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Abstract
A least-squares bilinear clustering framework for modelling three-way data, where
each observation consists of an ordinary two-way matrix, is introduced. The method
combines bilinear decompositions of the two-waymatrices with clustering over obser-
vations. Different clusterings are defined for each part of the bilinear decomposition,
which decomposes the matrix-valued observations into overall means, row margins,
column margins and row–column interactions. Therefore up to four different classi-
fications are defined jointly, one for each type of effect. The computational burden is
greatly reduced by the orthogonality of the bilinear model, such that the joint cluster-
ing problem reduces to separate problems which can be handled independently. Three
of these sub-problems are specific cases of k-means clustering; a special algorithm
is formulated for the row–column interactions, which are displayed in clusterwise
biplots. The method is illustrated via an empirical example and interpreting the inter-
action biplots are discussed. Supplemental materials for this paper are available online,
which includes the dedicated R package, lsbclust.
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1 Introduction

Multiway data, a generalization of the familiar two-way samples-by-variables data
matrix, is becoming more common in a variety of fields. In computer vision appli-
cations, images are stored as three-way arrays, or third-order tensors, with rows and
columns representing pixel locations and the third way (tubes) representing different
color channels (e.g., Krizhevsky et al. 2012). Videos constitute fourth-order tensors,
since they capture a sequence of such images over time (e.g., Abu-El-Haija et al. 2016).
In the social sciences, a marketing research survey asking multiple individuals to rate
several products on various characteristics using a Likert scale generates a three-way
array of rating scores (e.g., DeSarbo et al. 1982). Similar research designs are com-
monly used in sensometrics (e.g., Cariou et al. 2021). Other applications include:
high-throughput molecular data in bioinformatics (e.g., Lonsdale et al. 2013); spec-
troscopic data in chemometrics (e.g., Faber et al. 2003; Bro 2006); and neuroimaging
data, collected using electroencephalography (EEG) or functional magnetic resonance
imaging (fMRI), for example (e.g., Genevsky and Knutson 2015).

A taxonomy of measurement data is given by Carroll and Arabie (1980), where a
mode is defined as “a particular class of entities” associated with a data array, such as
stimuli, subjects or scale items; a three-way array may have up to three modes. Kiers
(2000) introduced standardized notation and terminology for multiway analysis, while
Kroonenberg (2008) is devoted to multiway data analysis methodology.

Performing cluster analysis on one ormore of themodes of a three-way data arrayX
is an important problem in multiway data analysis. Statistical research into three-way
clustering can be broadly divided into two streams. The application of finite mixture
models for clustering three-way data has been studied in, amongst others, Basford
and McLachlan (1985), Hunt and Basford (1999), Vermunt (2007), Viroli (2011),
Meulders and De Bruecker (2018), Gallaugher and McNicholas (2020a, b). Whereas
these rely onmaximum likelihood estimation, another research streamhave focused on
nonparametric data approximation methods mainly via least-squares estimation. The
papers of Vichi (1999), Rocci and Vichi (2005), Vichi et al. (2007), Papalexakis et al.
(2013), Wilderjans and Ceulemans (2013), Llobell et al. (2019), Llobell et al. (2020)
and Cariou et al. (2021) belong to this stream, as does our paper. An approach often
used in this stream is to generalize a three-way data decomposition, such as Tucker’s
three-mode factor analysis (Tucker3; Tucker 1966) or the Candecomp/Parafac
decomposition (CP; Carroll and Chang 1970; Harshman 1970; Hitchcock 1927), by
adding clustering over one or more of the modes.

Here we propose a new method—called least-squares bilinear clustering (or lsb-
clust)—derived in a similar manner but from a different starting point. In contrast
to starting with a three-way decomposition, we start with a bilinear (or biadditive)
decomposition of the matrix slices Xi (i = 1, . . . , I ) of X for the mode (by conven-
tion, the first mode) over which we want to cluster (e.g., Denis and Gower 1994). An
example of a bilinear approximation of a matrix Xi is

Xi ≈ m11
′ + a1

′ + 1b
′ + cd

′
, (1)

where 1 denotes a column vector of ones. The terms on the right-hand side of (1)
can be interpreted as the grand mean (m), row main effects (a), column main effects
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Least-squares bilinear clustering of three-way data 1003

(b) and row–column interactions (cd
′
), respectively, and are subject to appropriate

identification restrictions.
By adding one ormore sets of clusters to the effects on the right-hand side of Eq. (1),

and by decomposing all matrix slices at the same time, the lsbclustmethod ensures
that the estimated effects are equal for observations in the same cluster. The choice
of bilinear decomposition has two interesting features. First, it allows the results to
be displayed graphically using biplots (Gower et al. 2011; Gower and Hand 1996;
Gabriel 1971), and other standard graphs. Second, it provides the possibility to have a
different set of clusters for each of the four types of effects. This can be useful in cases
where interesting differences can be expected not only with respect to the row–column
interactions, but also with respect to the grandmean andmain effects on the right-hand
side of (1). We will discuss this aspect further in Sect. 3.

The main contribution of this paper is the introduction of the lsbclustmodel and
loss function, togetherwith an algorithm for estimating theparameters.Wealsoprovide
an implementation of this algorithm and its related graphical procedures in an R (R
Core Team 2020) package lsbclust (available on the Comprehensive R Archive
Network, or CRAN), while supplemental materials illustrate its use. The method can
be used as a complement to or replacement of other three-way data analysis procedures.

The remainder of the paper is structured as follows. Section 2 introduces the basic
model and loss function used, which Sect. 3 augments with clustering to arrive at
the lsbclust formulation. Section 4 shows how to simplify the loss function, and
Sect. 5 discusses our algorithm for estimating the parameters. Enhancements to the
basic method are discussed in Sect. 6, including using different bilinear models and
aspects of biplot construction. The results of a simulation study is reported in Sect. 7.
An empirical example is presented in Sects. 8, and 9 concludes.

Before we introduce lsbclust in more detail, we provide more detail on related
methods in Sect. 1.1.

1.1 Relatedmethods

The most prominent multiway data analysis methods, which include the tucker3 and
CP decompositions, seek to generalize the singular value decomposition (SVD) of
a matrix to the multiway case. Kolda and Bader (2009) provide an excellent review
of these tensor decomposition methods and their applications across diverse fields.
De Silva and Lim (2008) discusses mathematical aspects of generalizing the Eckart–
Young theorem (Stewart 1993; Eckart and Young 1936; Schmidt 1907) to higher-order
tensors, while Kiers and Van Mechelen (2001) discuss and illustrate the application
of the tucker3 decomposition.

Three-mode factor analysis (Tucker 1966; Kroonenberg and de Leeuw 1980), com-
monly referred to as Tucker3, is the most general widely-used three-way method.
Let XJ ,K I = [

X1 X2 · · · XI
]
, and let the component matrices B, C and D be low-

dimensional columnwise orthonormal configurations for the first, second and third
ways of X with dimensions P , Q and R respectively. Also, let H : P × Q × R be
the so-called core array, which gives the interactions between the elements of the
component matrices. The Tucker3 model has loss function
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1004 P. C. Schoonees et al.

LT3(B,C,D,H) =
∥
∥∥XJ ,K I − CHQ,RP (B ⊗ D)

′∥∥∥
2

=
I∑

i=1

∥∥∥∥
∥∥
Xi −

P∑

p=1

bipCHpD
′
∥∥∥∥
∥∥

2

, (2)

where bip denotes an element of B, Hp : Q × R is a slice of H along the first
mode, ‖ · ‖ is the Frobenius norm and ⊗ is the Kronecker product. Interpreting a
Tucker3 solution involves interpreting the three component matrices and the core.
No clustering is performed, and (2) is typically minimized by alternating least squares
(ALS; Kroonenberg and de Leeuw 1980).

The CP decomposition (Carroll and Chang 1970; Harshman 1970) is a restricted
version of Tucker3 where P = Q = R and H is replaced by E. Here E contains
elements epqr = 1 if p = q = r and epqr = 0 otherwise. This implies that each
component (column) in B is related to a single component in C and D, and vice versa,
while in Tucker3 all components in one mode are related to all other components in
the other modes. The CP loss function is

LCP(B,C,D) =
∥∥∥XJ ,K I − CEP,PP (B ⊗ D)

′∥∥∥
2

=
I∑

i=1

∥∥∥Xi − C diag(bi )D
′∥∥∥

2
. (3)

Here diag(bi ) is the diagonal matrix with the i th row of B on the diagonal, and
EP,PP = [

E1 E2 · · · Ep
]
with Ep being the pth matrix slice of E.

Neither of these methods employ clustering along any of the modes, but Rocci and
Vichi (2005) formulate such a variant of Tucker3, namely T3clus. The idea is to
replace B by the indicator matrix G : I × U , which simply indicates which of U
clusters each of the I observations belongs to. The core array H now represents the
three-way array of cluster centroids in the reduced component space. The T3clus loss
function is

LT3clus(G,C,D,H) =
I∑

i=1

U∑

u=1

giu
∥∥∥Xi − CHuD

′∥∥∥
2
. (4)

Another related approach is the clusterwise CP method of Wilderjans and Ceule-
mans (2013)—CPclus hereafter. The loss function for this approach is

LCPclus(G,B, {Cu}Uu=1, {Du}Uu=1) =
I∑

i=1

U∑

u=1

giu
∥∥∥Xi − Cu diag(bi )D

′
u

∥∥∥
2
. (5)

In contrast to T3clus, here the component matrices are cluster-specific.
Table 1 gives a summary of the loss functions of these three-way decompositions,

together with the lsbclust loss function for the interaction effects (where J denotes
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Table 1 A summary of loss functions for the three-way methods discussed in Sect. 1.1

Method Clustered Loss function

Tucker3 ✗
∑I

i=1

∥
∥∥Xi − ∑P

p=1 bipCHpD
′∥∥∥

2

T3clus ✓
∑I

i=1
∑U

u=1 giu
∥∥
∥Xi − CHuD

′∥∥
∥
2

CP ✗
∑I

i=1

∥∥∥Xi − C diag(bi )D
′∥∥∥

2

CPclus ✓
∑I

i=1
∑U

u=1 giu
∥∥∥Xi − Cu diag(bi )D

′
u

∥∥∥
2

lsbclust ✓
∑I

i=1
∑U

u=1 g
(i)
iu

∥∥∥J
(
Xi − CuD

′
u

)
J
∥∥∥
2

See the text for references and an explanation of the notation used. For lsbclust, we
include only the part of the loss function which relates to the row–column interactions.
Here J denotes a centring matrix of the appropriate size

a centring matrix of the appropriate size). From the table it is clear that each method
approximates the matrix slices Xi (i = 1, . . . , I ) in different ways. Tucker3 and
Candecomp/Parafac are symmetric with respect to all three modes, but do not
involve clustering. In case all Xi are double-centred, T3clus approximates Xi in
cluster u by CHuD

′
, as compared to CuD

′
u for lsbclust. T3clus therefore requires

the clusterwise approximation of Xi to lie in the same row and column subspaces
across clusters, while lsbclust has no such restrictions. The lsbclust loss function
is clearly a constrained version of CPclus which replaces diag(bi ) with the identity
matrix. This reduces the number of parameters and simultaneously enforces the same
interpretation for all members of the same cluster. The additional constraint means
that a single biplot can be used to interpret the interaction effects in a cluster, instead
of requiring one plot per cluster member.

In the special case where X contains indicator matrices for each subject, lsbclust
has a strong connection to the latent-class bilinear multinomial logit (lc- bml) model
of van Rosmalen et al. (2010). Their model was developed specifically to deal with
response styles when analyzing two-way self-report survey data. More details on
the lc- bml model, and its connection to lsbclust, are given in the supplemental
materials.

The next section discusses the basic building blocks of lsbclust.

2 Basic model and loss function

Consider real-valued data collected in a three-way arrayX. For the marketing research
survey example, the entry xi jk of X is the rating by person i of product j on charac-
teristic k, with i = 1, . . . , I ; j = 1, . . . , J ; and k = 1, . . . , K , respectively. Let Xi

denote the J × K matrix of responses for subject i , which is also the i th (frontal) slice
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of the array X. By convention, we single out the first way of X by treating the Xi as
observations, but the method could also be applied to the second or third way of X.

We derive the proposed lsbclust formulation by augmenting (with clusters;
Sect. 3) the following least-squares loss function:

L(m, a, b,C,D) =
I∑

i=1

∥∥∥Xi −
(
m1J1

′
K + a1

′
K + 1J b

′ + CD
′)∥∥∥

2
. (6)

Here ‖ · ‖ is the Frobenius norm. Moreover, 1K is the length-K vector of ones; below
we will drop the subscript—as in 1—for simplicity. Equation (6) approximates each
Xi using the same bilinear (or biadditive) model. This model contains a grandmeanm,
the row and column main effects a and b respectively, and row–column interactions
CD

′
.

The matrices C and D are low-dimensional representations of the rows (products)
and columns (characteristics) of the Xi matrices respectively, but after adjusting for
main effects. Representing the interaction effects using such inner products permit
these to be displayed in biplots if the dimensionality of C and D are low enough
so that displays can be made (Gower et al. 2011; Gower and Hand 1996; Gabriel
1971). Therefore, the dimensionality is typically set to two, although values up to
min{J , K }−1 are possible. To ensure uniqueness of the model, the usual sum-to-zero
constraints a

′
1 = b

′
1 = 0 and 1

′
C = 1

′
D = 0 must be imposed. Additionally, the

columns of C and D are required to be orthogonal (for more information, see Denis
and Gower 1994, as well as Sect. 6.3). Model (6) has an analytical solution.

3 Capturing heterogeneity with clusters

Equation (6) applies the same parameters to the entire data set. To capture potential
heterogeneity, we allow for the existence of a prespecified number of clusters in a
single mode between which the parameters in the bilinear decomposition of the Xi

matrices may vary. Moreover, since the bilinear decomposition itself has four different
sets of parameters, we introduce four sets of clusters—one for each type of parameter.
This allows the model to recognize that, for example, although Xi and Xi ′ (i �= i ′)
are similar with respect to main effects, they could differ in the interaction effects (or
vice versa).

Let G(o) be the I × R matrix of cluster memberships for the grand mean effect
m, which has g(o)

ir = 1 if person i belongs to cluster r and g(o)
ir = 0 otherwise

(r = 1, 2, . . . , R). Similarly, G(r) is the I × S matrix of cluster memberships for the
row effects, G(c) the I × T matrix of cluster memberships for the column effects,
andG(i) the I ×U matrix of cluster memberships for the interaction effects. Now, by
incorporating the clustering, the least-squares loss function becomes
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L(G(o),G(r),G(c),G(i),m,A,B,C,D)

=
∑

i,r ,s,t,u

g(o)
ir g(r)

is g
(c)
i t g(i)

iu

∥∥∥Xi −
(
mr11

′ + as1
′ + 1b

′
t + CuD

′
u

)∥∥∥
2

=
∑

i,r ,s,t,u

g(o)
ir g(r)

is g
(c)
i t g(i)

iu L(i |r , s, t, u), (7)

with the summation over all observations (I ) and clusters (R, S, T andU ). Herem
′ =

[m1 · · · mR], A = [a1 · · · aS], B = [b1 · · · bT ], C′ = [C′
1 · · · C

′
U ] and D

′ =
[D′

1 · · · D
′
U ]. Note that it is assumed implicitly that all low-rank decompositions are

of the same rank P for all clusters. For identifiability, the same sum-to-zero constraints
nowapply to each cluster-specific set of parameters, i.e.,D

′
u1 = 0 for allu = 1, . . . ,U .

The columns of all Cu and Du matrices are orthogonal.
Equation (7) allows for a total of RSTU clusters by clustering each Xi on four

different types of effects at the same time. However, we show next that the joint clus-
tering problem can be simplified into four separate clustering problems, significantly
reducing the computational complexity since only R + S + T +U clusters will need
to be found.

4 Decomposing the loss function

To simplify the exposition, note that mathematically we can drop the sum-to-zero
constraints from the formulation by introducing centering matrices of the form

Jc = Ic − 1

c
1c1

′
c, (8)

for some positive integer c controlling the size of the matrix (which we duly omit
below for simplicity). This is done by redefining the terms in the summation in (7) as

L(i |r , s, t, u) =
∥∥
∥Xi −

(
mr11

′ + Jas1
′ + 1b

′
tJ + JCuD

′
uJ

)∥∥
∥
2
, (9)

such that the sum-to-zero constraints on the columnsofCu andDu , andon as and bt , are
automatically enforced. For example, estimating the parameters in Jas is equivalent
to estimating as subject to 1

′
as = 0. To simplify the notation, we redefine A =

[Ja1 · · · JaS] to avoid writing JA. The matrices B, C and D are also redefined
analogously.

We proceed to simplify (9) by first expanding the double-centred JXiJ into separate
terms. Then, by adding two additional centering operators for the row and column
means, Xi can be rewritten as

Xi = 1
′
Xi1

J K
11

′ + 1

J
11

′
XiJ + 1

K
JXi11

′ + JXiJ. (10)
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1008 P. C. Schoonees et al.

We can now associate each of the terms in (10) with the corresponding terms in the
model (9):

L(i |r , s, t, u) =
∥∥∥
(

1
J K 1

′
Xi1 − mr

)
11

′ + 1
(
1
J 1

′
Xi − b

′
t

)
J

+ J
( 1
K Xi1 − as

)
1

′ + J
(
Xi − CuD

′
u

)
J‖2 . (11)

It can be shown (see the appendix in the supplementalmaterials) that the decomposition
(11) is orthogonal such that

L(i |r , s, t, u) = J K
∥∥∥
(

1
J K 1

′
Xi1 − mr

)∥∥∥
2 + J

∥∥∥
(
1
J 1

′
Xi − b

′
t

)
J
∥∥∥
2

+ K
∥∥J

( 1
K Xi1 − as

)∥∥2 +
∥∥∥J(Xi − CuD

′
u)J

∥∥∥
2

= L(o)(i |r) + L(r)(i |s) + L(c)(i |t) + L(i)(i |u). (12)

This equality follows from the fact that all the cross-products are zero. Importantly,
the orthogonality leads to a great simplification in the clustering, since now the loss
function (7) equals

L(G(o),G(r),G(c),G(i),m,A,B,C,D)

= J K
I∑

i=1

R∑

r=1

g(o)
ir

∥
∥∥
(

1
J K 1

′
Xi1 − mr

)∥
∥∥
2

+ K
I∑

i=1

S∑

s=1

g(r)
is

∥∥J
( 1
K Xi1 − as

)∥∥2

+ J
I∑

i=1

T∑

t=1

g(c)
i t

∥∥∥
(
1
J 1

′
JXi − b

′
t

)
J
∥∥∥
2

+
I∑

i=1

U∑

u=1

g(i)
iu

∥
∥∥J

(
Xi − CuD

′
u

)
J
∥
∥∥
2

= L(o)
(
G(o),m

) + L(r)
(
G(r),A

) + L(c)
(
G(c),B

) + L(i)
(
G(i),C,D

)
. (13)

The main consequence of (13) is that the joint clustering reduces to separate clus-
terings on the grand means, row main effects, column main effects and interactions
respectively. This implies that each of these four parts can be treated independently
under this loss function and model. It also gives mathematical justification for the
procedure whereby all Xi are first double-centred to remove the overall, row and
column margins, and then analyzed by minimizing L(i)

(
G(i),C,D

)
to study the row–

column interactions. If the researchers are interested in the grandmean, row or column
marginal effects, these can be analyzed separately by minimizing the corresponding
loss functions. These are frequently omitted when only the row–column interactions
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Algorithm 1: ALS algorithm for minimizing L(i)
(
G(i),C,D

)

1. Set k = 0 and �0 = I . Randomly initialize G(i) as G0.
2. While �k > 0:

(a) Compute cluster sizes I1, . . . , IU using diag(G
′
kGk ).

(b) For u = 1 to U :
i. Compute the cluster mean Xu = 1

Iu

∑I
i=1 gkiuXi .

ii. Compute SVD(JXuJ) = Uu�uV
′
u .

iii. Update JCu = Uu�α
uLP and JDu = Vu�1−α

u LP .
(c) Update Gk to Gk+1 by assigning all observations to the closest (approximated) cluster mean:

arg
U
min
u=1

∥
∥∥J

(
Xi − CuD

′
u

)
J
∥
∥∥
2
, i = 1, . . . , I .

(d) Compute the number of reassignments

�k+1 = I − 1
′
diag(G

′
kGk+1).

(e) Update k ← k + 1.

3. Output Gk for G(i), as well as C and D.

are of interest; otherwise, the researcher may prefer to jointly cluster on more than
one of these effects at the same time (see Sect. 6.1).

Next, we discuss computational aspects of the proposed lsbclust method.

5 Estimation algorithms

Due to the form of the loss function (13), we can treat each of the compo-
nents separately. Conveniently, the loss functions L(o)

(
G(o),m

)
, L(r)

(
G(r),A

)
and

L(c)
(
G(c),B

)
are specific instances of the well-known k-means loss function (e.g.,

Everitt et al. 2011). They differ only with respect to the data matrix Y : I × d (say)
on which k-means cluster analysis is to be applied, which can respectively be defined
as follows:

• For minimizing L(o)
(
G(o),m

)
, Y has a single column (d = 1) containing the

overall means 1
J K 1

′
Xi1 of the Xi (i = 1, . . . , I );

• For minimizing L(r)
(
G(r),A

)
, the rows of Y (d = J ) consist of the row mean

vectors 1
K JXi1 (i = 1, . . . , I ); and

• Forminimizing L(c)
(
G(c),B

)
, the rows ofY (d = K ) are the columnmean vectors

1
J JX

′
i1 (i = 1, . . . , I ).

Hence optimizing L(o)
(
G(o),m

)
, L(r)

(
G(r),A

)
and L(c)

(
G(c),B

)
can resort to stan-

dard methods for k-means on the overall mean, row margins and column margins
respectively. Also, there are a variety of tools available for selecting R, S and T .
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Minimizing L(i)
(
G(i),C,D

)
however requires a custom algorithm. The main steps

of our algorithm, which is based on block-relaxation methods (see, for example, de
Leeuw 1994), is outlined in Algorithm 1. It iterates over optimizing C and D in Step
2b while keeping G(i) fixed, and vice versa in Step 2c. This approach is also known
as alternating least squares (ALS).

Convergence is reached when no reassignment of a single observation to a different
cluster will reduce the value of the loss function. This corresponds to �k = 0 in
Algorithm 1. The algorithm is guaranteed to converge monotonically, but only to
some accumulation points which are usually local minima. It must be initialized by
a starting configuration for G(i). To increase the likelihood of locating the global
minimum, it is advisable to use multiple (random) starting values for G(i).

We now describe the derivation of the key steps of Algorithm 1. Step 2b, where
L(i)

(
G(i),C,D

)
is minimized overC andD for fixedG(i), relies on the decomposition

L(i)
(
G(i),C,D

)

=
I∑

i=1

U∑

u=1

g(i)
iu

∥∥J
(
Xi − Xu

)
J
∥∥2 +

U∑

u=1

Iu
∥∥∥J

(
Xu − CuD

′
u

)
J
∥∥∥
2
. (14)

Here Iu = ∑I
i=1 g

(i)
iu is the cardinality of cluster u, and Xu = 1

Iu

∑I
i=1 g

(i)
iuXi is the

cluster mean.
Since only the final term in (14) depends onC andD, it is sufficient to minimize this

term only. Let the singular value decomposition (SVD) of JXuJ be Uu�uV
′
u , where

Uu and Vu are orthonormal and �u diagonal. The Eckart–Young theorem (Eckart and
Young 1936; Schmidt 1907) establishes the best rank-P least-squares approximation
of JXuJ as the truncated SVD Uu�uLPV

′
u , where

LP =
[
IP 0
0 0

]
. (15)

Multiplication by LP sets all singular values except the first P equal to zero. Conse-
quently, we can update C and D using

JCu = Uu�
α
uLP

JDu = Vu�
1−α
u LP , (16)

where �α denotes the diagonal matrix containing the singular values to the power α.
The parameter 0 ≤ α ≤ 1 is typically taken to be 0.5, but can be set by the user to
improve the interpretability of the graphical output. See Sect. 6.3 for a description of
the heuristic rule used in our implementation.

Now in Step 2c, G(i) is updated while regarding C and D as fixed. The updated
G(i) is constructed by simply assigning each i to the cluster with the closest mean,
henceminimizing L(i)

(
G(i),C,D

)
for each individual in a greedymanner. This entails

assigning observation i to cluster
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argminUu=1

∥
∥∥J

(
Xi − CuD

′
u

)
J
∥
∥∥
2
. (17)

A few details remain. When an empty cluster is encountered, that cluster is reini-
tialized using the worst-fitting observation across all clusters. Label-switching is
countered by reassigning cluster labels between iterations when necessary. Finally,
we prefer reporting the minimized value of L(i)

(
G(i),C,D

)
after division by

∑I
i=1

∥∥JXiJ
∥∥2, since this standardized value lies in [0, 1].

In the next section, we briefly discuss alternative model formulations.

6 Enhancements

Here we first consider accommodating alternative bilinear model specifications in
the lsbclust loss function (7). Thereafter, we discuss restricted model formulations
for the interaction effects that reduce the number of parameters and aid interpretation.
Finally, we briefly consider scaling options used in biplot construction. Some practical
guidelines on performingmodel selection are provided in Sect. 8, where an application
is discussed.

6.1 Using other bilinear decompositions

In certain situations, a different bilinear model may be more appropriate than the
one used in the loss function (7). For example, the researcher may not want to treat
the grand, row and column means separately, in which case a more appropriate loss
function would simply be

L(G(i),C,D) =
∑

i,u

g(i)
iu

∥∥∥Xi − CuD
′
u

∥∥∥
2
, (18)

with the only constraint required being orthogonality of the columns ofCu andDu . Yet
a situation may arise where the row means (but not the column means) are themselves
interesting, leading instead to the following loss function:

L(G(r),G(i),A,C,D) =
∑

i,s,u

g(o)
ir g(r)

is

∥∥∥Xi −
(
as1

′ + CuD
′
uJ

)∥∥∥
2
. (19)

Here the centering matrix enforces sum-to-zero constraints on the columns of Du ,
which allows as to be estimated.

In fact, a variety of different bilinear models can be specified by dropping one or
more constraints, and hence cluster sets, from the formulation (7). An exhaustive list of
the nine possibilities are given in Table 2, with Model 9 being the original formulation
in (7).With the exception ofModel 6, these models are orthogonal as in Sect. 4. Hence
the algorithms in Sect. 5 also apply for these bilinear models (except Model 6), after
minor adjustments to account for the different centering options.
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Table 2 Asummary of themodels implied by different choices of δ in the generalized lsbclust formulation

Model δ1 δ2 δ3 δ4 Model for Xi

1 0 0 0 0 CuD
′
u

2 0 1 0 0 as1
′ + CuD

′
uJ

3 0 1 0 1 mr11
′ + Jas1

′ + CuD
′
uJ

4 1 0 0 0 1b
′
t + JCuD

′
u

5 1 0 1 0 mr11
′ + 1b

′
tJ + JCuD

′
u

6 1 1 0 0 −mr11
′ + as1

′ + 1b
′
t + JCuD

′
uJ

7 1 1 0 1 Jas1
′ + 1b

′
t + JCuD

′
uJ

8 1 1 1 0 as1
′ + 1b

′
tJ + JCuD

′
uJ

9 1 1 1 1 mr11
′ + Jas1

′ + 1b
′
tJ + JCuD

′
uJ

Note that Model 6 is not orthogonal and is only included for completeness

InTable 2, and in our software,we characterize the differentmodels using a vector of
four binary indicators, δ

′ = (δ1, δ2, δ3, δ4). Each of these correspond to the presence
or absence of one of the centering matrices in the model formulation. Specifically,
δ1 = 1 and δ2 = 1 indicate centering the columns of Cu and Du respectively (as in
JCu and JDu), while δ3 = 1 and δ4 = 1 in addition implies respectively centering the
column and row means—as in Jbt and Jas . Additionally, it is only possible to have
δ3 = 1 if δ1 = 1; an equivalent relationship holds between δ4 and δ2.

6.2 Common row or column coordinates

The formulation in (7) can contain a large number of parameters. This is mainly
because the interaction approximationsCuD

′
u require the row and column representa-

tions, Cu and Du respectively, to be different for each cluster. We can counter this by
restricting either the rows or columns to have a common representation across clus-
ters, which has the added benefit of making the biplots based on Cu and Du easier to
interpret. We see this interpretability as the main reason to elect such a constraint; in a
practical application this must be weighed against the resulting reduction in goodness-
of-fit.

Consequently, we allow the following three options for modelling the interactions:

(I) CuD
′
u : both Cu and Du are specific to the interaction cluster (as above); or

(II) C1D
′
u : a common row representation C1 for all interaction clusters, and a dif-

ferential column representation Du for each interaction cluster; or
(III) CuD

′
1: differential row representationsCu but a common column representation

D1.
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If the alternative specifications (II) or (III) are used,CuD
′
u in (7) should be replaced

byC1D
′
u orCuD

′
1 respectively. These restricted formulations also require adjustments

to Algorithm 1. To facilitate this, we define the following block matrices by stacking
either row- or column-wise:

C∗ = [√
I1C

′
1J

√
I2 C

′
2J · · · √

IU C
′
UJ

]′;
D∗ =

[√
I1 D

′
1J

√
I2 D

′
2J · · · √

IU D
′
UJ

]′
;

X(c) = [√
I1 X1J

√
I2 X2J · · · √

IU XUJ
] ;

X(r) =
[√

I1 X
′
1J

√
I2 X

′
2J · · · √

IU X
′
UJ

]′
. (20)

The final term in (14) can then be rewritten in the respective formulations as

∥∥∥J
(
X(c) − C1D

′
∗
)∥∥∥

2
in case (II), or

∥∥
∥
(
X(r) − C∗D

′
1

)
J
∥∥
∥
2

in case (III).

Step 2b in Algorithm 1 is subsequently amended to perform a single SVD on either
JX(c) to update C1 and D∗ under (II), or on X(r)J to update C∗ and D1 under (III).
From these, updates to JDu or JCu are derived for u = 1, . . . ,U by extracting the
relevant block matrices from D∗ or C∗ respectively.

6.3 Biplot interpretability

Under case (I), where there is no requirement for the interaction decompositions to
be similar across clusters, it can aid interpretation to rotate the configurations so that
the biplot axes lie more or less in the same direction. For any orthogonal matrix

Qu , it holds for the inner product matrices that CuD
′
u = (

CuQu

) (
DuQu

)′
, and hence

these are invariant to orthogonal rotations. The problem of finding orthogonal matrices
Qu, u = 1, 2, . . . ,U , such that either the row or column configurations match each
other as closely as possible is known as the generalized orthogonal Procrustes problem
(Gower 1975; Gower and Dijksterhuis 2004). We apply this by default in our software
implementation.

Besides this adjustment, two types of scalings can be used to make the biplot
displays more attractive, namely so-called α- and λ-scaling. First, since our choice of
α in (16) does not change the inner product approximations, we are free to choose it
such that the resulting biplots are easy to interpret. In our software implementation
we use as a heuristic method the value of α which maximizes the minimum Euclidean
distance over all row and column points to the origin. Alternatively, the user can choose
any other quantile of these distances, such as the median, or specify the desired value
of α explicitly.

Second, note that formatricesA andB it holds thatAB
′ = (λA)(B

′
/λ), so thatλ can

also be freely chosen. Following Gower et al. (2011, Section 2.3.1), we choose λ such
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that the average squared Euclidean distances from the two sets of points represented
by the rows of the matrices in (16) to the origin are equal. For case (I) in (16), for
example, this amounts to choosing

λ =
(
J‖V�1−α

u L‖2
K‖U�α

uL‖2
)1/4

=
(
J tr �1−α

u L
K tr �α

uL

)1/4

.

The appendix in the supplemental materials provides information on goodness-of-
fit indices to quantify the quality of the within-cluster approximations.

Next, we report the results of a stimulation study.

7 Simulation study

A simulation study was conducted to assess cluster membership recovery of lsb-
clust. Since the separate clustering problems for the overall mean, row means and
column means are simply k-means problems, we focus on reporting the results for the
row–column interactions. Simulation studies for ordinary k-means can be found, for
example, in Milligan (1980).

The results of lsbclust are compared to that of T3clus, as well as to two differ-
ent versions of k-means clustering. The first version of k-means, which we will call
vectorized k-means or vecKmeans, merely vectorizes the matrix slices by stringing
them out as long vectors and then applies ordinary k-means to the matrix having these
vectors as rows. The second variation first obtains the best P-dimensional approxima-
tion to eachmatrix slice using the SVD, and then applies vecKmeans. This variant we
call dimKmeans. Both these methods are to be compared to the lsbclust interaction
clustering, hence the matrix slices Xi are double-centred before being submitted to
these procedures.

Simulated data from the lsbclustmodel are constructed according to the following
steps:

1. Simulate the cluster membership matrixG(i) given the required number of clusters
U and the number of observations I . The proportion of observations attributed to
each class,πu, u = 1, . . . ,U , must be specified. Similarly, generateG(o),G(r),G(c)

with R, S and T clusters respectively. The same cluster membership probabilities
are used for these clusters.

2. Simulate overall means mr , r = 1, . . . , R, from a standard normal (Gaussian)
distribution, as well as row means as, s = 1, . . . , S, and column means bt , t =
1, . . . , T . These are also drawn from standard normal distributions, and subse-
quently centred.

3. Simulate matrices Xu, u = 1, . . . ,U , representing the cluster means in (14), as
follows:

(a) Generate two random orthogonal matrices using Stewart (1980)’s method, rep-
resenting the rows and columns in P-dimensional space. Column-centre both
these matrices to arrive at Uu and Vu , say. If case (a) or (b) applies, either the
same Uu = U or Vu = V is used for all clusters.
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(b) Generate P singular values as random numbers on [0.5, 5], and sort these in
decreasing order in the vector γ u . If case (a) or (b) applies, the same singular
values γ u = γ are used for all clusters.

(c) Construct �u = diag
(
γ u

)
and consequently Xu = Uu�uV

′
u .

4. Finally, construct the simulated X by using the relevant simulated cluster means
of each type for each matrix slice, and by adding random noise simulated from a
normal (Gaussian) distributionwith zeromeanand standard errorσ .Hereσ controls
the signal-to-noise ratio: larger σ makes it harder to estimate the parameters used
in the simulation steps.

In our simulation study, the following factors were varied:

• The number of observations, I ∈ {100, 500};
• The interaction decomposition: (a) C1D

′
u (rows fixed across clusters), (b) CuD

′
1

(columns fixed) or (c) CuD
′
u (neither fixed);

• The error standard deviation, σ ∈ {0.5, 1, 1.5};
• The cluster proportions, πu , being either balanced (π

′
u = (0.2, 0.2, 0.2, 0.2, 0.2))

or unbalanced (π
′
u = (0.1, 0.15, 0.2, 0.25, 0.3)); and

• The dimensionality of the interaction decomposition, P ∈ {2, 5}.
This translates to a 32×23 design, with 72 conditions. For simplification, the following
were kept fixed: the model simulated from, namely model (9)—see Table 2; the size
of the matrix slices, J = K = 8; and the number of clusters, R = S = T = U = 5.

For each of the 72 conditions, we generate 100 parameter sets. In turn, for each of
these parameter sets, we generate 50 randomly sampled data sets, resulting in 5000
simulated data sets per condition, or 360,000 in total. The results can be assessed both
on clustering quality and estimation accuracy, where the latter includes clustering
quality as well as parameter recovery. Here we discuss clustering quality only.

7.1 Clustering quality

Cluster recovery is measured by the adjusted Rand index (ARI; Hubert and Arabie
1985), which in our case quantifies the similarity between the actual, simulated clus-
tering and that recovered by an algorithm. It improves on simple cluster agreement by
adjusting for the chance of a randomly chosen pair of subjects falling in the same class.
The ARI takes a value of one when the cluster recovery is perfect, and zero when the
algorithm performs similarly to random assignment. The ARI can also take negative
values, which indicate worse performance than random assignment. We first report
the performance profiles of the ARI, which assesses how well each method performs
relative to all the other methods. Thereafter, we consider the absolute performance of
the methods.

7.1.1 Performance profiles

Performance profiles are used to comparemultiple algorithmson a chosenperformance
metric (Dolan and Moré 2002; van den Burg and Groenen 2016). The basic idea is
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= = =

Fig. 1 Performance profiles based on the adjusted Rand index, for P = 2 dimensions and a sample size of
I = 100

to express the performance of each algorithm relative to that of the best performing
algorithmon each particular data set, and then to plot the cumulative distribution of this
relative performance. Denote by D the set of data sets and by C the set of algorithms.
Suppose that pd,c is the ARI for d ∈ D and c ∈ C. The performance ratio rd,c is then
defined as the ratio of the best performing ARI on data set d to pd,c:

rd,c = maxc∈C pd,c

pd,c
. (21)

Typically, the best performing method has a performance ratio of one, with other
methods having larger performance ratios, indicating how close these methods came
to the best method. However, for the ARI, there is one caveat: the ARImay be negative
or even exactly zero, in which case (21) do not work as intended. We circumvent this
problem by adding a small positive constant to both the numerator and denominator
in (21).

The performance profile for algorithm c is simply the empirical cumulative distri-
bution function (ecdf) of the performance ratios. This can be calculated as

Pc(ν) = |{d ∈ D : vd,c ≤ ν}|
|D| (22)

where | · | denotes the cardinality of a set. Therefore, Pc(ν) is simply the empirical
probability of algorithm c having an performance ratio of at most ν, and by extension
Pc(1) is the empirical probability that algorithm c achieves the best performance.
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Fig. 2 Performance profiles based on the adjusted Rand index, for P = 2 dimensions and a sample size of
I = 500

We calculate performance profiles for each combination of the five factors manip-
ulated in the simulation study. The results are shown in Figs. 1 and 2. Both of these
figures pertain to P = 2 dimensions, with Figs. 1 and 2 purporting to data sets with
I = 100 and I = 500 observations respectively. For the sake of brevity, we omit the
figures for P = 5 dimensions: in these cases, all algorithms achieve close to optimal
results.

The results in Figs. 1 and 2 show that lsbclust generally outperforms the other
methods, since its performance profiles in general are larger than that of the other
methods. The next best method is vecKmeans, with T3clus coming in last. It should
be expected that lsbclust should perform well, since it was used to generate the
data. vecKmeans is quite competitive when interaction decomposition (c) is used
(where neither component matrices are fixed across clusters). When the actual model
do include restrictions on the interaction decomposition, lsbclust performs much
better than the other methods.

In terms of factors manipulated in the study, the error standard deviation (σ ), the
sample size I and the interaction decomposition is most important. Whether the clus-
ters are balanced or not has very little bearing on the results.

Having assessed the relative performance of the methods, we turn our attention to
the absolute ARI achieved on the simulated data.

7.1.2 Adjusted Rand index

Table 3 reports the average ARI for the different methods. We first calculate the aver-
age ARI for the 50 data sets generated for each set of parameters, and then average
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the resultant 100 average ARI’s over the 100 different parameter sets. The table only
includes results for P = 2 dimensions, and for the case where the cluster sizes are
balanced. The latter does not affect the results significantly, so has been omitted.
The former does have an important but uninteresting effect: when P = 5, all meth-
ods achieved near optimal ARI. Overall, an increase in the error standard deviation
degrades the model performance the most. With enough samples, lsbclust can how-
ever still achieve decent clustering performance when σ is high.

In the next section, we consider an illustrative empirical example.

8 Application

The data comes from a brand positioning study where 187 consumers evaluated 10
car manufacturers on a set of 8 attributes (Bijmolt and van de Velden 2012). It was
collected via an online survey using a representative Dutch sample from the Cen-
tERpanel of Tilburg University in the Netherlands, with the aim of studying how
consumers perceive different car brands. The data X is therefore of size 187× 10× 8.

The 10 international car brands consideredwere: Citroën, Fiat, Ford, Opel, Peugeot,
Renault, Seat, Toyota, Volkswagen and Volvo. Respondents rated each of these brands
on 8 different attributes using a 10-point rating scale. For 6 out of the 8 items, namely
Affordability, Attractiveness, Safety, Sportiness, Reliability and Features, a score of
10 is the most desirable outcome. However, for the items Size and Operating Cost,
a score of 10 reflects small cars and those with high operating costs, respectively.
Hence, higher ratings on these two attributes reflect increasingly negative sentiment,
in contrast to the remaining six items.

We fit an lsbclust model with δ = (1, 1, 1, 1)—Model 9 in Table 2—so that the
overall means, row means, column means and interactions are estimated separately.
Also, we select P = 2 dimensions for display purposes, and we fix the coordinates of
the 10 car brands across all interaction biplots—using case (II) from Sect. 6.2—to aid
with interpretation.

Besides these choices, the number of clusters for each of the four components must
be determined. For simplicity, we opt to do this separately for each of the four sets
of clusters, although it is possible to make a joint selection. Selecting the number of
clusters is a common problem, and many procedures and criteria have been proposed
in the literature. Milligan and Cooper (1985), Hardy (1996) and Everitt et al. (2011)
provide an assessment of some of these criteria and additional references. The simplest
approach, and the one we use here for illustration, is probably the scree test (Cattell
1966). This method involves running the algorithm for several values of k and plotting
the loss function against k. The user must then choose a value for k based on this
so-called scree plot, such that the chosen k is close to an “elbow” in the plot. This
indicates that adding additional groups to the analysis does not significantly increase
how well the results describe the data.
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Table 4 Segments based on
overall mean ratings as detected
in the cars data

Cluster Size Mean

O1 105 5.94

O2 45 7.04

O3 26 4.55

O4 8 9.80

O5 3 1.00

Here we fit lsbclust models for 1 to 15 clusters and inspect the resulting scree
plots to select R, S, T and U .1 Based on these plots, we selected R = 5, S = 5,
T = 6 and U = 8 clusters. The number of row clusters was reduced to S = 5 from
an initial choice of S = 8 to avoid clusters contain a single observation only. We note
that these choices are subjective, should take into account the aims of the research and
that alternative selection criteria can also be used. The number of random starts used
for the interaction and k-means clustering were 100 and 1000 respectively.

The cluster sizes and centres (i.e., mr in Eq. (7)) for each of the five overall mean
clusters are shown in Table 4. Noticeable here are that the small clusters O4 (8 obser-
vations) and O5 (3 observations) identified persons who invariably used very high
and very low scores, respectively. These respondents obviously do not provide very
interesting information in their answers. But since their corresponding row means,
column means and interactions do not differ from the overall mean, they are merely
assigned to the row, column and interaction segments containing negligible effects
(see below). lsbclust has therefore been able to identify the 11 persons in clusters
O4 and O5 who provide very little sensible information.

Figure 3 displays themeans of the eight car brand (row) clusters across all attributes.
Effect sizes can be read off on the horizontal axis. The first two clusters, Segments
R1 (98 observations) and R2 (59 observations), contain no pronounced large effects,
which indicates that these consumers do not have strong, consistent opinions on any
of the brands across all attributes. The 23 observations in Segment R3 do assign lower
scores to Volvo and somewhat higher scores to Peugeot across all items. These effects
amount to (approximately) -1.4 and 0.7 for Volvo and Peugeot, respectively. Even
larger effects are observed in the smaller segments R4 (4 observations) and R5 (3
observations), but these comprise a relatively small part of the data.

The attribute (column) mean effects for all six clusters are displayed in Fig. 4. Here
all segments contain at least 13 observations. Again, the largest cluster, Segment C1
(69 observations), contains no large effects. Segments C2 (35 observations), C3 (33
observations), and C4 (22 observations) are similar in that they display an inclination
to assign higher scores on Reliability and Safety, and lower scores on Affordability,
irrespective of the car brand being assessed. Themagnitude of these effects vary greatly
over these clusters though, and Segments C2 and C4 also display negative effects for
Size. Segment C5 (15 observations) is dominated by a tendency to assign low scores

1 Runtime is roughly one minute on a laptop with an Intel Core i7-6560U processor with 16 GB RAM
running Microsoft Windows 10.
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Fig. 3 Car manufacturer (row) cluster means detected in the cars data. The size of the effects can be read
off from the horizontal axis

Fig. 4 Attribute (column) cluster means detected in the cars data

on Affordability. Several large effects are seen in Segment C6 (13 observations).
These indicate a generally positive assessment of all brands on Size, Operating Cost,
Reliability and Size, bearing in mind that for the former two attributes lower scores
are better.

The most interesting results can be found among the interactions, which is
where respondents distinguish between different car manufacturers on the measured
attributes. Figs. 5 and 6 shows the biplots for the eight interaction segments. The
car manufacturers are represented by points, and the attributes by arrows. The labels,
points and arrows are shaded according to their goodness-of-fit, withwell-fitting points
being darker. All car brands, except Ford with a fit of only 0.09, fit reasonably well—
see Table 5. The locations of the car brands are fixed across all biplots to make them
easier to interpret. It is immediately apparent that the French manufacturers (Peugeot,
Citroën and Renault) are judged to be similar, while the German brands Opel and
Volkswagen are also located close together. Volvo, the Swedish car manufacturer, is
somewhat isolated towards the right of the biplots, in contrast with Fiat at the opposite
side of the plot. Fiat and Toyota are judged to be somewhat similar to the French and
German brands respectively. Seat in turn are most similar to Toyota. As a result of its
low fit, Ford is hardly visible and lies near the origin.

The fit for the eight attributes vary per segment, and is summarized in Table 6.
Typically only a subset of items fit well in each segment, and only the better-fitting
ones are adorned with calibrated axes in Figs. 5 and 6. For any manufacturer, the
estimated within-cluster interaction effects can be read off from the orthogonal pro-
jection of its representing point onto the respective biplot axes. For example, Volvo

123



1022 P. C. Schoonees et al.

Fig. 5 Biplots for the interaction clusters I1 to I4 detected in the cars data. The relative cluster sizes are
displayed in the titles of the different panels. Each attribute is represented by a vector, and thosewhich fit best
in each panel also by calibrated axes. The car manufacturers are represented by points, which has identical
locations across panels. The orthogonal projections of the car manufacturer points onto the attribute axes
give the estimated mean effects. The colors and labels are faded according to how well they fit into the
display: solid colors fit well and transparent ones fit badly

scores approximately 0.25 points above that predicted by the overall mean, row mean
and column mean on Sportiness in Segment I1, and Fiat score about 2 rating points
above the overall and marginal effects on Affordability in the Segment I6. The overall
variance accounted for in approximating the cluster means is 82.8% in two dimen-
sions, with 64.1% and 18.7% attributed to dimensions 1 and 2, respectively. Hence
two dimensions are a reasonable choice.

The effects in the interaction clusters should be interpreted as deviations from
that expected from the overall and marginal means alone. Here are summaries of the
interaction segments:

• Segment I1 (32.6%) has no large effects. Hence for this sizable group of individ-
uals, the overall and marginal means contain most of the information provided.

• Segment I2 (12.3%) interprets Fiat and Seat to be more affordable than expected
from the overall and marginal effects alone. The opposite applies to Volvo and
Volkswagen. In terms of safety and reliability, however, the roles are reversed:
Fiat and Seat score lower than expected, while Volvo and Volkswagen excel on
these items. The effect sizes are roughly the same on the aforementioned three
items.
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Fig. 6 Biplots for the interaction clusters I5 to I8 detected in the cars data

• Segment I3 (12.3%) contrasts positive interaction effects on Affordability and
Size with negative effects on Safety, Reliability, Attractiveness and Features, and
vice versa. Taking into account that Size is reverse-coded, this segment considers
Fiat and Seat to be more affordable but smaller cars. At the same time, they are
considered less reliable, attractive and safe than especially Volvo and Volkswagen.
This segment is not dissimilar to Segment I2, except that effect sizes are larger
and the inclusion of Attractiveness and Features on the right side of the plot.

• Segment I4 (10.7%) contains smaller effects than Segment I3. It distinguishes
somewhat between Affordability and Size, in contrast to Segment I3.Whereas Fiat
still better than expected in terms of Affordability, Seat is perceived to perform
worse than Fiat on Size (after adjusting for the overall and marginal means). There
is also now a much bigger difference between Volvo and Volkswagen in terms of
size, with the latter scoring worse than expected compared to Renault, Peugeot
and Citroën.

• Segment I5 (10.2%) again interprets the left of the plot as better in terms of
Affordability and worse in terms of Size. But it also associates this with lower
operating costs (since the latter is reverse-coded).Volvo andVolkswagen are scores
higher than expected in terms of safety, in contrast to Seat and Fiat.

• Segment I6 (8.6%) contains large interaction effects on three pairs of items.
Renault, Citroën and Peugeot score higher on Attractiveness and Features than
expected. This is in contrast to Seat and Volkswagen, who exhibit negative inter-
action effects with these items. Safety and Reliability again favour Volkswagen
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Table 5 Brand fit for the cars
data across all clusters. Higher
values indicate better fit, with a
maximum of one and minimum
of zero

Brand Fit

Volvo 0.96

Seat 0.92

Volkswagen 0.84

Fiat 0.83

Renault 0.82

Citroen 0.70

Opel 0.60

Peugeot 0.58

Toyota 0.56

Ford 0.09

and Volvo, while Affordability and Size have similar but larger effects than in
Segment I4.

• Segment I7 (7.5%) have similar interaction effects for Affordability and Size as
with Segments I4 and I5. But these individuals also consider Volkswagen, Volvo
and Opel to have higher than expected operating costs, in contrast to Fiat, Renault
and Citroën. The latter brands, together with Peugeot are also considered the most
attractive, with Volkswagen being considered less attractive than expected using
only the overall and main effects.

• Segment I8 (5.9%) contains individuals who consider Renault, Fiat, Citroën and
Peugeot to be more affordable than expected using only the overall and main
effects. At the same time, these brands are considered to have higher expected
operating costs and smaller cars. The direction of Attractiveness, Safety and Reli-
ability indicate that the combination of these aspects are considered to correlate
with higher prices.

Clearly, there are strong similarities but also interesting differences in how these
groups of individuals interpreted the performance of the brands on the respective items
after adjusting for overall and main effects. In the context of this application, these
insights can provide valuable input to a brand positioning strategy, for example. Code
reproducing our analysis of these data appears in the appendix of the supplemental
materials.

9 Conclusions

This paper introduces lsbclust, a modelling framework for three-way data, where
one of the three ways is clustered over whilst the corresponding matrix slices are
approximated by low-rank decompositions. The clustering is done simultaneously
with respect to up to four different aspects of these matrix slices, namely the overall
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Table 6 Attribute fit for the cars data, for all eight interaction segments

Interaction segment

I1 I2 I3 I4 I5 I6 I7 I8

Affordability 0.58 0.91 0.98 0.77 0.85 0.84 0.96 0.88

Attractiveness 0.21 0.19 0.80 0.33 0.24 0.90 0.70 0.66

Safety 0.57 0.89 0.95 0.50 0.87 0.92 0.76 0.63

OperatingCost 0.49 0.46 0.49 0.62 0.90 0.09 0.67 0.53

Sportiness 0.71 0.60 0.52 0.56 0.05 0.13 0.20 0.36

Size 0.23 0.26 0.93 0.83 0.90 0.94 0.87 0.66

Reliability 0.39 0.95 0.90 0.12 0.37 0.92 0.89 0.70

Features 0.18 0.35 0.73 0.94 0.72 0.83 0.91 0.06

mean responses, the row means, the column means, and the row–column interactions.
These are the four elements of the biadditive (or bilinear) model used to approximate
each of the matrix slices. Which of these terms are included in the model depends on
the choice of identifiability constraints, as parametrized by δ.We show that in eight out
of nine unique choices for δ, the combination of the bilinear model and least-squares
loss allows the four clustering problems to be treated independently. This important
property greatly simplifies the complexity of the clustering problem, which also has
positive implications for model selection and the interpretation of the results. The
low-rank decompositions of the interaction cluster means lead to readily interpretable
biplots which aid in the interpretation of the results.

As illustrated in an application, lsbclust is a useful and natural alternative to more
traditional three-way matrix decomposition methods such as parafac/candecomp
and tuckals3. Our method uses a combination of well-known multivariate statisti-
cal methods, namely k-means cluster analysis, low-rank decompositions of two-way
matrices as well as biplots, whereas traditional three-way methods require domain-
specific expertise. Since least-squares loss functions are used, the problems can be
treated very efficiently in software. Such software implementing lsbclust has been
developed in the form of an eponymous R (R Core Team 2020) package. The pack-
age, lsbclust (Schoonees 2019), is available for download from the Comprehensive R
Archive Network (CRAN, http://cran.r-project.org).

There are some points that require further research. The treatment of missing values
have not been discussed, and should be investigated in the future. In terms of model
selection, a wide variety of alternatives to the scree test can and should be investigated.
There are a number of promising methods available in the literature, including using
multiple criteria and taking a vote to determine the most attractive choice.We note that
the rank of the low-rank decomposition can also be considered as a model selection
step. Furthermore, it would be possible to add case weights to the methodology. An
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advantage of caseweights is that it allows amechanism for implementing the bootstrap
(e.g. Efron and Tibshirani 1994) to assess the variability of any given solution.
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A Orthogonality

Here we discuss the orthogonality of the decomposition (13), using the notation of
Sect. 6.1. Equation (13) represents a special case of the more general notation. For
the decomposition (13) to be orthogonal, it must be shown that all six cross-products
occurring among the terms in a generalized version of (10) are zero. We treat each of
these cross-products in turn.

1. For the cross-product between the interaction term and the row term, it holds that

tr
(
J(δ1)
J

(
Xi − CuD

′
u

)
J(δ2)
K

) (
δ2J

(δ4)
J

( 1
K Xi1K − as

)
1

′
K

)′

= δ2 tr J
(δ1)
J

(
Xi − CuD

′
u

)
J(δ2)
K 1K

(
1
K 1

′
KX

′
i − a

′
s

)
J(δ4)
J

= 0. (23)

The last equality follows since when δ2 = 1, J(δ2)
K 1K = JK 1K = 0. When δ2 = 0,

the equality is trivial.
2. For the cross-product between the interaction term and the column term, the result

is analogous to the above, except that now the equality 1
′
JJJ = 0

′
is used.

3. For the cross-product between the interaction term and the term for the overall
mean, we have that

tr
(
J(δ1)
J

(
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′
u

)
J(δ2)
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) (
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1
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1
J K 1

′
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)

= 0. (24)

This cross-product equals zerowhenever at least one of the following is true: δ1 = 1,
δ2 = 1 or δ∗ = 0. But whenever both δ1 = δ2 = 0, δ∗ = δ1δ3 + δ2δ4 − δ1δ2 = 0
irrespective of δ3 and δ4. Hence the cross-product always equals zero.

4. For the cross-product between the row and column terms, we have

tr
(
δ11J

(
1
J 1

′
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′
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)
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′
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if δ = (1, 1, 0, 0)

′

0 otherwise.

(25)

Deducing when the cross-product equals zero uses the same concepts as above, but
when δ = (1, 1, 0, 0)

′
none of these apply and the cross-product is not necessarily

equal to zero.
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5. The cross-product between the column term and the term for the overall mean also
does not necessarily equal zero. Here we can derive the following:

tr
(
δ11J
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1
J 1

′
JXi − b

′
t

)
J(δ3)
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) (
δ∗ (

1
J K 1
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(26)

The last line follows from the fact that the crossproduct equals zero if δ1 = 0, if
δ1 = 1 and δ3 = 1, and when δ∗ = 0. Hence consideration must be given to the
four cases δ1 = 1, δ2 ∈ {0, 1}, δ3 = 0, δ4 ∈ {0, 1}. It is easy to see that δ∗ =
δ1δ3+δ2δ4−δ1δ2 = δ2δ4−δ2 = 0 in all these cases except when δ = (1, 1, 0, 0)

′
.

6. Analogously to the above, consider the cross-product between the row term and
the term for the overall mean:

tr
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(27)

The expression equals zero when δ2 = 0, when δ2 = 1 and δ4 = 1 or when δ∗ = 0.
Considering the cases δ1 ∈ {0, 1}, δ2 = 1, δ3 ∈ {0, 1}, δ4 = 1 then, it can be seen
that δ∗ = δ1δ3 + δ2δ4 − δ1δ2 = δ1δ3 − δ1 = 0 except when δ = (1, 1, 0, 0)

′
.

Consequently the decomposition in (13) is valid for all δ, except for δ = (1, 1, 0, 0)
′
—

Model 6 in Table 2.

B Fit diagnostics

The quality of the solution can be assessed using a variety of metrics. We focus on
measures for investigating the quality of the interaction approximations.

The interaction approximations—case (I), (II), or (III)—allow biplots to be used
for visualizing the relationships between the J rating categories and K items for each
of the clusters. Biplots generalize scatterplots of two variables to multiple variables
(Gower and Hand 1996; Gower et al. 2011), and rely on low-rank inner product
approximations. These are most useful when the number of dimensions is low: for
example, P ∈ {1, 2, 3}. Constructing biplots for the interactions simply entails plotting
the approximation ofXu for each cluster. For example, under (III) the rating categories
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are represented in P dimensions by the rows in Cu , while the items are represented
in the same space by the rows of Du . The inner products between the pairs of rows in
thesematrices are rank-P approximations of the corresponding entries inXu .We defer
discussion of the interpretation of these biplots to Sect. 8, where empirical examples
are examined.

Goodness-of-fit measures for the biplots—and hence, the interactions—are based
on the proportion of variation accounted for by the model. A fit value of one indicates
perfect fit, while low fit values imply that a substantial amount of variation occurs in
the subspace orthogonal to that identified by themodel. These are calculated separately
for each interaction cluster, as appropriate. Again, we must distinguish between the
three cases (I), (II) and (III). We discuss first case (I) here. Cases (II) and (III) are
briefly treated after. We do not explicitly include any eventual centering matrices to
keep the notation simple.

Measures can be defined for (a) the overall fit, (b) the J rating categories in the
rows of Xi , as well as for (c) the K items in the columns of Xi . For case (I), these are:

(a) The overall quality of fit for the interactions within cluster u for P dimensions is

ofit(u) = ‖CuD
′
u‖2

‖Xu‖2
= tr �2

uL

tr �2
u

. (28)

This is just the proportion of the variation in the cluster mean explained by the
model. Here trA denotes the trace of the matrix A, which is just the sum of its
diagonal elements.

(b) The proportion of the variation explained by each of the rows (rating categories),
also known as sample predictivities (Gower et al. 2011), is calculated as

rfit(u) =
[
diagCuD

′
uDuC

′
u

] [
diagXuX

′
u

]−1
1J

=
[
diagUu�

2
uLU

′
u

] [
diagUu�

2
uU

′
u

]−1
1J , (29)

with each element bounded on [0, 1]. In this context, diagA denotes the diagonal
matrix constructed from the main diagonal of A.

(c) The column fit can be defined analogously for each of the K items as

cfit(u) =
[
diagDuC

′
uCuD

′
u

] [
diagX

′
uXu

]−1
1K

=
[
diagVu�

2
uLV

′
u

] [
diagVu�

2
uV

′
u

]−1
1K . (30)

These quantities are also known as axis predictivities (Gower et al. 2011).

Next, we briefly consider goodness-of-fit measures for each Xi . The loss contribu-
tion for person i towards the interactions is defined as

L(i) (i) =
U∑

u=1

g(i)
iu L(i) (i |u) =

U∑

u=1

g(i)
iu

∥∥
∥
(
Xi − CuD

′
u

)∥∥
∥
2
. (31)
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This gives an indication of badness-of-fit, and the sum over all persons gives the
minimized value of L(i)

(
G(i),C,D

)
. These loss contributions account for possible

differences in origin, scale and/or rotation between a person’s interactions and the
modelled cluster mean CuD

′
u . A more informative manner of presenting these loss

contributions may be as percentage contributions to L(i)
(
G(i),C,D

)
.

An alternative measure of person fit which is bounded on [−1, 1] is given by

pfit(i) =
U∑

u=1

g(i)
iu

trXiDuC
′
u∥∥Xi

∥∥ ∥∥CuD
′
u

∥∥ . (32)

This only takes into account differences in rotation and origin, and high values indicate
good fitwhilst negative values indicate poor fit.When the origins coincide, the quantity
(32) can be interpreted as a product-moment correlation coefficient between VecXi

and VecCuD
′
u . The notation VecA denotes the vector formed by concatenating the

columns of a matrix A into a single vector.
Finally, we briefly note fit diagnostics for cases (II) and (III). For case (II), we again

have an orthogonal decomposition, namely

X(c)X
′
(c) =

(
C1D

′
∗
) (

C1D
′
∗
)′

+
(
X(c) − C1D

′
∗
) (

X(c) − C1D
′
∗
)′

.

The row fit can therefore be defined as

rfit =
[
diagC1D

′
∗D∗C

′
1

] [
diagX(c)X

′
(c)

]−1
1J

and the column fit as

cfit =
[
diagD∗C

′
1C1D

′
∗
] [

diagX
′
(c)X(c)

]−1
1UK .

For case (III), a similar decomposition is available, and we have

rfit =
[
diagC∗D

′
1D1C

′
∗
] [

diagX(r)X
′
(r)

]−1
1U J

for the rows, and similarly

cfit =
[
diagD1C

′
∗C∗D1

] [
diagX

′
(r)X(r)

]−1
1K

for the columns.
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C The latent-class bilinear multinomial logit model

In this appendix,we briefly expand on the lc- bmlmodel of vanRosmalen et al. (2010)
mentioned in Sect. 1.1, whichwas developed to analyze survey data contaminatedwith
response styles.

Response styles occur when respondents use rating scales heterogeneously (e.g.,
Schoonees et al. 2015; Baumgartner and Steenkamp 2001). The lc- bml model is a
parametric finite mixture of multinomial logit models which models the responses to
all items jointly. It simultaneously segments respondents into two types of clusters,
namely response style and substantive item segments. Similarly to lsbclust, the
lc- bml model produces biplots describing the relationship between the values and
the rating categories within each item segment. The response styles are modelled as
marginal effects for the rating categories. A nonparametric equivalent of the lc- bml
model can be formulated within the lsbclust framework. The resulting model is,
except for the inclusion of demographic variables in the lc- bmlmodel, equivalent to
the lc- bml model. It has the distinct advantage of being much faster to compute, as
least-squares estimation and crisp clustering are used instead of maximum likelihood
and finite mixture models.

Whereas lsbclust models entries in X directly, the lc- bml model focuses on
modelling the probability of a certain response pattern across a number of items
measured on a common rating scale. Mathematically, we have

P(Xi jk = 1) =
S∑

s=1

U∑

u=1

πsuP(Xi jk = 1 | s, u),

where {Xi jk} are the random variables whose realizations are the entries in X. The
mixing proportions, or a priori class membership probabilities, are denoted by πsu ,
where s and u indexes the two types of latent classes analogous to the two types of clus-
ters in lsbclust. The cluster-specific probabilities are modelled using multinomial
logits such that

P(Xi jk = 1 | s, u) = exp
(
η jk | s,u

)

∑J
j=1 exp

(
η jk | s,u

) ,

where η jk | s,u is a segment-specific linear predictor. The basic form of the linear
predictor is

η jk | s,u = α j | s + γ jk | u . (33)

Here α j | s is the attractiveness of rating category j under response style s, and γ jk | u
captures the joint effect of rating category j for item k under interaction cluster u,
after adjusting for α j | s . To reduce the large number of parameters and to facilitate the
use of biplots for interpreting the results, Van Rosmalen et al. (2010) further restrict
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(33) to be of the form

η jk | s,u = α j | s + c
′
1 j dk | u . (34)

Here c
′
1 j and d

′
k | u form the rows ofC1 andDu respectively. Identifiability restrictions

are applicable to these parameters—see the original paper for more information.
The lc- bml model specification is completed by the likelihood function:

L (�,A,C,D) =
I∏

i=1

S∑

s=1

U∑

u=1

πsu

J∏

j=1

K∏

K=1

P(Xi jk = 1 | s, u).

This likelihood function is optimized using an EM-algorithm (Dempster et al. 1977),
which requires significantly more computation time than our algorithm in Sect. 5.

A nonparametric equivalent of the lc- bml model can be formulated within the
lsbclust framework. The data array is constructed by transforming each observation
into an indicator matrix, with the rows representing the respective rating categories
and the columns the survey items. Each column contains a single one indicating which
rating was used to answer that item. In effect, we therefore consider the rating scale
as one of the modes in our three-way data set. Choosing Model 2 in Table 2 fits a
model containing only row, or, in this context, response style effects, and interactions.
Additionally, we use the case (II) from Sect. 6.2 (C1D

′
u) as a model for the interactions

so that the coordinates for the rating categories are fixed across biplots. The resulting
model is, except for the inclusion of demographic variables in the lc- bml model,
equivalent to the lc- bml model. The similarity between lc- bml and lsbclust is
apparent from comparing (34) and (7). As for lsbclust under case (I), the matrix C1
contains the coordinates of the rating category effects across all interaction segments in
a P-dimensional space, while Du contains the item coordinates for interaction cluster
u in that same space.

Note that Van Rosmalen et al. (2010) also include effects for demographic variables
in the linear predictor. This is not currently possible for lsbclust.

An empirical comparison of lc- bml and lsbclust, based on an analysis of the
list-of-values data conducted in van Rosmalen et al. (2010), is available from the
authors upon request.

D Reproducing the empirical example

All computations in this paper were carried out with the lsbclust package (Schoonees
2019) for the open-source statistical software environment R (R Core Team 2020).
Version 1.1 of lsbclust is available for download from the Comprehensive R Archive
Network (CRAN) and can be installed from within an R session with the command

R> install.packages("lsbclust")
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The cars data used in Section 4.1 is available as part of lsbclust as the dcars data
set. This is a three-way array containing the data for 187 respondents. We can load
the package and the data, and inspect the dimensions of dcars with the commands

R> library("lsbclust")
R> data("dcars")
R> dim(dcars)
[1] 10 8 187

The first observation is

R> dcars[, , 1]
Afford Attr Safety Operating Sport Size Reli Features
ability activeness Cost iness ability

Citroen 3 6 4 6 6 4 5 5
Fiat 7 6 7 6 6 7 6 6
Ford 6 6 6 6 6 6 6 6
Opel 7 4 4 5 5 5 3 4
Peugeot 6 6 5 6 4 5 5 5
Renault 5 6 6 6 6 6 7 6
Seat 6 5 6 5 4 4 5 5
Toyota 6 6 6 6 6 6 6 6
Volkswagen 3 4 3 5 5 3 3 5
Volvo 5 7 7 6 6 4 6 7

Model 9 in Table 2 is fitted (δ = c(1, 1, 1, 1)) with the number of clusters R = 5,
S = 5, T = 6 and U = 8. Two dimensions are used for the low-rank decomposition
of the interaction cluster means (ndim = 2) and the coordinates of the car brands
are fixed across all interaction biplots (case (II), fixed = "rows"). We use 100
random starts (nstart = 100) for the interaction clustering and 1000 random starts
(nstart.kmeans = 1000) for the three k-means parts. The code is

R> set.seed(5448)
R> fit <- lsbclust(data = dcars, ndim = 2, delta = c(1, 1, 1, 1),

nclust = c(5, 5, 6, 8), nstart = 100,
nstart.kmeans = 1000, parallel = TRUE,
verbose = -1, fixed = "rows")

K-means on overall means... DONE
K-means on row margins... DONE
K-means on column margins... DONE
Interaction clustering (100 starts)... DONE

The object fit can now be queried and plotted to produce the results in the accom-
panying paper. To create the figures, which are returned as graphical objects created
by the ggplot2 package (Wickham 2009), the following code can be used:

• A plot containing the information in Table 4:

R> plot(fit, type = "overall")

• Figure 3:

R> plot(fit, type = "rows")

• Figure 4:
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R> plot(fit, type = "columns")

• Figures 5 and 6:

R> plot(fit, type = "interactions", legend.position = "none",
segments = c(FALSE, TRUE))

The information in Tables 5and 6 can be accessed by the summary()method for the
interactions as

R> summary(fit$interactions)

Note that the rows in Table 5 have been reordered such that the fit statistics are in
descending order.

The three persons in Segment O5 can be identified by looking at the cluster mem-
bership vector for the overall means. This can be accessed as part of the "overall"
slot of our fitted object

R> which(fit$overall$cluster == 5)
[1] 50 66 85

The observations for these persons can be viewed by

R> dcars[, , which(fit$overall$cluster == 5)]

We can verify that the three persons in Segment O5 also fall in Segment R1 by cross-
tabulating the cluster assignment for these two components:

R> table(fit$overall$cluster, fit$rows$cluster)

1 2 3 4 5
1 55 31 15 2 2
2 19 20 5 1 0
3 14 8 3 0 1
4 7 0 0 1 0
5 3 0 0 0 0

Finally, the code we used for selecting the number of clusters are as follows:

R> set.seed(43235)
R> ms <- step.lsbclust(dcars, margin = 3, nclust = 1:15,

fixed = "rows", nstart = 100,
parallel = TRUE, nstart.kmeans = 1000)

R> plot(ms, which = 1:5)

Information on the R session is as follows:
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R> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=nl_NL.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=nl_NL.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=nl_NL.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=nl_NL.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] stringr_1.4.0 xtable_1.8-4 lsbclust_1.1 ggplot2_3.3.5
[5] memisc_0.99.27.3 MASS_7.3-54 lattice_0.20-44 knitr_1.33

loaded via a namespace (and not attached):
[1] Rcpp_1.0.7 pillar_1.6.2 compiler_4.1.0
[4] plyr_1.8.6 iterators_1.0.13 base64enc_0.1-3
[7] tools_4.1.0 digest_0.6.27 clue_0.3-59

[10] jsonlite_1.7.2 evaluate_0.14 lifecycle_1.0.0
[13] tibble_3.1.3 gtable_0.3.0 pkgconfig_2.0.3
[16] rlang_0.4.11 foreach_1.5.1 DBI_1.1.1
[19] parallel_4.1.0 mvtnorm_1.1-2 xfun_0.25
[22] gridExtra_2.3 withr_2.4.2 cluster_2.1.2
[25] repr_1.1.3 dplyr_1.0.7 generics_0.1.0
[28] vctrs_0.3.8 tidyselect_1.1.1 grid_4.1.0
[31] glue_1.4.2 data.table_1.14.0 R6_2.5.0
[34] fansi_0.5.0 purrr_0.3.4 reshape2_1.4.4
[37] magrittr_2.0.1 codetools_0.2-18 scales_1.1.1
[40] ellipsis_0.3.2 htmltools_0.5.1.1 assertthat_0.2.1
[43] colorspace_2.0-2 utf8_1.2.2 stringi_1.7.3
[46] doParallel_1.0.16 munsell_0.5.0 crayon_1.4.1
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