)).
Middle: clusters obtained by fair k-median as min cost flow problem with t ′ = 4, τ = 2.42 (Chierichetti
et al. (2017)). Right: clusters obtained by attraction-repulsion clustering with dissimilarity (2) and MDS,
using k-median

gives balance close to 1 but does not fulfil (1). However, the average silhouette index
of our method is higher, which means that clusters are more identifiable and compact,
and the k-median objective function is also lower, and hence better. A plot of some of
the different clusterings can be seen in Fig. 5.

Our next comparison is for the data used in Fig. 4. We stress that for fairlets we are
working with the data after the implicit kernel transformation, i.e., the data shown top-
right in Fig. 4, and therefore results are comparablewith attraction-repulsion clustering
in the kernel trick setting. Results are shown in Table 4. We see that consistently the
fair k-median implementation gives balance values very close to 241/740 ≈ 0.3257,
showing a high degree of diversity in the clusters. Our method gives a lower balance
value; hence groups are less diverse, but as we see from the silhouette and k-median
objective function values, the groups are more identifiable and more compact. Even
more, comparing the middle-right of Fig. 4 and left of Fig. 6, we see that our procedure
is even able to capture the underlying geometry of the data.

Our last comparison is on a real data set known as the Ricci dataset, consisting of
scores in an oral and a written exam of 118 firefighters, where the sensitive attribute
is the race of the individual. This dataset was a part of the case Ricci v. DeStefano
presented before the Supreme Court of the United States.
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Fig. 6 Clustering of the data in top-left of Fig. 4 obtained using fair k-median as min cost flow problem
with t ′ = 4, τ = 19.62 (Chierichetti et al. (2017))

Table 4 Rows 1-6 are implementations of fair (diversity preserving) clustering with fairlets as a min cost
flow problem with different parameters. Last row is a tclust clustering after using δ4, with (u = 0.98, v =
20, w = 0.05, V = ((1, −1)′|(−1, 0)′), and MDS embedding

Balance Average Silhouette k-median Objective

(4,∞) 0.316 0.027 14613

(4, 19.62) 0.325 0.069 14975

(5, ∞) 0.322 0.036 14819

(5, 19.62) 0.302 0.064 14854

(6, ∞) 0.305 0.026 14683

(6, 19.62) 0.299 0.051 14792

Attraction-repulsion 0.189 0.4 6751

For applying our attraction-repulsion clustering we codify white individuals as
S = 1 and black and hispanic individuals as S = −1. The appropriate parameters
for the dissimilarities are chosen to give a good performance (after a grid search as
suggested in Sect. 6). The best results are obtained with our adaptation of Ward’s
method with δ2 and parameters (u = 3.125, v = 10) and k-means after applying
δ1, with parameters (U = 0, V = 500), and a MDS embedding. Results are given in
Table 5.We see the balance given by using fairlets is higher than the one obtained with
our procedures. However, we see that our procedures produce more identifiable and
compact clusters.As a remark,we see that both procedures achieve a nice improvement
in diversity compared to the k-means solution in its standard version.

A plot of some of the clusterings can be seen in Fig. 7. Visually it is quite clear
why the average silhouette index is higher in the attraction-repulsion clustering than
in the fair k-median. It also clarifies what we mean by more identifiable and compact
clusters.

123



Attraction-repulsion clustering: a way of promoting… 885

Ta
bl
e
5

R
ow

s
1-
8
ar
e
im

pl
em

en
ta
tio

ns
of

fa
ir
cl
us
te
ri
ng

w
ith

fa
ir
le
ts
as

a
m
in

co
st
flo

w
pr
ob
le
m

w
ith

di
ff
er
en
tp

ar
am

et
er
s.
R
ow

s
9-
10

ar
e
th
e
be
st
re
su
lts

w
e
ha
ve

ob
ta
in
ed

w
ith

at
tr
ac
tio

n-
re
pu
ls
io
n
cl
us
te
ri
ng
.T

he
la
st
ro
w
re
pr
es
en
ts
th
e
va
lu
es

fo
r
a

k-
m
ea
ns

cl
us
te
ri
ng

in
th
e
or
ig
in
al
da
ta

k
=
2

k
=
4

B
al
an
ce

A
ve
r.
Si
lh
ou
et
te

k-
m
ed
ia
n
O
bj
ec
.

B
al
an
ce

A
ve
r.
Si
lh
ou
et
te

k-
m
ed
ia
n
O
bj
ec
.

(2
,
∞

)
0.
73

5
0.
01

40
60

0.
58

8
−0

.0
4

40
38

(2
,
18

.6
19

58
)

0.
70

7
0.
21

36
83

0.
66

7
0.
06

36
58

(3
,
∞

)
0.
68

2
0.
07

38
81

0.
65

5
−0

.0
4

41
70

(3
,
18

.6
19

58
)

0.
68

2
0.
17

35
46

0.
62

5
0.
06

34
37

(4
,
∞

)
0.
65

0
0.
07

39
49

0.
65

2
−0

.0
6

41
60

(4
,
18

.6
19

58
)

0.
70

0
0.
16

35
90

0.
64

3
0.
07

35
47

(5
,
∞

)
0.
67

4
0.
06

39
22

0.
68

4
−0

.0
5

38
36

(5
,
18

.6
19

58
)

0.
61

5
0.
23

34
75

0.
56

3
0.
06

34
70

A
-R

W
ar
d

0.
61

3
0.
30

38
66

0.
35

7
0.
28

33
56

A
-R

K
m
ea
ns

0.
52

4
0.
40

34
20

0.
47

8
0.
29

31
23

K
m
ea
ns

0.
34

1
0.
42

32
65

0.
11

1
0.
39

29
88

123



886 E. del Barrio et al.

Fig. 7 Diversity enhancing, diversity preserving and standard clustering for the Ricci dataset, where circles
represent not white individuals and squares represent white individuals. First row: k-means for 2 and 4
clusters in the unperturbed (original) data. Second row: k-means for 2 and 4 clusters in the MDS setting
with δ1. Third row: Ward’s method for 2 and 4 clusters with δ2. Fourth row: fair k-median as in Chierichetti
et al. (2017) with t ′ = 5, τ = 18.62 for 2 and 4 clusters
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7.3 Civil rights data collection

In this section we are going to apply our procedure to the Schools Civil Rights Data
Collection (CRDC) for the year 2015-2016 available for download in the link https://
ocrdata.ed.gov/DownloadDataFile. We are going to work with the data for entry, mid-
dle level, and high schools in the state of New Jersey.

From the CRDC data we can collect the number of students in each school that
belong to six distinct categories: Hispanic, American Indian/Alaska Native, Asian,
Native Hawaiian/Pacific Islander, Black, White. An entry of our dataset looks like
this.

LEA_STATE_NAME LEAID SCH_NAME hispanic native_american asian pacific_islander black white total

53559 NEW JERSEY 3400004 Chatham High School 46 0 106 2 19 1021 1204

53560 NEW JERSEY 3400004 Chatham Middle School 52 0 91 0 7 877 1052

53561 NEW JERSEY 3400004 Lafayette Avenue School 28 0 70 0 4 526 647

53562 NEW JERSEY 3400004 Milton Avenue School 19 0 37 0 0 274 355

53563 NEW JERSEY 3400004 Washington Avenue School 31 0 34 0 0 337 427

53564 NEW JERSEY 3400004 Southern Boulevard School 25 0 58 0 4 349 461

hispanic_frac native_american_frac asian_frac black_frack pacific_islander_frac white_frac

53559 0.03820598 0 0.08803987 0.015780731 0.00166113 0.8480066

53560 0.04942966 0 0.08650190 0.006653992 0.00000000 0.8336502

53561 0.04327666 0 0.10819165 0.006182380 0.00000000 0.8129830

53562 0.05352113 0 0.10422535 0.000000000 0.00000000 0.7718310

53563 0.07259953 0 0.07962529 0.000000000 0.00000000 0.7892272

53564 0.05422993 0 0.12581345 0.008676790 0.00000000 0.7570499

Additionally, using geolocate of the package ggmap in R we can extract latitude
and longitude coordinates of the schools in New Jersey. Hence we have a precise
location for the schools and can calculate distances in a straight line between them,
i.e., geodesic distance on Earth between schools. A plot of the locations can be seen
in Fig. 8.

A relevant problem in public management is how to group some smaller entities
(such as individual residences, schools, buildings, etc...) into somebigger entities (such
as districts) to improve decision making, efficiency or some other relevant aspect. This
is a typical problem in governance, with a famous example being electoral districts
(constituencies) in the USA.

If we were faced with the problem of making diverse school districts, how should
we proceed? Usually, districts incorporate meaningful spatial information and the
diversity part in this case is related to the overall ethnic composition of the district. A
possible approach to the problem is to perform diversity enhancing clustering, hence,
identifying clusters of schools with districts. Next, we must consider what is the
purpose of a district, since this is highly relevant for what are the ethical ramifications
of diversity and for what are considered good clusters. For example, if all districts will
be affected by some centralized decision, enforcing demographic parity through (1)
may be a good proxy for fairness. Hence, diversity and fairness may be understood as
interchangeable. However, if wewere interested in a similar problem, which is making
fair voting districts in a winner-takes-all system, promoting diversity may be highly
inadequate (see for example Abbasi et al. (2021)). If we decide that we want to use
diversity enhancing clustering, we should decide what types of clusters are adequate
for our purposes? A simple approach is to look for spatially compact clusters because
vicinity is usually a reasonable proxy for other shared features. At this point, we should
be aware that diversity and vicinity requirements may be conflicting, and therefore

123

https://ocrdata.ed.gov/DownloadDataFile
https://ocrdata.ed.gov/DownloadDataFile


888 E. del Barrio et al.

Fig. 8 Left: location of schools in the state of New Jersey. Right: mds-embedding of the straight-line
distances between the schools

some kind of trade-off between them is advisable. This setting is the one that we adopt
and present attraction-repulsion clustering results below.

We will measure the degree of diversity of the partition by comparing the ethnic
composition of each of its clusters to the ethnic composition of the overall dataset
which is pt = (0.2423, 0.0018, 0.0988, 0.0028, 0.1604, 0.4741). This is done by
using the imbalance index defined in (14).

Recall that the average silhouette index is a measure of the compactness of the
clusters in a partition. Hence our methodology is to use attraction-repulsion clustering
where tuning is done over a mesh of distinct parameters, and the best parameters are
those that give the lowest imbalance while keeping the average silhouette index over
some threshold τ . In this waywe impose themaximum improvement in diversitywhile
keeping part of the geographical information codified by the distance. This procedure
can be seen in Algorithm 1.

Codification of the protected attributes in this case is straightforward, it is just
the number of students at the school in each category. Hence, for instance Catham
High School has SC .H .S. = (46, 0, 106, 2, 19, 1021). We want to stress that another
easy possibility is to use proportions with respect to the total number of students, i.e.,
(0.0382, 0, 0.0880, 0.0158, 0.0017, 0.8480). However, we choose to use the number
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Algorithm 1 Tuning
Input: data, cluster.methods, δi , parameters, τ

1: for cluster.method in cluster.methods do
2: D ← distance matrix computed using unprotected attributes in data.
3: for parameter in parameters do
4: Δ ← dissimilarity matrix computed using δi , parameter and entries of protected and unprotected

attributes in data
5: if cluster.method = k-means then
6: X ← MDS embedding using Δ

7: end if
8: C ← clustering using cluster.method
9: U ← imbalance(C)

10: aS ← average silhouette index for C using D.
11: end for
12: param.values ← all respective touples (U , aS) for the different parameter values
13: best.parameter ← parameter corresponding to the entry in param.values such that aS ≥ τ and with

lowest U .
14: end for
Output: best parameter for dissimilarity δi for each clustering method.

of students since we think it should be considered, and that information is lost when
using proportions.

Selecting the grid ormesh of parameters for the different dissimilarities is an impor-
tant task. For some of them, δ2 and δ3, it is mainly an analytical task of selecting the
best values. However, in proposing candidates for V in δ1 and δ4 we can use available
information as we will see below. In this example we will concentrate on δ1, δ2 and
δ4. To explore the effects of attraction-repulsion dissimilarities on different clustering
methods we select a tiny sample. As hierarchical clustering methods, since we only
have distances between schools, we will use complete, average, and single linkage.
Through aMDS embeddingwewill use k-means. Hence, cluster.methods = (complete,
average, single, k-means) in Algorithm 1.

Thegridweuse for δ2 inAlgorithm1 is formedby parameters = {(ui , v j )}i=19, j=10
i, j=1

with {ui }19i=1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
and {v j }10j=1 = {0.1, 0.3, 0.5, 0.7, 0.9, 1, 3.25, 5.5, 7.75, 10}.

As we stated previously, for proposing values for V = v0Ṽ in δ1 and δ4 we are
going to use some a priori information that can be corroborated by the data. The most
numerous minorities are the Hispanic, Asian, and Black communities. Even more,
it is well known that poor neighbourhoods have higher concentrations of minorities,
and therefore schools in those areas should be representative of that. Hence, this is a
major source for a lack of diversity in a mainly geographical clustering of the schools.
Since white students are the majority, values of the proportion for the previously men-
tioned minorities and white students will affect our imbalance index the most. Hence
we should attempt to achieve mixing in precisely these groups. Our first three pro-
posals are variations of schemes that should improve mixing in the above-mentioned
communities.
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Ṽ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
0 0 0 0 0 0

−1 −1 1 −1 −1 −1
0 0 0 0 0 0

−1 −1 −1 −1 1 −1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

−1 −1 −1 −1 1 −1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 −1 −1 −1 1 −1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−1 1 −1 −1 −1 −1
0 0 1 0 0 0
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0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
−1 1 −1 −1 −1 −1
0 0 0 0 0 0

−1 −1 −1 1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The fourth proposal is the obvious one, which tries to produce mixing in all com-
munities. The fifth and sixth proposals try to impose mixing mainly for the smallest
minorities American Indians/Alaska Natives and Native Hawaiians/Pacific Islanders.

Now we can define the values we will use for the input parameters in Algo-
rithm 1. For δ1 we have parameters = {(U , v0, V ′)} where U = 06×6, v0 ∈
{0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and V ′ ∈ Ṽ .
For δ4 another parameter that can incorporate a priori information is w, which in this
case tells us how strong the influence between schools that are further apart should be.
For the local dissimilarity δ4 we propose to use parameters = {(u, v, w, V )} such
that u ∈ {0.5, 2, 8}, v ∈ {0.1, 1, 10}, w ∈ {0.1, 0.5, 0.9, 1, 5.5, 10} and V ∈ Ṽ .

Before showing results for the attraction-repulsion procedures, we will cluster the
data without considering race information, hence only geographical distance is of
importance. From the top row of Fig. 9, we can say that k-means (red) is giving a good
performance since it has low imbalance index and a reasonably high average silhouette
index. We stress that the k-means procedure is done in the MDS embedding shown on
the right in Fig. 8. In the left column of Fig. 11 we can see k-means clustering for 5 and
11 clusters. We clearly see that spatial proximity is the driving force of the clustering.
The values of imbalance and average silhouette index are respectively (0.13, 0.42)
and (0.21, 0.42).

To apply our attraction-repulsion clustering as shown in Algorithm 1 we need to
fix the silhouette bound. To do this we take τ = 0, and hence we are not imposing
very strong compactness criteria, recall that the silhouette index varies between -1 and
1, but we still want clusters to be relatively compact. In this way we are making a
trade-off between reduction in imbalance and spatial coherence. In Fig. 10 we see the
effects of the different best parameters for dissimilarities δ1, δ2 and δ4 for k-means
and complete linkage clustering. Generally, we see that δ1 (in red) is the dissimilarity
that produces the strongest reduction in imbalance (solid line) and of course this is on
behalf of a reduction in average silhouette index (dashed line). Also as expected a local
dissimilarity as δ4 (blue) brings only a modest reduction of imbalance but maintains
a high spatial coherence.

Hence, if we want to slightly gerrymander districts to improve diversity while
maintaining a very high geographical coherence we should use δ4. On the other hand,
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Fig. 9 Top row is a comparison between unperturbed clustering methods, bottom row is a comparison of
clustering methods after using δ1. The clustering methods are complete linkage in black, k-means in red,
single linkage in green and average linkage in blue. We stress that single linkage with δ1, green line in
bottom row, does not achieve τ > 0 for k ≥ 9 (colour figure online)

ifwewant themaximum imbalance reduction achievablewith our procedurewe should
use δ1.

To decide which clustering method is the best, from our small selection of methods,
we use the bottom row of Fig. 9. There we see that for attraction-repulsion clustering
using δ1, k-means (red) and complete linkage (black) produce similar reduction in
imbalancewhile k-means keeps a relatively higher average silhouette index. Therefore,
in this case k-means with perturbation δ1 and a MDS embedding seems to be the best
procedure.
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Fig. 10 Top: a comparison between effects of unperturbed and perturbed situations for k-means. Bottom:
same comparison as in top but for complete linkage clustering. In black we have the unperturbed situation,
in red we have the best δ1 perturbation, in green the best δ2 and in blue the best δ4 perturbation (colour
figure online)

In Fig. 11 we can see a visual comparison between k-means clustering in the
different situations. The best parameters for the dissimilarities in the cases we have
shown are the following

params(Cδ4
5 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝
2, 1, 10,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
0 0 0 0 0 0

−1 −1 1 −1 −1 −1
0 0 0 0 0 0

−1 −1 −1 −1 1 −1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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params(Cδ4
11) =

⎛
⎜⎜⎜⎜⎜⎜⎝
2, 0.1, 1,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

−1 −1 −1 −1 1 −1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,

params(Cδ1
5 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝
06×6, 0.03,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,

params(Cδ1
11) =

⎛
⎜⎜⎜⎜⎜⎜⎝
06×6, 0.07,

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

.

What we see is that the matrices V that we introduced trying to codify available a
priori information work very well. Hence real-world intuitions are compatible with
our model. In the case of the parameters for δ1 again what we expected from intuition
is seen, i.e., to reduce imbalance for a bigger number of clusters it is necessary to
use a stronger perturbation (a higher value for v0). In the plots we clearly see the
behaviour we have previously mentioned. The local dissimilarity δ4 does a sort of
positive gerrymanderingwhile δ1 imposes a stronger reduction in imbalance and hence
significantly alters the clustering results.

8 Conclusions

We have introduced a pre-processing heuristic based on novel dissimilarities that is
applicable virtually to any clusteringmethod and can produce gains in diversity.Hence,
when diversity is a good proxy for fairness, for example when demographic parity is
required, our methods may fall into a fair clustering setting. Our heuristic approach
allows for tractable and simple computations at the cost of tuning requirements and
no theoretical guarantees for enforcing the diversity preserving condition (1).

The experiments described in Sect. 7, while simple, allow us to reach some mean-
ingful conclusions. To begin with, pre-processing transformations looking to impose
diversity through independence of the marginal distributions with respect to the pro-
tected attributes, but ignoring the geometry of the data, can eliminate any meaningful
cluster structure as seen in Sect. 7.1.1. This can also happen when using ad hoc fair
(diversity preserving) clustering objective functions as shown in Sect. 7.2. Hence, it is
advisable to reach a trade-off between the desire to find some cluster structure present
in the geometry of the data and the desire to impose diversity preserving conditions.
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Fig. 11 Results of k-means clustering, top row looking for 5 clusters and bottom row looking for 11.
Left: unperturbed situation. Middle: δ4 perturbation andMDS embedding. Right: δ1 perturbation andMDS
embedding

Furthermore, the justification of diversity, and more broadly, fairness concerns in clus-
tering rely heavily on the purpose of the practitioner and the data itself, something
that is implicit in Sect. 7.3. The previous considerations make us urge practitioners to
be clearly aware of:
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– What is the purpose of the partitions that they are looking for
– The definitions of diversity, with its relations to fairness, and of cluster structure
that are suitable to their purpose

– The conflict that may exist between diversity and the groupings present in the data
– The level of trade-off between diversity and sensible cluster structure that is rea-
sonable for the users purpose

As for future directions of research, there are two clear paths. One is to try to
use a transformation of the data that can give some theoretical guarantees for the
demographic parity condition (1), most likely restricting clustering procedures to a
certain type. Another is to consider the trade-off between diversity, cluster structure
and maybe some other relevant criteria for the practitioner through a multi-objective
optimization formulation. An additional alternative is to try to explore model-based
clustering in the setting of attraction-repulsion dissimilarities.
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