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Abstract
We introduce the Robust Logistic Zero-Sum Regression (RobLZS) estimator, which
can be used for a two-class problem with high-dimensional compositional covari-
ates. Since the log-contrast model is employed, the estimator is able to do feature
selection among the compositional parts. The proposed method attains robustness by
minimizing a trimmed sumof deviances. A comparison of the performance of the Rob-
LZS estimator with a non-robust counterpart and with other sparse logistic regression
estimators is conducted via Monte Carlo simulation studies. Two microbiome data
applications are considered to investigate the stability of the estimators to the pres-
ence of outliers. Robust Logistic Zero-Sum Regression is available as an R package
that can be downloaded at https://github.com/giannamonti/RobZS.

Keywords Robustness · High dimensional data · Metagenomics · Penalized
estimation

Mathematics Subject Classification 62J07 · 62F35 · 62H30

1 Introduction

Over the past decade, the interest in understanding the importance of the role of the
microbiome in human health has increased, especially in studies concerning the asso-
ciation of a medical status with the microbial communities, providing new ways to
classify individuals, and to predict their disease risks (Qin et al. 2010). This growing
interest is motivated by the diffuse use of high-throughput sequencing technologies,
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such as the approach based on sequencing of 16S ribosomal RNA gene, which is
ever-present in all bacterial genomes, or the approach based on shotgun metagenomic
sequencing. The resulting sequencing reads are vectors of bacterial taxa abundances,
that generally are clustered into operational taxonomic units (OTUs) at different taxo-
nomic levels. The analysis of these data is a statistical and computational challenge as
they are typically high-dimensional, sparse, zero inflated due to the presence of many
rare taxa, and compositional (Gloor et al. 2017). In fact, the total sequence read counts
of the subjects can vary significantly from sample to sample, so that the data should be
normalized before the analysis. For a given sample, the resultingmicrobiome dataset is
essentially a compositional matrix, in which each row contains information on relative
OTUs. A common normalization is to standardize each row to sum up to one.

This paper considers logistic regression analysis ofmicrobiome compositional data,
with the aim to identify the bacterial taxa that are associated with a dichotomous
response, such as a medical status of interest. The goal is twofold: to classify the sub-
jects on the basis of the estimated model, and to perform variable selection, namely
to select the most relevant taxa associated to the response of interest. Standard logis-
tic regression should not be implemented due to the unit sum normalization of the
covariates; they are in fact totally collinear.

Several methods to perform regression with compositional explanatory variables
are available in the literature: Aitchison and Bacon-Shone (1984) proposed the lin-
ear log-contrast model for continuous response applying the log-ratio transformation
Aitchison (1982) to compositional covariates. The critical point of this proposal is the
arbitrariness in the choice of a reference taxon, but also the estimation results become
unstable when the number of predictors by far exceeds the number of observations.

In the high-dimensional setting, Lin et al. (2014) considered variable selection in
the context of regression with compositional covariates for continuous response by
imposing a zero-sum constraint on the regression coefficients and an �1 penalty to
the likelihood function. Lu et al. (2019) extended the zero-sum model to the general-
ized linear regression framework, while Zacharias et al. (2017) applied an elastic-net
regularization to the logistic zero-sum model.

The penalized logistic regression performs stable estimation and avoids overfit-
ting, but, since it is based on the maximum likelihood method, it suffers from outliers,
producing unreliable classification results. A robust approach could overcome this dis-
advantage. However, in the high dimensional setting it is arduous or even impossible
for the practitioner to identify outliers or observations that deviate somehow from an
underlying model. Therefore, outliers need to be automatically identified and down-
weighted in the estimation procedure of a robust estimator. Some robust procedures are
already available in the literature. Among others, Avella-Medina and Ronchetti (2017)
proposed a robust penalized quasi-likelihood estimator for generalized linear models,
Park and Konishi (2016) suggested a robust penalized logistic regression based on a
weighted likelihoodmethodology, and Kurnaz et al. (2018) adopted a trimmed elastic-
net estimator for linear and logistic regression. However, none of these options satisfy
the zero-sum constraint.

This paper presents a Robust Logistic Zero-Sum Regression (RobLZS) model with
compositional explanatory variables. The RobLZS method attains robustness by min-
imizing a trimmed sum of deviances. The suggested method can be applied in various
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fields of research, such as in biostatistics, but also in medicine, economics, ecology,
demography, psychology and many more.

The rest of this paper is organized as follows. Section 2 presents the regression
methods for compositional covariates and fleshes out our proposed robust estimator.
Section 3 shows a Monte Carlo simulation to investigate the performance of RobLZS
with respect to other competing estimators, Sect. 4 presents results from an analysis
of two real microbiome studies, and Sect. 5 concludes.

2 Sparse logistic regressionmodels with compositional covariates

In the usual linear regression setup, a response variable Yi ∈ R is connected to a vector
of covariates Xi ∈ R

p by a linear model E(Yi |Xi = xi ) = β0 + xTi β, (i = 1, . . . , n),
with the regression coefficients β ∈ R

p.
To take into account the compositional nature of the covariates vector, we can

assume that each vector xi lies in the unit simplex S p = {xi = (xi1, . . . xip)T :
xi j > 0, for j = 1, . . . , p, and

∑p
j=1 xi j = 1}. The standard log-contrast model

by Aitchison and Bacon-Shone (1984) is defined as E(Yi |Zp
i = zpi ) = β0 + zpTi β\p,

where Zp
i ∈ R

n×(p−1) is the log-ratio design matrix, with z pi j = log
( xi j
xip

)
, p denotes

the reference component, and β\p = (β1, . . . , βp−1) is the vector of (p − 1) coef-
ficients. Lin et al. (2014) reformulated the linear log-contrast model in a symmetric
form introducing linear constraints on the coefficients,

E(Yi |Zi = zi ) = β0 + zTi β , subject to
p∑

j=1

β j = 0 , (1)

where zi = log(xi ) are log-transformed covariates. For the sake of simplicity, and
without loss of generality, we assume that the intercept β0 is zero, although our formal
justification will allow for an intercept.

Model (1) exempts us from choosing the reference component, as it was necessary
in the aforementioned standard log-contrast model by Aitchison and Bacon-Shone
(1984) , while gaining interpretability.
Note that the zero-sum constraint in (1) is crucial for an estimator of regression coeffi-
cients to fulfill the desirable properties of compositional data analysis, namely the scale
invariance, the permutation invariance, and the subcompositional coherence properties
(Aitchison 1986). The scale invariance property guarantees that the regression coef-
ficient β is independent from an arbitrary scaling of the basis count from which the
composition is obtained, i.e. log(δxi )Tβ = log(xi )Tβ, for any constant δ. The permu-
tation invariance property, i.e. the estimator is unchanged if we permute the columns
of Z and the elements of β in the same way, derives directly from the symmetric
form of (1). The subcompositional coherence states that the regression coefficients
β remain unaffected by correctly excluding some or all of the zero components (Lin
et al. 2014). It is important to remember that each coefficient β j should be interpreted
in the context of the other non-zero coefficients. Because of the zero-sum constraint,
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the regression coefficients split up the full composition of regressors into two sub-
sets of variables: taxa with a positive regression coefficient and those with a negative
coefficient. Therefore, the fitted regression model depicts the relationship, or balance,
between these groups of parts.

Note that applying the standard tool kit of linear regression analysis to the standard
log-contrast model does not guarantee solutions that are permutation invariant, due to
its asymmetric form.

Model (1) could be extended to the generalized linear model (GLM) framework,
in which the density function of the outcome is a member of the exponential family

f (yi |β, zi ) = h(yi ) exp{ηi yi − A(ηi )}, ηi = zTi β,

E[Yi ] = ∇ηi A(ηi ) ≡ μ(β, zi ), V[Yi ] = ∇2
ηi
A(ηi ) ≡ ν(β, zi ).

(2)

where∇ denotes the gradient. In case of binary outcome, a two-class logistic regression
model is often used, and thus we have

A(ηi ) = log(1 + eηi ), μ(β, zi ) = ez
T
i β

1 + ez
T
i β

, ν(β, zi ) = ez
T
i β

(1 + ez
T
i β)2

, h(yi ) = 1,

with the corresponding log-likelihood

�(β) =
n∑

i=1

log h(yi ) − d(zTi β, yi ) , (3)

where d(zTi β, yi ) = −yizTi β + A(zTi β) is the deviance for the i th component. In the
high-dimensional setting, when n � p, a sparse solution for the estimation of the
parameter β can be obtained by using a penalized negative log-likelihood. Thus, the
penalized estimate of β is the solution of the optimization problem

β̂LZS = argminβ∈Rp

{ n∑

i=1

d(zTi β, yi ) + nλPα(β)

}

subject to
p∑

j=1

β j = 0 , (4)

and it is called the Logistic Zero-Sum (LZS) estimator. Pα(β) is the elastic-net regu-
larization penalty (Zou and Hastie 2005), defined as

Pα(β) = 1 − α

2
‖β‖22 + α ‖β‖1 ,

where α ∈ [0, 1] and λ ∈ [0,∞) are the tuning parameters: α balances the �2 and
�1 penalizations, while λ controls the sparsity of the solution.The zero-sum constraint
carries interpretation benefit in penalized regression, where each regression coefficient
represents the effect of a variable on the outcome, adjusting for all other selected
variables.
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Luet al. (2019) imposed a lasso penalty (settingα = 1 in Pα(β)) to the estimator (4),
while Zacharias et al. (2017) considered an elastic-net regularization, and they adopted
a coordinate descent algorithm to fit logistic elastic-nets with zero-sum constraints.
Bates and Tibshirani (2019) showed a link between the model (1) and the model that
includes as covariates the log of all pairwise ratios, suggesting a different interpretation
of the linear log-contrast model.

2.1 The RobLZS estimator

The estimator for β in (4) is based on the maximum log-likelihood method, where
every observation enters the log-likelihood function with the same weight. Thus, the
estimator is not robust against the presence of outliers, which can lead to unreliable
classification results. Commonly, outliers in logistic regression can be classified into
leverage points, which are deviating points in the space of the covariates, vertical
outliers, which are mislabeled observations in the response, or outliers in both spaces
(Nurunnabi and West 2012).

We consider here a penalized maximum trimmed likelihood estimator, an analog
for the generalized linear model of the sparse least trimmed squares (LTS) estimator
for robust high-dimensional linear models (Alfons et al. 2013; Neykov et al. 2014;
Kurnaz et al. 2018). We call our proposal the Robust Logistic Zero-Sum estimator
(hereafter indicated by the acronym RobLZS).

The RobLZS estimator is a penalized minimum divergence estimator, as it uses a
trimmed sum of deviances. The elastic-net penalty is considered in the penalization,
which enables variable selection and estimation at the same time, and effectively deals
with the existence issue of the estimator in case of non-overlapping groups (Albert
and Anderson 1984; Friedman et al. 2010). In the estimation process, only the best
subset of h observations with the smallest deviances are considered. Then a system
of robustness weights is computed within the algorithm, in a similar way as for the
robust weighted Bianco-Yohai (BY) estimator for logistic regression (Bianco and
Yohai 1996). The final estimator is computed by considering all the observations in
the sample, but with weights assigned according to their outlyingness.

The algorithm to obtain β̂RobLZS is detailed in Sect. 2.2. The selection of the tuning
parameters α and λ will be discussed in Sect. 2.3, and an extensive Monte Carlo
simulation study, reported in Sect. 3, demonstrates the robustness of the estimator in
presence of data outliers, suggesting that the RobLZS estimator is an effective tool for
the classification task as well as for variable selection.

2.2 Algorithm

The proposed algorithm is conform to the fast-LTS algorithm (Rousseeuw and Van
Driessen 2006), which has been extended to the high-dimensional setting (Alfons et al.
2013).

For a fixed combination of the tuning parameters α and λ, the objective function of
the RobLZS estimator has the form
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R(H ,β) =
∑

i∈H
d(zTi β, yi ) + hλPα(β) , subject to

p∑

j=1

β j = 0 , (5)

based on a subsample of observations, where H is an outlier-free subset of the set of
all indexes {1, 2, . . . , n}, and |H | denotes the cardinality of set H , with |H | = h ≤ n,
and Pα(β) is the elastic-net regularization penalty as in (4). For each subsample given
by the set H we can obtain β̂H as

β̂H = argminβ∈Rp R(H ,β) , subject to
p∑

j=1

β j = 0 .

The optimal solution β̂opt is given by,

β̂opt = argminβ∈Rp R(Hopt ,β) , (6)

where
Hopt = argminH⊆{1,...,n}: |H |=h R(H , β̂H ) ,

hence, β̂opt is obtained as the LZS estimator applied to the optimal subset of h ≤ n
observations which lead to the smallest penalized sum of deviances, where the zero-
sum constraint needs to be preserved.

The optimal subset Hopt is obtained by using a modification of the fast-LTS algo-
rithm, based on iterated concentration steps (C-steps) (Rousseeuw and Van Driessen
2006) on diverse initial subsets, which we describe in the following.

At iteration κ , let Hκ denote a certain subsample with |Hκ | = h = 
ξ(n + 1)�,
ξ ∈ [0.5, 1] with 1 − ξ the trimmed portion, and 
.� means rounding down to the
nearest integer. In this article we choose ξ = 0.75, thus (1− ξ)% = 25% is an initial
guess of the maximum outlier proportion in the sample.

Let β̂Hκ
be the coefficients of the corresponding zero-sum fit, see Model (4). After

computing the deviances d(zTi β̂Hκ
, yi ), for i = 1, . . . , n, the subsample Hκ+1 for

iteration κ+1 is defined as the set of indices corresponding to the h smallest deviances.
These indexes are subsequently intended to point at outlier-free observations, and their
group composition should be in the same proportion as for thewhole (training) data set.
Thus, let n0 and n1 be the numbers of observations in the two groups, with n = n0+n1.
Then h0 = 
ξ(n0+1)� and h1 = h−h0 define the group sizes in each h-subset. A new
h-subset is created with the h0 indexes with the smallest deviances d(zTi β̂Hκ

, yi = 0)

and with the h1 indexes with the smallest deviances d(zTi β̂Hκ
, yi = 1).

Let β̂Hκ+1
denote the coefficients of the LZS fit based on the subset Hκ+1. It is

straightforward to derive that

R(Hκ+1, β̂κ+1) ≤ R(Hκ+1, β̂κ) ≤ R(Hκ , β̂κ) .

We can see that a C-step results in a decrease of the objective function, and that the
algorithm iteratively converges to a local optimum in a finite number of steps. In order
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to increase the chance to approximate the global optimum, a large number of random
initial subsets H0 of size h for any sequence of C-steps should be used. Each initial
subset H0 is obtained through a search with elemental subsets of size 4, two from
each group, as suggested by Kurnaz et al. (2018). This elemental subset is used to
grow the likelihood, and such a small subset of observations has a higher chance to be
outlier-free.

For a fixed combination of the tuning parameters λ ≥ 0 and α ∈ [0, 1], the imple-
mented algorithm is as follows:

1. Draw s (we choose s = 500 to increase the chance to get the global minimum) ran-
dom initial elemental subsamples Hel

s of size 4, and let β̂Hel
s
be the corresponding

estimated coefficients.
2. For all s subsets and estimated coefficients β̂Hel

s
, the deviances d(zTi β̂Hel

s
, yi )

are computed for all observations i = 1, . . . , n. Then two C-steps are carried
out, starting with the h-subset defined by the indexes of smallest values of the
deviances.

3. Retain only the best s1 = 10 subsets of size h, and for each subsample per-
form C-steps until convergence. To identify the best h-subsets we compute robust
deviances for all n observations, using the weighted Bianco-Yohai robust logis-
tic regression approach (Bianco and Yohai 1996) as implemented by Croux and
Haesbroeck (2003). In this approach, the deviance function has been replaced by
a function ϕBY to downweight outliers, which significantly improved the classi-
fication and prediction (Croux and Haesbroeck 2003). Also here, the deviances
d(zTi β̂Hel

s
, yi ), for i = 1, . . . , n, are substituted in the objective function (5) with

the functions ϕBY (zTi β̂Hel
s

, yi ): the smallest values of ϕBY are assigned to cor-
rect classified observations, which are positive predicted scores ηi corresponding
to an observation with yi = 1, and negative predicted scores ηi related to an
observation with yi = 0. A desirable subset is the one with the smallest sum
of ϕBY (zTi β̂Hel

s
, yi ); in other words, a subset in which the two groups are highly

separated. Finally, the subset with the smallest sum ϕBY (zTi β̂H , yi ) for all i ∈ H
forms the best index set. Note that this robust criterion is more tolerant to single
observations with a score with wrong sign compared to the non-robust deviances,
and thus there is a stronger focus on obtaining an h-subset wheremost of the points
are clearly separated.

We consider a warm start strategy (Friedman et al. 2010) to reduce the computa-
tional cost of the algorithm, which, in principle, should be computed for each possible
combination of the tuning parameters. The warm start is based on the intuition that,
for a particular combination of α and λ, the best h-subset from step 3 may also be
advisable for another couple of tuning parameters which is adjacent of this α and/or λ,
thus the step 1 should be performed only once. A further reweighting step, that down-
weights outliers detected by β̂opt given in (6), is considered to increase the efficiency
of the proposed estimator. We consider outliers as observations with Pearson residuals
larger than a certain quantile of the standard normal distribution. Since the RobLZS
estimator is biased due to regularization, it is necessary to center the residuals. Denote
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rsi as the Pearson residuals,

rsi = yi − μ(β̂opt , zi )
√

ν(β̂opt , zi )
,

where μ(β̂opt , zi ) and ν(β̂opt , zi ) are respectively the fitted mean and fitted variance
function of the response variable. The Pearson residuals, which are commonly used
in practice in the context of generalized linear models, are normally distributed under
small dispersion asymptotic conditions (Dunn and Gordon 2018). Then the binary
weights are defined by

wi =
{
1 if |rsi | ≤ �−1(1 − δ)

0 if |rsi | > �−1(1 − δ)
i = 1, . . . , n, (7)

where � is the cumulative distribution function of the standard normal distribution.
A typical choice for δ is 0.0125, so that 2.5% of the observations are expected to be
flagged as outliers in the normal model.

The RobLZS estimator is defined as

β̂RobLZS = argminβ∈Rp

( n∑

i=1

wi d(zTi β, yi ) + nwλupd Pαopt (β)

)

,

subject to
p∑

j=1

β j = 0 ,

(8)

where nw = ∑n
i=1 wi is the sum of weights, αopt is the optimal parameter obtained

considering the optimal subset Hopt , whereas the tuning parameter λupd is obtained by
a 5-fold cross-validation procedure. This update of the tuning parameter λ is necessary,
because with a bigger number of observations also the sum of deviances changes
compared to (6), and thus the weight for the penalty needs to be adapted.

Robust Logistic Zero-Sum Regression has been available as an R package that can
be downloaded at https://github.com/giannamonti/RobZS.

2.3 Parameter selection

To select the optimal combination (αopt , λopt ) of the tuning parameters α ∈ [0, 1]
and λ ∈ [ε · λMax , λMax ], with ε > 0, leading to the optimal subset Hopt , a repeated
K-fold cross-validation (CV) procedure (Hastie et al. 2001), on each best h-subset, on
a two-dimensional surface is adopted, with K = 5.

In K-fold cross-validation the data are split into folds V1, . . . , VK of approximately
equal size in which the two classes are represented in about the same proportions
as in the complete dataset. We leave out the part Vk , where k is the fold index, k ∈
{1, . . . , K }, train the model on the observations with index i /∈ Vk of the other K − 1
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parts (combined), and then obtain predictions for the left-out kth part. Note that we
only consider samples of size h at this stage which are supposed to be outlier-free, and
thus the derived prediction error criterion is robust.

As criterion we use the mean of the deviances (MD),

MD(α, λ) = 1

h

K∑

k=1

∑

i∈Vk
di (β̂(α, λ)) . (9)

The chosen couple (αopt , λopt ), over a grid of values α ∈ [0, 1] and λ ∈ [ε ·
λMax , λMax ], is the one giving the smallest CV error in (9). Here, λMax is an estimate
of the parameter λ that leads to a model with full sparsity, see Kurnaz et al. (2018) for
details. In the simulations we considered 41 equally spaced values for α, and a grid of
40 values for λ.

3 Simulations

In the following simulation studies we are comparing the performance of the RobLZS
estimator to other competing sparse estimators. In particular, we considered the Lasso
(the regular least absolute shrinkage and selection operator) (Tibshirani 1994), the
logistic Zero-Sum (LZS) estimator (Altenbuchinger et al. 2017; Zacharias et al. 2017),
and the robust EN(LTS) estimator for logistic regressions (Kurnaz et al. 2018), denoted
by RobLL in the following. In order to compare with the Lasso solution, we have
set the parameter α equal to 1 for the methods involving elastic-net penalties. The
LZS estimator preserves the zero-sum constraint, but is not robust to the presence of
outliers. RobLL is robust, but does not preserve the zero-sum constraint. The Lasso
is neither robust, nor does it preserve the zero-sum constraint, while the RobLZS has
both properties.

3.1 Sampling schemes

We generate the covariate data,
inspired by the true bacterial abundances in a microbiome analysis (Lin et al. 2014;

Shi et al. 2016), as follows.
First an n/2 × p data matrix W1 = [wi j ]1≤i≤n/2; 1≤ j≤p is generated by

sampling from a multivariate log-normal distribution ln Np(θ1,�), with θ1 =
(θ11, . . . , θ1p)

T = (1, 1, . . . , 1)T . Then, independently, another n/2 × p data matrix
W2 = [wi j ]1≤i≤n/2; 1≤ j≤p is generated by sampling from a multivariate log-normal
distribution ln Np(θ2,�), with mean parameter θ2 = (θ21, . . . , θ2p)

T set as θ2 j = 3,
for j = 1, . . . , 5, and θ2 j = 1 otherwise to allow someOTUs to bemore abundant than
others. The correlation structure of the predictors is defined by � = [�i j ]1≤i, j≤p =
ρ|i− j |, with ρ=0.2 to mimic the correlation between different taxa. We get the n × p

data matrix W = [wi j ]1≤i≤n; 1≤ j≤p =
[
W1
W2

]

, and finally the log-compositional
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design matrix Z = [zi j ]1≤i≤n; 1≤ j≤p is obtained by the transformation

zi j = log
wi j

∑p
k=1 wik

= log xi j .

The first n/2 values of the binary response were set to 0, and the last n/2 entries
were set to 1. Thus, the response values yi , for i = 1, . . . , n, directly reflect the
grouping structure entailed by the different centers of the matrices W1 and W2.

The true parameter β = (β j )1≤ j≤p is set to β1 = β3 = β5 = β11 = β13 = −0.5,
β2 = 1, β16 = 1.5, and β j = 0 for j ∈ {1, . . . , p} \ {1, 2, 3, 5, 11, 13, 16}, the
intercept is set to β0 = −1.

The observations zi , i = 1, . . . , n/2, of the covariates for yi = 0, are arranged
according to increasing values of μ(β, zi ) in the design matrix Z. This is because in
the various contamination schemes we will modify a proportion of the first entries of
this group, and thus these are observations with the poorest fit to that group.

The two robust estimators are calculated taking ξ = 3/4 for an easy comparison.
This means that n/4 is an initial guess of the maximal proportion of outliers in the
data. For each replication, we choose the optimal tuning parameter λopt as described
in paragraph 2.3, with a repeated 5-fold CV procedure and a suitable sequence of 40
values between ε · λMax and λMax , with ε > 0, used to adjust this range.

Different sample size/dimension combinations (n, p) = (50, 30), (100, 200) and
(100, 1000) are considered, thus a low-high dimensional setting (n > p), a moderate-
high dimensional setting (n < p), and a high-dimensional setting (n � p). The
simulations are repeated 100 times for each setting to keep computation costs reason-
ably low.

For each of the three simulation settings we applied the following contamination
schemes:

– Scenario A. (Clean) No contamination.
– Scenario B. (Lev) Leverage points: we replace the first γ% (with γ = 10 or 20)
of the observations by values coming from a p-dimension log-normal distribution
with mean vector θ j = 3, for j = 1, . . . , 5, and θ j = 0.5 otherwise, and a
correlation equal to 0.9 for each pair of variable components, then the resulting
log-compositional designmatrixZ is obtained by normalizing the true abundances.

– Scenario C. (Vert) Vertical outliers: we assign to the first γ% (with γ = 10 or 20)
of the observations the wrong class membership.

– ScenarioD. (Both)Horizontal andVertical outliers: this is amore extreme situation
in which each outlier has both types of contaminations, combining scenarios B
and C.

Below we present the simulation results for γ = 10%; similar results have been
obtained for γ = 20%, and they are reported in Sect. 1 of the Supporting Information
(SI) for the sake of completeness.
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3.2 Performancemeasures

To evaluate the prediction performance of the proposed sparse method, in comparison
to the other models, we consider several measures. For this purpose, an independent
test sample of size n without outliers was generated in each simulation run.

To quantify the prediction error in the whole range of the predictive probabilities
we used three different measures (Cessie and Houwelingen 1992):

– Mean prediction error, defined as

MPE = 1

n

n∑

i=1

(

y�
i − μ(β̂, z�

i )

)2

, (10)

where y�
i and z�

i denote the response and the covariate vector of the test set data,

respectively, n is the total number of data points in the test set, β̂ is the parameter
estimate derived from the training data, and the predictionμ(β̂, z�

i ) is a probability
that the response is equal to 1 based on the parameter estimates.

– Mean absolute error, defined as

MAE = 1

n

n∑

i=1

∣
∣
∣
∣y

�
i − μ(β̂, z�

i )

∣
∣
∣
∣. (11)

– Logarithmic loss (or minus log-likelihood error), defined as

ML = −1

n

n∑

i=1

{

y�
i log

(
μ(β̂, z�

i )
) + (1 − y�

i ) log
(
1 − μ(β̂, z�

i )
)
}

. (12)

Different statistics based on the accuracy matrix are used to evaluate the ability of
the estimators in discriminating the true binary outcome:

– Sensitivity (Se): the true positive rate, in other words the proportion of actual
positives that are correctly identified.

– Specificity (Sp): true negative rate, or 1−false positive rate, thus the proportion of
actual negatives that are correctly identified.

– AUC: the proportion of area below the receiver operating characteristics (ROC)
curve.

Concerning sparsity, the estimated models are evaluated by the number of false
positives (FP) and the number of false negatives (FN), defined as

FP(β̂) =| j ∈ {1, . . . , p} : β̂ j 
= 0 ∧ β j = 0| ,
FN(β̂) =| j ∈ {1, . . . , p} : β̂ j = 0 ∧ β j 
= 0| ,

(13)

where here positives and negatives refer to nonzero and zero coefficients, respectively.
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3.3 Simulation results

We report averages (mean) and standard deviations (sd) of the performance mea-
sures defined in the previous section over all 100 simulation runs, for each method
and for the different contamination schemes. In the following tables, the best values
(of “mean”) among the different methods are presented in bold. Tables 1, 2, and 3
show the predictive performance of the different methods in the different scenarios
and sample size/dimension combinations. Table 4 shows the corresponding selection
performances.

The results for Scenario A (no contamination) show that all methods have compa-
rable performance in terms of Sensitivity, Specificity and AUC. This is different in
the contaminated scenarios, and the difference gets more pronounced with growing
dimension. For instance, in Scenario B the AUC is quite comparable for the different
methods in the lower-dimensional case, but there is a big difference between the non-
robust and the robust methods in the high-dimensional case; the latter methods attain
about the same AUC as in the uncontaminated case. Scenario C shows an advantage
of the non-robust methods for the Sensitivity, but a drawback for Specificity, such that
the AUC for the robust methods gets higher values (even more in higher dimension).
Similar conclusions can be drawn from Scenario D.

For the prediction measures MPE, MAE andML, the results in the uncontaminated
case are again quite comparable, with only a slight performance loss of the robust
methods. This is also based on the application of a reweighting step at the end, which
gains efficiency for the estimator. For the contamination scenarios one can see a sim-
ilar trend towards better results for the robust methods with increasing dimension.
Generally, the RobLZS attains usually the best results for the MAE, for Scenario B
even by far the best results. It is interesting to see that the LZS estimator achieves
quite poor results in Scenario D. However, it can also be seen that the Lasso estimator
surprisingly delivers relatively good results in this setting. One should be aware that
leverage points might not have such strong effects here because of the normalization
of the observations to sum 1.Moreover, it is worthmentioning that Lasso and its robust
counterpart (RobLL) do not preserve the zero-sum constraint of the coefficients, thus
they lead in any case not to an appropriate solution for compositional data, and are
reported here only for benchmarking purposes.

In terms of the selection properties presented in Table 4, one can see similar perfor-
mance of all methods in all settings for the false negative rate (FN). RobLZS shows
slightly better results in Scenarios B and D. For the false positive rate (FP) one can
see clearer differences between the methods, again more pronounced when the dimen-
sionality of the covariates increases: Scenario A leads to clearly higher values for LZS
and RobLZS, similar in Scenario C; the methods RobLL and LZS are preferable in
Scenario B, while RobLL is the clear winner in Scenario D (at least in higher dimen-
sion). As mentioned above, only the methods LZS and RobLZS fulfill the sum-zero
constraint of the regression coefficients, and thus the other methods do not result in
log-contrasts. Moreover in this contest, the omission of important variables is usually
more problematic than the inclusion of unimportant variables with shrinkage coeffi-
cients.
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Overall, the proposed RobLZS estimator performs remarkably well in all simula-
tion settings, in the uncontaminated case as well as in presence of outliers. It tends
to slightly less sparsity, thus including more of the non-relevant variables, but shows
excellent performance with identifying the truly relevant ones. The classification per-
formance is excellent, and the precision measures reveal clear advantages over the
non-robust methods in case of contamination. Moreover, the standard deviations of
RobLZS for the AUC are almost always smaller than for the non-robust methods in the
contaminated scenarios and for all considered sample sizes, showing a high stability
of the estimations over 100 simulations.

More simulation results are presented in the Supporting Information (SI): Sect. 1
presents results for 20% contamination, Sect. refsec:method shows results for grad-
ually increasing contamination from zero to 30%, and Sect. 3 compares LZS and
RobLZS by making use of the elastic-net penalty.

4 Applications tomicrobiome data

We illustrate the performance of our proposed estimator by applying it to two datasets
related to human microbiome data: the first one is related to inflammatory bowel dis-
eases (IBD) (Morgan et al. 2012), and the second one is concerned with an application
to Parkinson’s disease (PD) (Dong et al. 2020). The two microbiome datasets were
preprocessed by filtering out OTUs which had more than 90% zeros. The remaining
zero countswere then replaced by a pseudo-count value 0.5 to allow for the logarithmic
transformation.

The original IBD dataset consists of microbiome data with 81 samples for inves-
tigating the association between the gut microbiota and a chronic and relapsing
inflammatory condition known as Crohn’s disease, with 19 healthy and 62 IBD
affected individuals . The dimension of the microbiome data set originally was
n × p = 81 × 367, and after preprocessing the final number of OTUs is p = 95.

For the original PD dataset we have dimension n × p = 327 × 4707, and after
preprocessing the resulting microbiome data consists of p = 1016 final OTUs.

For a fair investigation of the prediction performance of the four sparse estimators, a
5-fold cross-validation procedure was repeated 20 times, resulting in 100 fittedmodels
for each sparse regression method. In the training set, the parameter selection follows
the one described in the simulation section.

4.1 Results for the IBD data

Accuracy measures such as Sensitivity (true positive rate), Specificity (false positive
rate) and AUC were used to assess the classification performance of the different
methods. The AUC represents a trade-off between Sensitivity and Specificity. The
results are presented as boxplots in Fig. 1. The RobLZS estimator shows a lower
Sensitivity but a higher Specificity, resulting in an AUC that is higher on average than
for the other estimators.
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Fig. 1 IBD data: results for Sensitivity, Specificity and AUC from the repeated CV

Fig. 2 IBD data: Mean regression coefficients over all CV replications for Lasso, LZS, RobLL and RobLZS

Since it is not known which variables should be selected by the models, we can
only compare the regression coefficients and the resulting model sparsity for the four
different methods. Figure 2 presents the regression coefficients as average over all
models derived from the repeated CV. The horizontal axis (Index) corresponds to the
variable number. The general picture is that all methods more or less are conform with
the zero and non-zero coefficients. For RobLL we observe for some variables much
higher coefficients.

The sparsity of the repeated CV models is compared in Fig. 3, by showing the
proportion of models (out of all 100) which have resulted in at least the number of
zero coefficients indicated by the horizontal axis.One can see that the classicalmethods
Lasso and LZS lead to a comparable sparsity; RobLZS results in less sparsity, and
RobLL is much less sparsity. From the simulations we know that RobLZS has slightly
better performance to identify the correct variables, but (depending on the outlier
configuration) it tends to include also non-relevant variables in the model.

An important issue is to investigate if there are outliers in the data set. Outliers
can only be reliably identified with the robust procedure. We thus apply RobLZS to
the complete data set and show in Fig. 4 (left) a plot of the scores zTi β̂ versus the
deviances. Red color indicates the identified outliers with large deviances, blue color
is for regular observations. As a comparison we also show the corresponding scores
and deviances from the non-robust LZS estimator (pink crosses), which leads to much
smaller deviances in general. A further comparison of the scores from the RobLZS
and the LZS estimator is shown in the right plot, with plot symbol according to the
class variable (healthy/disease), and color according to the outlyingness information
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Fig. 3 IBD data: proportion of
models (out of all 20*5)
containing at least the number of
zeros shown on the horizontal
axis over all CV replications by
Lasso, LZS, RobLL and
RobLZS

Fig. 4 IBD data: the left plot shows the deviances against the scores zTi β̂; the blue/red squares refer to the
RobLZSmethod, outliers are in red, and the pink crosses refer to the non-robust LZSmethod. The right plot
shows again the scores from both estimators, with symbol color according to the outlyingness information
from RobLZS, and symbol according to the class (color figure online)

from RobLZS. The outliers are exclusively originating from IBD affected individuals,
and their scores are very different (for the robust method) from the scores of the other
individuals in this group. One can assume that these persons have some common
feature, being different from the remaining IBD affected people.

4.2 Results for the PD data

Figure 5 shows boxplots of the values for Sensitivity, Specificity and AUC from all
20×5models from repeated CV.We can see a similar picture as for the IBD data, with
lower sensitivity for RobZS compared to the other estimators, but higher Specificity
and overall a slightly higher (average) AUC.

Figure 6 (left) compares the resulting average regression coefficients, for better
readability now only for the estimators LZS and RobLZS. One can see that both
estimators are in agreement for bigger values of the coefficients (and for the sign).
Some differences are for smaller values, but again the sign is mostly in agreement. The
right plot shows the obtained sparsity for all estimators, and we can draw the same

123



320 G.S. Monti, P. Filzmoser

Fig. 5 PD data: results for Sensitivity, Specificity and AUC from the repeated CV

Fig. 6 PD data: The left plot shows the mean regression coefficients over all CV replications only for LZS
and RobLZS. The right plot reveals the sparsity of the models for all estimators

conclusions as for the IBD data: Lasso and LZS are very similar, RobLL leads to less
sparsity, and RobLZS is in between.

Similar to the results shown in Fig. 4 for the IBD data, Fig. 7 shows the scores
against the deviances when LZS and RobLZS are applied to the complete PD data set.
RobLZS leads to much higher (absolute) values of the scores, but also to clearly higher
deviances, with several outliers indicated in red. For these data, the outliers are not
separated from the remaining data, which is also shown in the right plot with a direct
comparison of the scores for the classical and the robust procedure. The indicated
outliers are observations for which the sign of the RobLZS scores corresponds to the
wrong group label. Thus, these observations have a data structure which differs from
that of the majority in the group, and this is the reason why they are downweighted
by the robust method.

Since the RobLZS estimator is able to identify outliers, one can also compute a
robustifiedversion of the accuracymeasures,where the identifiedoutliers are excluded.
Thus, Sensitivity, Specificity and AUC are only computed based on the regular obser-
vations which are not indicated to be outliers. This is done in Table 5 for both example
data sets. Here, for simplicity, the estimators LZS and RobLZS are only applied once
to the complete data set, and from this fit the measures are computed. It then can be
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Fig. 7 PD data: The left plot shows the deviances against the scores zTi β̂; the blue/red squares refer to the
RobLZSmethod, outliers are in red, and the pink crosses refer to the non-robust LZSmethod. The right plot
shows again the scores from both estimators, with symbol color according to the outlyingness information
from RobLZS, and symbol according to the class (color figure online)

Table 5 In-sample accuracy measures for the two datasets considering all data and after removing the
outliers identified by the RobLZS method, compared with the non-robust LZS method

IBD data PD data

Method LZS RobLZS LZS RobLZS

Measures Complete data Without out Complete data Without out

Se 0.968 0.774 0.98 0.878 0.787 0.951

Sp 0.421 1.000 1.000 0.646 0.731 0.941

AUC 0.694 0.887 0.99 0.762 0.759 0.946

seen that the non-outlier version (column “without out.”) of the accuracy measures
for RobLZS leads to excellent in-sample fit.

One could also compare the accuracy measures with LZS when the outliers
identified by RobLZS have been removed. This comparison, however, is not really
appropriate, because when only applying the method LZS, one would not get any
(reliable) outlier information. Nevertheless, we obtain the following results for LZS
without outliers for the IBD data: Se= 1.000, Sp= 0.421, and AUC= 0.711. For the
PD data we obtain: Se=0.957, Sp=0.772, AUC=0.865.

5 Conclusions

A new robust estimator called RobLZS for sparse logistic regression with composi-
tional covariates has been introduced. Due to an elastic-net penalty with an intrinsic
variable selection property it can deal with high-dimensional covariates. The com-
positional aspect is considered with a log-contrast model, which leads to a zero-sum
constraint on the regression coefficients. Robustness of the estimator is achieved by
trimming, where the trimming proportion has to be selected according to an initial
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guess of the maximum fraction of outliers in the data. We recommend a trimming
proportion of about 25%, thus using about 3/4 of the observations, which should be
reasonable in practice to protect against outliers, and also leads to higher efficiency
of the initial estimator (Sun et al. 2020). The efficiency of the estimator is further
increased by a reweighting step for the computation of the final estimator, where the
information from all observations that correspond to the model is considered. This
reweighting builds on the approximate normal distribution of the Pearson residuals,
see (7), which might be problematic in a high-dimensional sparse data setting with
a low number of observations. Indeed, our simulations for the uncontaminated case
revealed that the proportion of identified outliers is somewhat higher (around 4-5%
instead of the intended 2.5%). However, the reweighted estimator still improved the
estimator without reweighting, and thus this option seems reasonable.

We have proposed an algorithm to compute the estimator, and R code for its com-
putation has been made publicly available at https://github.com/giannamonti/RobZS.
The iterative algorithm successively minimizes the objective function by carrying out
so-called C-steps, which have been used also in the context of other robust estima-
tors (Rousseeuw and Van Driessen 2006). In simulation studies we have compared the
estimator with its non-robust counterpart, as well as with Lasso regression and a robus-
tified Lasso estimator, which cannot appropriately handle compositional covariates.
The RobLZS estimator works reasonably well under uncontaminated data, delivering
results which are similar for the non-robust counterpart. Under contamination one
obtains a classifier that is usually better or much better than the non-robust version,
but it tends to produce less sparsity by adding more of the non-relevant variables.

The applications to real compositional microbiome data sets also revealed the
advantages of the RobLZS estimator, whose classification accuracy is remarkably
excellent. For practitioners, the most important advantage might be the ability of the
procedure to identify outliers, thus observations that strongly deviate from the model,
being aware of the unreliable results obtained from non-robust procedures in pres-
ence of outliers. The reasons for outlyingness can be manyfold, it could be mislabeled
observations, but also individuals with a different multivariate data structure. In the
context of the data sets used here, investigating those outliers in more detail may lead
to relevant conclusions about the health status of the persons.
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