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Abstract
We consider nonparametric prediction with multiple covariates, in particular categor-
ical or functional predictors, or a mixture of both. The method proposed bases on
an extension of the Nadaraya-Watson estimator where a kernel function is applied
on a linear combination of distance measures each calculated on single covariates,
with weights being estimated from the training data. The dependent variable can be
categorical (binary or multi-class) or continuous, thus we consider both classification
and regression problems. The methodology presented is illustrated and evaluated on
artificial and real world data. Particularly it is observed that prediction accuracy can be
increased, and irrelevant, noise variables can be identified/removed by ‘downgrading’
the corresponding distance measures in a completely data-driven way.

Keywords Classification · Nonparametric regression · Multivariate functional
predictors · Multivariate categorical predictors · Multi-class response · Variable
selection
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1 Introduction

We consider nonparametric prediction and estimation with multiple categorical or
functional predictors, or a mixture of both. Especially in the case of a categorical,
multi-class response, the number of corresponding methods found in the literature is
very limited.
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520 L. Selk, J. Gertheiss

The proposed method is an expansion of the well-known Nadaraya-Watson esti-
mator

f̂ (x) =
∑n

i=1 Yi K ((Xi − x)/hn)
∑n

i=1 K ((Xi − x)/hn)
,

with some kernel K (·) and bandwidth hn ↘ 0 (for n → ∞), that was intro-
duced by Nadaraya (1964) and Watson (1964) as a nonparametric estimator for
the regression function in a model Yi = f (Xi ) + εi with continuous observations
(X1,Y1), . . . , (Xn,Yn). In the classification case with categorical response Y this
estimator can be adapted to estimate the posterior probability Pg(x) = P(Y = g|x)
as

P̂g(x) =
∑n

i=1 I {Yi = g}K ((Xi − x)/hn)
∑n

i=1 K ((Xi − x)/hn)
,

see for instance Hastie et al. (2009). We extend these estimators to handle multiple
functional, categorical or mixed predictors, see Sect. 2. Besides estimation of the
regression function we are interested in variable selection, thus in separating relevant
predictors from noise variables. For this sake we determine some weights (counterpart
to bandwidth) for each covariate in a data-driven way, see Sect. 2 for details. The
size of the weights then indicates the relevance of the corresponding covariate. For a
recent review on variable selection for regression models with functional covariates
particularly see Aneiros et al. (2022).

Existing methods for nonparametric classification/regression and variable selec-
tion as covered by the method proposed in the paper at hand can be arranged in four
macro-areas by the type of response (categorical/continuous) and predictor (func-
tional/categorical). The case of a categorical response and functional predictors is
handled, for instance, in Fuchs et al. (2015) who use an ensemble approach for clas-
sification of multiple functional covariates. They estimate the posterior probability
separately for every covariate and weight the results to get an estimate of the overall
posterior probability. Further they use several semi-metrics and combine the results in
an analogous way. Thus their method can be used for feature as well as variable selec-
tion. A similar approach is followed by Gul et al. (2018) for categorical responses
and categorical or continuous covariates. They use an ensemble of kNN classifiers
based on random subsets of the covariates with the aim to select the most relevant
covariates. The same type of response-covariate combination is considered by Mbina
et al. (2019) who propose a procedure for classification in more than two groups with
categorical (binary) and continuous predictors. Their aim is to select among the con-
tinuous variables those that are relevant for the classification. They use a criterion
to quantify the loss of information resulting from selecting not all continuous vari-
ables and compare different procedures to estimate the criterion’s value. Continuous
responses are considered e. g. in Shang (2014) and Racine et al. (2006). Shang (2014)
considers a nonparametric regression model with a mixture of functional, categorical
and continuous covariates. He uses a Bayesian approach to determine simultaneously
the different bandwidths. His method can also be used for variable selection since
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Nonparametric regression and classification... 521

Fig. 1 Illustration of the ArabicDigits in terms of a subset of the available signals for three Mel Frequency
Cepstrum Coefficients, and digits ‘2’, ‘3’, ‘5’, and ‘7’; solid lines correspond to the respective mean curves

the irrelevant variables are smoothed out by the appropriate bandwidth. Racine et al.
(2006) test for significance of categorical predictors in regression models with cate-
gorical and continuous predictors. They use a product kernel to estimate the regression
function and approximate the distribution of their test statistic under the null using a
bootstrap procedure.

As an application example of the procedure proposed here, consider the following
classification problem: the well-knownArabicDigits data set from the R-packagemfds
by Górecki and Smaga (2017), which contains time series of 13 Mel Frequency Cep-
strum Coefficients (MFCCs) corresponding to spoken Arabic digits. MFCCs are very
common for speech recognition, see Koolagudi et al. (2012) for a detailed explanation.
Figure 1 shows a subset of the available signals for MFCC1, MFCC3 and MFCC10,
and digits ‘2’, ‘3’, ‘5’, and ‘7’. In total, and more generally speaking, we are faced
with a 10-class problem (digits 0, 1, . . . , 9) and 13 functional predictors.

The rest of the paper is organized as follows. In Sect. 2, we begin with the regression
case to explain the idea of our approach, and then put our focus on classification prob-
lems. Both cases are investigated through simulation studies in Sect. 3. The real data
mentioned above and some further data, such as trajectory data from a psychological,
virtual reality experiment, is revisited in Sect. 4, illustrating the presented method’s
broad spectrum of potential applications. Section 5 concludes with a short discussion
and outlook.

2 Methodology

Suppose there are training data Xi = (Xi1, . . . , Xip), i = 1, . . . , n, with variables
contained in Xi being continuous, categorical, functional, or a mixture of those. In
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522 L. Selk, J. Gertheiss

addition, there is information Yi on a scalar, dependent variable which may be contin-
uous or categorical.

2.1 Regression

Let us first consider the regression problem with continuous Yi and a single covariate
Xi , where

Yi = f (Xi ) + εi ,

f being an unknown regression function, and εi some mean zero noise variable,
potentially with some further assumptions such as independent identically distributed
(iid) across subjects i = 1, . . . , n.

For a new observation with known covariate value x , but unknown Y , a kernel-
based, nonparametric prediction Ŷ = f̂ (x) is, e.g., given by

f̂ (x) =
∑n

i=1 Yi K (d(Xi , x)/hn)
∑n

i=1 K (d(Xi , x)/hn)
,

with some kernel K (·), bandwidth hn ↘ 0 (for n → ∞) and distance measure d(·, ·)
that is appropriate for the type of predictor considered. In particular with functional
data, d(·, ·) may also be calculated through so-called semi-metrics, compare Ferraty
and Vieu (2006) and Sect. 2.3 below.

Now suppose for multiple (and potentially very different) predictors as given
above, there are d1(·, ·), . . . , dp(·, ·) available. With categorical predictors Xil , xl ∈
{1, . . . ,Gl}, for example, we may use

dl(Xil , xl) =
{
0 if Xil = xl ,
1 if Xil �= xl ,

(1)

or for functional Xi j , x j ∈ L2, for instance,

d j (Xi j , x j ) =
√∫

D j

(Xi j (t) − x j (t))2dt, (2)

whereD j is the domain of the functions Xi j , x j . In what follows, we will omit theD j

for the sake of readability.
When predicting Y , multivariate predictor information x = (x1, . . . , xp)� should

be considered jointly. A somewhat natural way to do so, appears to be

Ŷ = f̂ (x) =
∑n

i=1 Yi K (ω1d1(Xi1, x1) + . . . + ωpdp(Xip, xp))
∑n

i=1 K (ω1d1(Xi1, x1) + . . . + ωpdp(Xip, xp))
, (3)
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with positive weights ω1, . . . , ωp that should be estimated from the data. With Ŷ(−i)

being the leaving-one-out estimate

Ŷ(−i) =
∑

s �=i Ys K (ω1d1(Xs1, Xi1) + . . . + ωpdp(Xsp, Xip))
∑

s �=i K (ω1d1(Xs1, Xi1) + . . . + ωpdp(Xsp, Xip))
,

we may estimate ω1, . . . , ωp by minimizing

Q(ω1, . . . , ωp) =
n∑

i=1

(Yi − Ŷ(−i))
2. (4)

By ω̂1, . . . , ω̂p we denote these minimizing weights.
The nonparametric estimator f̂ defined in (3) is an extension of the well known

Nadaraya-Watson estimator, see Sect. 1. Similar extensions of this kind of kernel
estimator to themultivariate case are alsowell established; see, e.g., Härdle andMüller
(2000) for some deeper insight. The typical form of a multivariate Nadaraya-Watson
estimator for continuous covariates is

f̂NW1(x) =
∑n

i=1 Yi K (|Xi1 − x1|/h1) · . . . · K (|Xip − xp|/h p)
∑n

i=1 K (|Xi1 − x1|/h1) · . . . · K (|Xip − xp|/h p)

with bandwidths (h1, . . . , h p), or

f̂NW2(x) =
∑n

i=1 Yi K (‖H−1(Xi − x)‖)
∑n

i=1 K (‖H−1(Xi − x)‖)

where ‖ · ‖ is, e.g., the euclidean norm and H is a symmetric bandwidth matrix. If
we set K in our f̂ defined in (3) as an exponential function, e. g., the Picard kernel
K (u) = e−u I {u ≥ 0}, we have a very similar setting to f̂NW1 with |X − x | replaced
by the more general d(X , x). Also, our f̂ can be interpreted as a form of f̂NW2 with
‖ · ‖ being some kind of L1-norm (Manhattan-norm). Estimation of the weights (4)
is similar to determining an optimal bandwidth for the Nadaraya-Watson estimator
with cross-validation. There are different possibilities to choose the starting values
for the numerical minimization of Q(ω1, . . . , ωp). In the simulation studies to follow
in Sect. 3, for instance, we will use a rule of thumb for the bandwidth size for the
regression case, whereas for the classification case (see Sect. 2.2 below) we determine
a pre-estimator for each weight by considering pmodels each with only one predictor.

2.2 Classification

In the classification case, we also consider models that may contain functional and/or
categorical predictors Xi j (i = 1, . . . , n, j = 1, . . . , p), but categorical responses
Yi ∈ {1, . . . ,G} for i = 1, . . . , n instead of continuous ones. Especially the case
p > 1,G > 2 is of interest since in this ‘multi2fun’ case (multiple, possibly functional
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524 L. Selk, J. Gertheiss

predictors and amulti-class response) there are only very few genuinely nonparametric
methods available (compare Sect. 1).

Following the idea for the regression case, we estimate the posterior probability
Pg(x) := P(Y = g|x) for a new set of predictor values x = (x1, . . . , xp)� with
unknown class label Y by

P̂g(x) =
∑n

i=1 I {Yi = g}K (
ω1d1(Xi1, x1) + . . . + ωpdp(Xip, xp)

)

∑n
i=1 K

(
ω1d1(Xi1, x1) + . . . + ωpdp(Xip, xp)

)

with data-driven weights ω1, . . . , ωp. As before we determine the weights by mini-
mizing

Q(ω1, . . . , ωp) =
n∑

i=1

G∑

g=1

(I {Yi = g} − P̂g(−i))
2 (5)

where P̂g(−i) is the leave-one-out estimator

P̂g(−i) =
∑

s �=i I {Ys = g}K (
ω1d1(Xs1, Xi1) + . . . + ωpdp(Xsp, Xip)

)

∑
s �=i K

(
ω1d1(Xs1, Xi1) + . . . + ωpdp(Xsp, Xip)

) .

Quantity (5) is also know as theBrier score or quadratic scoring rule, compareGneiting
and Raftery (2007), Brier (1950) and Selten (1998).

2.3 Distances and (semi-)metrics

A crucial question when dealing with functional predictors is the choice of the
(semi)metric d, contrary to models with predictors that take values in R

p, since in
a finite dimensional euclidean space all norms are equivalent. This concept fails for
functional predictors since they take values in an infinite dimensional space. Even
more, restricting d to be a metric is sometimes too restrictive in the functional case.
That is why semi-metrics are considered such as

d(u, v) =
√∫

(u′(t) − v′(t))2dt, (6)

where u, v are functional predictors and u′, v′ their derivatives, see Ferraty and Vieu
(2006) Chapter 3 for a deeper insight on this topic. An important difference between
semi-metric (6), for instance, and a metric is that in the former case d(u, v) = 0 will
also be obtained if v(t) = u(t)+c, for some constant c �= 0, i. e., if v is just a vertically
shifted version of u. In general, the choice which (semi-)metric to take depends on the
shape of the data and the goal of the statistical analysis. If, for example, the functional
observations shall be displayed in a low-dimensional space, one possibility to do
this is to use (functional) principal component analysis; compare, e.g., Ramsay and
Silverman (2005) and Yao et al. (2005). In general, results can look very different,
depending on the chosen measure of proximity. In Chapter 3 of Ferraty and Vieu
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(2006) examples to illustrate this effect are given. Also, further suggestions for semi-
metrics and a survey which semi-metric may be appropriate for which situation can
be found there. For example, semi-metric (6), which is based on the derivatives, is
often well suited for smooth data whereas for rough data a different approach should
be considered.

The (semi-)metric also plays an important role for the asymptotic properties of non-
parametric functional estimators. Chapter 13 in Ferraty and Vieu (2006) is dedicated
to this issue. The small ball probability that is defined as P(d(u, v) < ε) appears
in the rate of convergence of many nonparametric estimators such as the functional
Nadaraya-Watson estimator. If the small ball probability decays very fast when ε tends
to zero (in other words, if the functional data are very dispersed) the rate of conver-
gence will be poor, whereas a small ball probability decaying adequately slowly will
lead to a rate of convergence similar to those found in finite dimensional settings.

In our simulation studies and for the real data examples we will use a form of the
L2-metric as already given in (2). This is a standard choice which works quite well
for our examples. Note that, although our focus in this paper is not on the choice of
the distance measure, our procedure could also be used to give a data driven answer
on the question which (semi-)metric to choose. For this sake let us suppose there is
only one functional predictor with observations X1, . . . , Xn and a set of p potential
(semi-)metrics d1, . . . , dp . With this we set

f̂ (x) =
∑n

i=1 Yi K (ω1d1(Xi , x) + . . . + ωpdp(Xi , x))
∑n

i=1 K (ω1d1(Xi , x) + . . . + ωpdp(Xi , x))

and

P̂g(x) =
∑n

i=1 I {Yi = g}K (ω1d1(Xi , x) + . . . + ωpdp(Xi , x))
∑n

i=1 K (ω1d1(Xi , x) + . . . + ωpdp(Xi , x))
,

respectively. Then, the estimated weights ω̂1, . . . , ω̂p tell us which distance measures
are appropriate to explain the influence of the covariate on the response: those that
are weighted highest. This approach is especially useful for feature selection since
the (semi-)metrics can be chosen such that each d j focuses on a certain feature of the
curve, compare to Fuchs et al. (2015).

3 Numerical experiments

3.1 Regression problems

3.1.1 Set-up

To investigate thefinite sample performance of our procedure,wegenerate data accord-
ing to a model with mixed covariates (MixR), combining functional and categorical
predictors. For i = 1, . . . , n, we generate functional covariates Xi1, . . . , Xipfun accord-
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ing to

X̃i j (t) =
5∑

l=1

(

Bi j,l sin

(
t

T
(5 − Bi j,l)2π

)

− Mi j,l

)

,

where Bi j,l ∼ U[0, 5] and Mi j,l ∼ U[0, 2π ] for l = 1, . . . , 5, j = 1, . . . , pfun,
i = 1, . . . , n, and T = 300. U stands for the (continuous) uniform distribution. Then,
Xi j (t) is calculated from X̃i j (t) by scaling it in direction i and then dividing each
value by 10. The categorical covariates are generated as Xi(pfun+1), . . . , Xi(pfun+pcat)

∼B(0.5), such that pfun + pcat = p. With this we get an extended functional linear
model

Yi = 5
qfun∑

j=1

∫

Xi j (t)γ3, 13
(t/10)dt + 2(Xi(pfun+1) + . . . + Xi(pfun+qcat)) + εi

for some qfun ≤ pfun and qcat ≤ pcat, where the coefficient function γa,b(t) =
ba/�(a)ta−1e−bt I {t > 0} is the density of the Gamma distribution. See Ramsay
and Silverman (2005) Chapter 15 or Kokoszka and Reimherr (2017) Chapter 4 for an
introduction to functional linear models. The errors εi are iid standard normal. Further
simulation examples (FunR, CatR) with solely functional or categorical covariates can
be found in the online supplement.

We investigate ‘minimal’ and ‘sparse’ cases. Specifically, we compare the cases
qfun = qcat = 1, pfun = pcat = 2 (minimal: (*.m)) and qfun = qcat = 2, pfun =
pcat = 8 (sparse: (*.s)). For all generated data sets we use a one-sided Picard kernel
K (u) = e−u I {u ≥ 0} and the results shown are based on 500 replications each.

To uncouple the estimation of the weights from the bandwidth that goes to zero as
n grows, we set

dfun(Xi j , x j ) := 1

hfunn cfunj

√∫

(Xi j (t) − x j (t))2dt,

dcat(Xi j , x j ) := 1

hcatn ccatj

√
(Xi j − x j )2

= 1

hcatn ccatj

I {Xi j �= x j },

with norming constants

cfunj =
√
√
√
√

∫
1

n − 1

n∑

l=1

(

Xl j (t) − 1

n

n∑

k=1

Xkj (t)

)2

dt,

ccatj =
√
√
√
√ 1

n − 1

n∑

l=1

(

Xl j − 1

n

n∑

k=1

Xkj

)2

,
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and bandwidths hfunn = n− 1
p+4 and hcatn = p+4

ln(n)
, respectively. This choice of band-

widths coincides with the order of the optimal bandwidths in Racine and Li (2004)
when K is the one sided Picard kernel and the categorical covariates are B(0.5)-
distributed.

The prediction is then calculated as given in (3). For MixR, this means

Ŷ = f̂ (x) =
∑n

i=1 Yi K
(∑pfun

j=1 ω j dfun(Xi j , x j ) + ∑pfun+pcat
j=pfun+1 ω j dcat(Xi j , x j )

)

∑n
i=1 K

(∑pfun
j=1 ω j dfun(Xi j , x j ) + ∑pfun+pcat

j=pfun+1 ω j dcat(Xi j , x j )
) ,

where pfun is the total number of functional covariates, pcat the total number of cat-
egorical covariates and p = pfun + pcat. The weights are estimated by minimizing
Q(ω1, . . . , ωp) = ∑n

i=1(Yi − Ŷ(−i))
2, with Ŷ(−i) being the leave-one-out estimate as

described above,

Ŷ(−i) =
∑

s �=i Ys K
(∑pfun

j=1 ω j dfun(Xsj , Xi j ) + ∑pfun+pcat
j=pfun+1 ω j dcat(Xsj , Xi j )

)

∑
s �=i K

(∑pfun
j=1 ω j dfun(Xsj , Xi j ) + ∑pfun+pcat

j=pfun+1 ω j dcat(Xsj , Xi j )
)

in case of MixR. For the minimization we make use of the R function optim (R Core
Team (2020)) with starting value (ω1, . . . , ωp) = (1, . . . , 1), since in this context a
brute force optimization routine suffices.

3.1.2 Results

The minimizing weights for the minimal as well as the sparse case and sample size
n = 500 are shown in Fig. 2. They are compared to the relative variable importance of
a random forest, as a benchmark apart from kernel-based, nonparametric prediction.
After applying a functional principal component analysis (R package refund byScheipl
et al. (2021)) on the functional observations we build a random forest using the R
function randomForest (Liaw and Wiener (2002)). Further we compare our results
to the method of Fuchs et al. (2015) (‘Ensemble’) which was described in Sect. 1.
Although in their paper they only consider categorical responses, their method can
also be applied in the regression case.

To increase comparability between themodels we display normedweights
ω̂ j∑p
k=1 ω̂k

.

This can also be interpreted as separating the estimation of the weights (normed

weights) and optimization of the bandwidth (hopt = hfun/catn∑p
k=1 ω̂k

). It can be seen that the

selection of relevant predictors works well, as the covariates with influence on the
response get distinctly higher weights than those without. The sum over the weights
for relevant covariates should be approximately one whereas the weights for irrelevant
covariates should be close to zero. Both is visible for our procedure. The competing
methods get comparable results where the random forest seems to have some diffi-
culties identifying the functional noise and the ensemble approach with detecting the
relevant categorical predictors.
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For further comparison of our prediction results, we also compute the minimizer
of Q under the restrictions

(i) ω1 = ω2 = . . . = ωp,
(ii) ω j = 0 for all covariates with no influence on the response.

Thus under restriction (ii), which we also call ‘oracle’, we determine the minimiz-
ing weights only for the relevant covariates, whereas restriction (i) leads to a single
minimizing weight and can be interpreted as determination of a suitable overall/global
bandwidth. Note, however, (ii) is only doable in simulations where the truth is known,
and no option in practice. In Fig. 3 the squared estimation error of f̂ is shown,wherewe
display the average over 100 (minimal case) and 10000 (sparse case) x-values, respec-
tively, and again compare our results to those of a random forest and the method of
Fuchs et al. (2015). The x-values are generated randomly in the same way as the
covariates. In each of the 500 replications, new x-values are generated. The explicit
formula to calculate the squared estimation error for each replication is

1

N

N∑

l=1

(
f̂ (xl) − f (xl)
range( f )

)2

,

where N is the number ofx-values, f is the true regression function used to generate the
data, x1, . . . , xN are the x-values (generated at random) and range( f ) = maxl f (xl)−
minl f (xl). The results for our procedure are comparable to those under restriction
(ii) and better than those under restriction (i), as expected. The competing methods
get worse prediction results. Especially compared to the random forest our method
is superior. To get an insight in the influence of the x-values on the estimation error
we ran the simulations also with x-values that are the same for each replication. The
results are almost identical to those with varying x-values shown in Fig. 3. Only the
variance of the estimation errors is slightly larger with varying x-values (as could be
expected).

Another possible way to asses the performance of our procedure would be to look at
the (test set) prediction errorY− f̂ (x) = ε+ f (x)− f̂ (x) instead of the estimation error
as described above. The results would be similar since the errors ε are independent
of the predictors and thus the mean squared prediction error and the mean squared
estimation error only differ in the variance of ε.

3.2 Classification problems

3.2.1 Set-up

Similar to the regression case, we generate data according to amodel (MixC)wherewe
combine functional and categorical predictors. The functional observations are based
on those built in modelMixR, see Sect. 3.1. Let’s call them X (Fun)

i j . Then the functional

observations for this classification model are Xi j (t) = X (Fun)
i j (t) + 0.3 · Ci j with

Ci j ∼ U{0, 1}. Here U stands for the discrete uniform distribution. The categorical

123



Nonparametric regression and classification... 529

Fig. 2 Normedminimizingweights
ω̂ j

∑p
k=1 ω̂k

, variable importance of a random forest, and ensembleweights

for model MixR in the minimal (left) and sparse (right) case, respectively

Fig. 3 Estimation performance for model MixR in the minimal (left) and sparse (right) case with no
restriction (‘data driven weights’), restriction (i, ‘equal weights’) and (ii, ‘oracle’), and with a random forest
and the ensemble approach, respectively

covariates are Xi(pfun+1), . . . , Xi(pfun+pcat) ∼B(0.5), such that pfun + pcat = p. With
this,

Yi = (qcat + 1) · (Ci1 + . . . + Ciqfun) + Xi(pfun+1) + . . . + Xi(pfun+qcat) + 1,

qfun ≤ pfun, qcat ≤ pcat, and thus G = (qfun + 1) · (qcat + 1).
As before we compare minimal (*.m) and sparse (*.s) cases, i. e., qfun = qcat = 1,

pfun = pcat = 2 (*.m) and qfun = qcat = 2, pfun = pcat = 8 (*.s). The results are
based on 500 replications. We use again the one-sided Picard kernel as described in
Sect. 3.1. In contrast to the regression case, however, we use a pre-estimator for the
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weights instead of a starting value for the bandwidth. Thus, we set

dfun(Xi j , x j ) := 1

cfunj

√∫

(Xi j (t) − x j (t))2dt,

dcat(Xi j , x j ) := 1

ccatj

I {Xi j �= x j },

with norming constants cfunj =
√∫ 1

n−1

∑n
l=1(Xl j (t) − 1

n

∑n
k=1 Xkj (t))2dt , ccatj =

√
1

n−1

∑n
l=1(Xl j − 1

n

∑n
k=1 Xkj )2, respectively, and determine the starting values

(ω̂
pre
1 , . . . , ω̂

pre
p ) forminimizing Q(ω1, . . . , ωp) = ∑n

i=1
∑G

g=1(I {Yi = g}− P̂g(−i))
2

by

ω̂
pre
j := argmin

ω

n∑

i=1

G∑

g=1

(I {Yi = g} − P̂pre
g(−i)( j, ω))2

with

P̂pre
g(−i)( j, ω) =

∑
s �=i I {Ys = g}K (

ωdfun/cat(Xsj , Xi j )
)

∑
s �=i K

(
ωdfun/cat(Xsj , Xi j )

)

wheredfun/cat means thatdfun ordcat is used according to the type of the j th predictor.Of
course it would have been possible to use the pre-estimator in the regression framework
as well. Since in the regression case, however, there are well-known rules of thumb at
hand for the bandwidth / weights selection, it may be preferable to use those to reduce
computation time.

3.2.2 Results

As described in Sect. 3.1.2 we again compare our results to those of a random forest
and the ensemble method of Fuchs et al. (2015). In Fig. 4 the minimizing normed
weights for model MixC and n = 500 are displayed. The performance regarding the
variable selection is very encouraging and for the functional covariates clearly better
than that of the random forest.

The estimation performance of our procedure is shown in Fig. 5, where we display
the squared error of P̂g and compare it to the results under restriction (i) and (ii) as
described in Sect. 3.1.2. Furthermore our approach is compared with the competing
methods ‘Random Forest’ and ‘Ensemble’. For new x-values (that are generated in
the same way as the observations from the training set), we predict the posterior
probability with the random forest, the ensemble and with our P̂g with the estimated
weights, respectively. The data for the boxplots is calculated on test sets with N = 100
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Fig. 4 Normedminimizingweights
ω̂ j

∑p
k=1 ω̂k

, variable importance of a random forest, and ensembleweights

for model MixC in the minimal (left) and sparse (right) case, respectively

(minimal case) and N = 1000 (sparse case) as the Brier Score

1

N

N∑

l=1

1

G

G∑

g=1

(P̂g(xl) − I {y(xl) = g})2,

where y(x) is the response (class) resulting from the predictor x. y(x) are built in the
same way as for the training observations. Similar to the regression case, the results
achieved with new x-values for each replication and those with the same x-values in
all replications are comparable. We display the results with varying x-values. It can
be seen that the prediction works well and clearly better than the random forest and
the ensemble method. Further in the sparse case, the results with data driven weights
are much better than those with equal weights, which confirms the good variable
selection/weighting performance.

As additional information we display the missclassification rate as an arithmetic
mean over

1

N

N∑

l=1

I

{

arg max
g∈{1,...,G} P̂g(xl) �= y(xl)

}

.

The results are summed up in Table 1. They confirm the good performance shown in
Fig. 5, especially that our procedure works much better than the random forest and the
ensemble approach. In particular, the superior performance of using weights within
the kernel as proposed here instead of combining individual, covariate-specific nearest
neighbor predictions as an ensemble can be explained as follows. Whereas the non-
parametric, kernel-based approach as presented in Sect. 2 is able to handle/incorporate
interactions between predictors, this is hardly possible by simply combining predic-
tions each based on a single covariate only by means of a weighted average (as done
with the ensemble). Furthermore, nearest neighbor predictions that use a single, binary

123



532 L. Selk, J. Gertheiss

Fig. 5 Estimation performance for model MixC in the minimal (left) and sparse (right) case with no
restriction (‘data driven weights’), restriction (i, ‘equal weights’) and (ii, ‘oracle’), and with a random forest
and the ensemble approach, respectively

Table 1 Missclassification rates as arithmetic mean (and standard deviation) with no restriction (‘Data
driven weights’), restriction (i) (‘Equal weights’), restriction (ii) (‘Oracle’), and with a random forest and
the ensemble method, respectively

Model Data driven w. Equal weights Oracle Random forest Ensemble

(MixC.m) 0.03 (0.02) 0.03 (0.03) 0.03 (0.02) 0.22 (0.38) 0.25 (0.09)

(MixC.s) 0.07 (0.01) 0.44 (0.02) 0.06 (0.01) 0.21 (0.24) 0.72 (0.04)

The values in bold are the lowest and the values in italic the second to lowest in each row

predictor only, tend to be poor (which also affects the ensemble at least to somedegree).
As a result, the nearest neighbor ensemble approach may not be the way to go with
categorical predictors that only have a small number of categories. The results for
further models we simulated can be found in the online supplement.

4 Application to real world data

Finally, we apply our procedure to some real world data. The first one is the Ara-
bicDigits data described in the Introduction. Further we consider trajectory data from
a psychological experiment with virtual reality devices, as well as another three bench-
mark data sets. The first one is data from a medical survey investigating the response
of patients to drug therapy. The second one is data from a psychological survey inves-
tigating the effect of different movies on the motivational state of participants. The
third one is a well-known data set on the housing situation in Copenhagen.
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Fig. 6 Estimated weights (normed) for the 13 MFCCs in the ArabicDigits data set

4.1 Speech recognition

As an example for a multi-class classification problem with multiple functional pre-
dictors we consider the data set ArabicDigits from the R-package mfds by Górecki
and Smaga (2017), see Sect. 1. Each time series in the 13 speech features contains
93 data points and the number of time series is 8800 (10 digits x 10 repetitions x 88
speakers) in total. We split the data in each group randomly in a training and a test set
in the relation 70/30. Thus we estimate our weights based on n = 6160 observations
with p = 13, G = 10 and T = 93.

The results show that all 13 MFCCs are relevant as expected. The 13 normed
weights are all of the same size around 1/13, see Fig. 6. Further the prediction results
for the test data set (2640 observations) are almost perfect as can be seen in Table 2.
This very good prediction performance is comparable to results of other procedures
applied on this data set. For instance, Górecki and Łuczak (2015) model the data
as multivariate time series and use a 1NN classification where the distance measure
is based on dynamic time warping. A (parametric) functional multivariate regression
approach formulti-label classification is used byKrzyśko and Smaga (2017). InMöller
and Gertheiss (2018) a classification tree is applied. The authors choose arbitrarily two
out of the 10 digits to make the problem a binary classification task. They all get very
good prediction results for this data set as well.

4.2 Virtual reality movement data

Besides ‘classical’, one-dimensional functional data, also other types of functional
data such as 3-dimensional trajectories are getting more and more attention; see, e.g.,
Fernández-Fontelo et al. (2021). The data set considered in the paper at hand contains
3-dimensional movement data of the hands and head of participants in a psychologi-
cal experiment, compare Vogel et al. (2022). The participants were asked to perform
guided upper body exercises like stretching their arms or embracing themselves. Fur-
thermore, the participantswere given a virtual reality headset and two joysticks, one for
each hand.With these devices themovements of the hands and the headwere recorded.
The movements are recorded as ‘global’, ‘local’ and ‘orientational’, where ‘global’
describes the position in the lab, ‘local’ the position relative to the position of the
feet and ‘orientational’ records rotational motions; see Vogel et al. (2022) for a more
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Table 2 Classification results for the ArabicDigits data set as a contingency table of the true (rows) and the
estimated (columns) classes

0 1 2 3 4 5 6 7 8 9

0 261 0 0 0 0 2 1 0 0 0

1 0 264 0 0 0 0 0 0 0 0

2 0 0 263 0 0 0 0 0 1 0

3 0 0 0 264 0 0 0 0 0 0

4 0 0 0 0 264 0 0 0 0 0

5 0 0 0 1 0 263 0 0 0 0

6 2 0 0 0 0 0 262 0 0 0

7 0 0 0 0 0 0 0 261 0 3

8 0 0 0 0 0 0 0 0 264 0

9 0 0 0 0 0 0 0 2 0 262

Fig. 7 Examples for trajectories from one female individual. The orientational movement of the head (right
chart) can be interpreted as follows: An increase in the x-component refers to looking to the right; a decrease
to looking to the left. An increase in the y-component refers to looking up; a decrease to looking down. An
increase in the z-component refers to tilting the head to the right; a decrease to tilting it to the left

detailed description of the experimental setting, and Vahle and Tomasik (2021) for a
similar experiment, with the focus being on memory performance, physical strength
and endurance. Figure 7 shows some example trajectories. It is easy to identify from
the left chart the time point when the participant is asked to raise her hands and to
build the letter ‘T’ directly afterwards. The virtual reality that was created for the
participants, was an avatar to mimic the movements. The participants were all young,
while the avatars were either young or elderly people. One of the questions of this
psychological experiment was whether the experimental condition, that is, the class of
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Fig. 8 Estimated weights (normed) for the 9 predictors (3 body parts x 3 coordinate systems) in the VR data
set. The first 3 weights belong to the head movements (global, local, orientational), the middle 3 weights
to the left hand movements, and the last 3 weights to the right hand movements

the avatar (young vs. elderly person) could be reconstructed from the movement data.
Thus we have a binary classification problem with multiple 3-dimensional functional
predictors (trajectories).

The task is to predict/identify the class of the avatar (young vs. elderly person)
using the movement data. To allow for the multi-dimensional functional predictors
(the trajectories), we set

d(Xi j , x j ) = 1

c j

√
√
√
√

3∑

r=1

∫

(X (r)
i j (t) − x (r)

j (t))2dt

where X (r)(t) describes the r -th component of X(t) and

c j =
√
√
√
√

3∑

r=1

∫
1

n − 1

n∑

l=1

(X (r)
l j (t) − 1

n

n∑

k=1

X (r)
k j (t))2dt .

In total there is data from n = 72 participants available and the movements are
tracked with a frequency of 10 Hz, resulting in patterns consisting of T = 4970 time
points per coordinate. The data is available at https://osf.io/h53rk/. We estimate
the weights with all available observations. The results are shown in Fig. 8. It can be
seen that the first two predictors (global and local position of the head) are weighted
distinctly higher than the following 7 predictors. The reason for this effect, however,
became clear after some closer inspection of the data as there is an artificial additive
shift between groups for the local head data. Due to a coding error, the reference point
for the local head data is different between groups. This shift is not apparent in the
global head data and thus, since both components describe the same movements, their
combination is a goodpredictor.Although this effect is only an artifact,we nevertheless
present the results for the entire data set since they confirm the good performance of
our procedure in terms of variable selection.
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4.3 Impact of gene expressions on the responses to drug therapy

This real data example is considered due to its potential for variable selection. The data
set contains gene expressions of p = 76 genes which are mainly related to the immune
system from n = 53 multiple sclerosis patients that were treated with interferon beta
(IFN-β). After an observation period of 2 years the patients were categorized into good
and poor responders. Thus we deal with a binary classification problem with multiple
functional predictors. The gene expression levels were measured at the beginning
of the treatment and after 3, 6, 9, 12, 18, and 24 months. Since there are missing
values the number of time points range from T = 4 to T = 7. In Baranzini et al.
(2004) this data set is explained and examined elaborately including a longitudinal
analysis of the genes responder effect using a repeated-measures analysis of variance.
Kayano et al. (2016) take this data set as an application example for their method of
differential analysis for time course gene expression profiles. They apply a functional
logistic model to identify the genes with dynamic alterations in good/poor responders.
The same data has also been analyzed by Hirose et al. (2007) who applied clustering
algorithms.

We estimate the weights with all available observations (n = 53) and afterwards
predict the class for each observation in a leave-one-out manner with weights that are
newly estimated with all but the one observation that shall be predicted. In Fig. 9 the
estimatedweights are shown and compared to themost significant genes for predicting
the responder effect determined by Baranzini et al. (2004) and Kayano et al. (2016)
respectively. In addition, in Table 3 the 20 genes weighted highest by our method are
listed. It can be seen that 8 (resp. 6) of the 20 genes are also part of the 20 (resp. 15)
most significant ones of Baranzini et al. (2004) (resp. Kayano et al. (2016)). Baranzini
et al. (2004) and Kayano et al. (2016) match in 9 genes.

4.4 Effect of movies onmotivational state

This data set is considered as an example for multi-class classification with categorical
predictors. It is called msq and is included in the R-package psychTools by Revelle
(2021). MSQ stands for motivational state questionnaire in which participants were
asked to indicate their current standing on a four-point scale from 0 (‘not at all’) to
3 (‘very much’) for 72 emotions like ‘afraid’, ‘angry’, ‘cheerful’, ‘happy’, ‘relaxed’,
etc. The whole data set contains data from 38 studies with different focuses. We were
interested in the effect of different movies shown to the participants and thus used the
data from the studies ‘FLAT’ and ‘Maps’. Themovies shownwere 9minute clips from
1) a BBC documentary on British troops arriving at the Bergen-Belsen concentration
camp, 2) a scene from the horror movie ‘Halloween’, 3) a documentary about lions on
the Serengeti plain, and 4) a scene from the comedy ‘Parenthood’. Our aim was then
to predict the movie a participant has seen based on his or her MSQ before and after
seeing the clip. For this sake we built the differences between the ratings on the MSQ
that was filled out after seeing the movie and the ratings on the MSQ from before the
movie, and used these values as categorical predictors. Thus a value of e. g. −3 means
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Fig. 9 Estimated weights (normed) for all 76 weights of the gene data set. The triangles indicate the 20
genes weighted highest by our method. The+mark the top 20 genes in Baranzini et al. (2004). The× stand
for the top 15 genes in Kayano et al. (2016)

that this emotion was rated as 3 (‘very much’) before the movie and as 0 (‘not at all’)
after the movie.

In total our weight estimation and prediction was based on n = 188 training obser-
vations with G = 4 and p = 72, where each of the 72 predictors is a categorical
variable with values in {−3,−2,−1, 0, 1, 2, 3}. Figure 10 shows the satisfying pre-
diction results based on a 70/30 split in training and test data for our procedure and
for a random forest in comparison.

Since the predictor-data is ordinal we also considered the distance measure

dord(Xi j , x j ) = 1

cordj
|Xi j − x j |

in addition to

dnom(Xi j , x j ) = 1

cnomj
·
{
0 if Xi j = x j
1 if Xi j �= x j

which is similar to the distance measure introduced in (1). The norming constants are
data dependent:

cordj =

√
√
√
√
√

1

n(n − 1) − 1

n∑

s=1

∑

t �=s

⎛

⎝|Xsj − Xt j | − 1

n(n − 1)

n∑

k=1

∑

l �=k

|Xkj − Xl j |
⎞

⎠

2

,
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Table 3 Genes weighted highest by our method (top 20) with a comparison to other methods, where +
means the gene is also part of the top 20 in Baranzini et al. (2004) and × stands for part of the top 15 in
Kayano et al. (2016)

Gene Normed weight Selected by other methods

CD22 0.0526

CD69 0.0524 ×
IFNaR2 0.0514

ITGA 0.0483

IFNaR1 0.0381

IL12Rb1 0.0304

IRF4 0.0297 +
GRB2 0.0280 + ×
CASPASE5 0.0261 +×
STAT4 0.0253 ×
CASPASE10 0.0252 +×
CASPASE3 0.0251

NFATC2b 0.0250

TYK2 0.0244 +
IL10 0.0231

CASPASE4 0.0230 +
IL10Rb 0.0230

JAK2 0.0226 +×
IFNgRa 0.0210

IRF2 0.0191 +

cnomj =

√
√
√
√
√

1

n(n − 1) − 1

n∑

s=1

∑

t �=s

⎛

⎝I {Xsj �= Xt j } − 1

n(n − 1)

n∑

k=1

∑

l �=k

I {Xkj �= Xl j }
⎞

⎠

2

.

The weights displayed in Fig. 11 are the minimizing weights for a model with p =
144, where Xi,73, . . . , Xi,144 are copies of Xi,1, . . . , Xi,72 for all i = 1, . . . , n and
d1 ≡ . . . ≡ d72 ≡ dnom whereas d73 ≡ . . . ≡ d144 ≡ dord. It can be seen that the
weights that correspond to dord (‘ordinal distance’) tend to be weighted higher than
those that correspond to dnom (‘nominal distance’), which confirms our expectations.
Also a binomial test on the signs of the differences (ω j+72 − ω j ) rejects the null that
these differences have median zero with p-value 0.038. The prediction results shown
in Fig. 10 are achieved with p = 72 and d j ≡ dord for all j .
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Fig. 10 Prediction accuracy per class for the MSQ data set with our procedure (data driven weights) and
with a random forest

Fig. 11 Estimated weights for a combination of two copies of the MSQ data set with different distance
measures, namely dnom (‘nominal distance’) and dord (‘ordinal distance’). The bars indicate the differences
between theweights that correspond to the ordinal and those that correspond to the nominal distancemeasure
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4.5 Housing in copenhagen

As another example with categorical predictors we consider the Copenhagen housing
data with a focus on variable selection. The data set is part of the R-packageMASS by
Venables and Ripley (2002). In the survey 1681 householders in Copenhagen where
asked about their satisfaction with their present housing circumstances which could be
high, medium or low. We handle this data as a classification problem with G = 3 and
three categorical predictors, namely the influence householders have on the manage-
ment of the property (high, medium or low), the type of rental accommodation (tower,
atrium, apartment or terrace), and the contact residents have with other residents (low
or high). Additionally, we simulate 6 further categorical covariates that are uniformly
distributed on {1, 2}, {1, 2, 3} and {1, 2, 3, 4} respectively. Thus our procedure should
be able to identify the 3 true predictors in the 9 covariates. In Fig. 12 the estimated
weights are displayed as boxplots over 500 independent repetitions (i.e., simulation of
the additional, noise variables has been carried out 500 times). As distance measure
we used the ordinal dord introduced in the previous example. It can be seen that the 3
true predictors get the highest weights, with the third one (‘contact’) seeming to have
the lowest influence on the satisfaction of the householders.

Fig. 12 Estimated weights (normed) for the Housing data set with 3 true predictors (ω1, ω2, ω3) and 6
additional noise variables (ω4, . . . , ω9)
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5 Concluding remarks

We proposed a nonparametric method for classification and regression estimation
where the covariates may be functional, categorical, or a mixture of both. We allowed
for multiple predictors as well as multi-class classification. A key property of our
method is its ability of variable/feature weighting, which can also be used for selection
purposes.

Although we focussed on functional and categorical predictors, our approach is
also suitable for continuous, or continuous mixed with functional and/or categorical,
covariates. Due to its universal structure our method works for all types of data that a
distance measure can be applied on.

Additionally other loss functions can be considered instead of the Brier Score / the
quadratic error. For example in medical applications it could be of interest to minimize
false negative results, which is in general also possible with our procedure by adapting
the loss function Q.

In our extensive simulation study and the application to real world data we showed
the good performance of our procedure both in terms of variable weighting/selection
as well as estimation and prediction. An interesting topic in addition could be a thor-
ough theoretical analysis of the asymptotic properties similar to the considerations in
Hall et al. (2007), who show for a model with continuous and categorical covariates
that irrelevant predictors are smoothed out by an optimal bandwidths determination.
However, this is beyond the scope of this paper and will be a topic for future research.
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